JPS63114107A - Synthetic resin magnet - Google Patents

Synthetic resin magnet

Info

Publication number
JPS63114107A
JPS63114107A JP61258330A JP25833086A JPS63114107A JP S63114107 A JPS63114107 A JP S63114107A JP 61258330 A JP61258330 A JP 61258330A JP 25833086 A JP25833086 A JP 25833086A JP S63114107 A JPS63114107 A JP S63114107A
Authority
JP
Japan
Prior art keywords
synthetic resin
magnet
resin
electron beam
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61258330A
Other languages
Japanese (ja)
Inventor
Kenji Sato
賢司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP61258330A priority Critical patent/JPS63114107A/en
Publication of JPS63114107A publication Critical patent/JPS63114107A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0533Alloys characterised by their composition containing rare earth metals in a bonding agent

Abstract

PURPOSE:To obtain a synthetic resin magnet which has high mass productivity and excellent magnet characteristics by forming a synthetic resin in to an ultraviolet curable resin or electron beam curable resin. CONSTITUTION:In a synthetic resin magnet formed of magnetic alloy powder containing rare earth element and synthetic resin of its binder, the synthetic resin is formed in to ultraviolet curable resin or electron beam curable resin. Since an ultraviolet ray and an electron beam for curing the resin can be applied at relatively arbitrary term, it can be, after cured, mounted at desired position for use or a magnetic film can, after formed in a pastelike state on a base surface made of metal, ceramic or plastic, be cured for use. Thus, its productivity is not only high but a synthetic resin magnet having excellent magnetic characteristics for use in utility of wide range can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、量産性がよく、また磁気特性が優れ、圧縮成
形樹脂磁石や塗布型ペースト磁石に用いて好適な合成樹
脂磁石に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a synthetic resin magnet that is easy to mass produce, has excellent magnetic properties, and is suitable for use in compression molded resin magnets and coated paste magnets.

〔従来の技術〕[Conventional technology]

成形品の寸法精度が良い、量産性が良いなどの利点を有
しながら、磁気特性が優れた磁性材料として、RCo、
(Rは希土類元素) 、R2Co、、で表わされる希土
類元素−コバルト系、希土類元素−鉄一ホウ素系などの
希土類元素を含有する磁性合金粉末とそのバインダーで
ある、ナイロンなどの熱可塑性樹脂、エポキシ樹脂など
の熱硬化性樹脂などの合成樹脂とからなる合成樹脂磁石
は、近年、家庭電器製品、OA機器、磁気センサー、各
種モーターなどに急速にその用途を広げている。
RCo, a magnetic material with excellent magnetic properties, has advantages such as good dimensional accuracy of molded products and good mass production.
(R is a rare earth element), R2Co, Magnetic alloy powder containing rare earth elements such as rare earth element-cobalt system, rare earth element-iron-boron system, and its binder, thermoplastic resin such as nylon, epoxy In recent years, synthetic resin magnets made of synthetic resins such as thermosetting resins have been rapidly expanding into applications such as home appliances, office automation equipment, magnetic sensors, and various motors.

しかしながら、上記希土類元素を含有する磁性合金粉末
は酸化され易い上に、合成樹脂磁石を製造する際、80
〜150℃程度まで加温されるため、酸化による磁気特
性の低下がおき易い。これを避けるため常温で製造しよ
うとして常温硬化剤を使用すると、硬化に時間を要する
ため生産性が極端に低下する。
However, the magnetic alloy powder containing rare earth elements is easily oxidized, and when manufacturing synthetic resin magnets, 80%
Since it is heated to about 150° C., the magnetic properties tend to deteriorate due to oxidation. If a room-temperature curing agent is used in an attempt to manufacture at room temperature in order to avoid this, curing takes time, resulting in an extremely low productivity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記問題点に鑑み、製造する際、酸化して磁
気特性が低下し難い、かつ生産性の高い合成樹脂磁石を
提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a synthetic resin magnet that is less susceptible to deterioration in magnetic properties due to oxidation during production and has high productivity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の合成樹脂磁石は、希土類元素を含有する磁性合
金粉末とそのバインダーである合成樹脂とからなる合成
樹脂磁石において、該合成樹脂が紫外線硬化型樹脂また
は電子線硬化型樹脂であるものである。
The synthetic resin magnet of the present invention is a synthetic resin magnet made of a magnetic alloy powder containing a rare earth element and a synthetic resin as a binder thereof, where the synthetic resin is an ultraviolet curable resin or an electron beam curable resin. .

〔作用〕[Effect]

本発明の合成樹脂磁石は、樹脂を硬化させるための紫外
線や電子線を比較的任意の時期に適用できるので、硬化
させた後、所望箇所に取付けて使用することも、また、
磁性被膜を金属、セラミックス、プラスチックなどの基
体表面にペースト状に形成した後、硬化させて使用する
こともできる。
Since the synthetic resin magnet of the present invention can be applied with ultraviolet rays or electron beams to harden the resin at a relatively arbitrary time, it can also be used by attaching it to a desired location after hardening.
It is also possible to use the magnetic coating by forming it into a paste on the surface of a substrate such as metal, ceramics, or plastic, and then curing it.

本発明による希土類元素を含有する磁性合金粉末は、上
述したようにRCo5、R,Co、、で表わされるR−
Co系、R−Fe−B系などの公知のものである。必要
に応じてこの磁性合金粉末に、例えば、シランカップリ
ング剤、チタネートカップリング剤などの表面処理剤、
酸化防止剤などで予備処理を施すこともできる。その平
均粒径は、特に制限を受けず合成樹脂磁石用として通常
用いら五る程度の1〜40μ−であるが、本発明の合成
樹脂磁石を前記のように硬化させた後取付けて使用する
場合は5〜30μmが、また、磁性被膜をペースト状に
形成した後硬化させて使用する場合は1〜3μ曽が好ま
しい。
As mentioned above, the magnetic alloy powder containing rare earth elements according to the present invention is R-
These are known ones such as Co type and R-Fe-B type. If necessary, a surface treatment agent such as a silane coupling agent or a titanate coupling agent may be added to the magnetic alloy powder.
Preliminary treatment with an antioxidant or the like can also be performed. The average particle size is not particularly limited and is about 1 to 40 μ-, which is about the same as that normally used for synthetic resin magnets. In this case, the thickness is preferably 5 to 30 μm, and in the case where the magnetic coating is formed into a paste and then cured, the thickness is preferably 1 to 3 μm.

この磁性合金粉末のバインダーである合成樹脂は紫外線
硬化型樹脂または電子線硬化型樹脂である。紫外線硬化
型樹脂または電子線硬化型樹脂としては、公知の不飽和
ポリエステル樹脂、不飽和アクリル樹脂、ポリエーテル
アクリレート、ポリエステルアクリレート、ポリウレタ
ンアクリレート、エポキシアクリレート、シリコーン樹
脂アクリレート、ポリブタジェンアクリレートなどのア
クリル変性樹脂、ポリオール/ポリエン樹脂系などが使
用できる。これらの樹脂を紫外線硬化型として使用する
場合は、光反応開始剤が必要である。
The synthetic resin that is the binder for this magnetic alloy powder is an ultraviolet curable resin or an electron beam curable resin. Examples of ultraviolet curable resins or electron beam curable resins include acrylic modified resins such as known unsaturated polyester resins, unsaturated acrylic resins, polyether acrylates, polyester acrylates, polyurethane acrylates, epoxy acrylates, silicone resin acrylates, and polybutadiene acrylates. Resins, polyol/polyene resin systems, etc. can be used. When these resins are used as UV-curable resins, a photoreaction initiator is required.

この光反応開始剤としては、4.4′−ジクロロメチル
ベンゾフェノン、2.2’−ジェトキシアセトフェノン
、アセトフェノン、4′−フェノキシ−2,2−ジクロ
ロアセトフェノン、ベンゾフェノン、ベンゾインイソブ
チルエーテル、4.4’−ビス(ジエチルアミノ)ベン
ゾフェノン、メチル−p−ベンザイルベンゾエート、O
−二トロトルエン、2.4−ジニトロトルエン、O−ニ
トロベンジルピリジン、メチルビス(2,4−ジニトロ
フェニル)アセテートなどが挙げられる。必要に応じて
、これら樹脂に、成形加工性、機械的特性などを改良す
るために、希釈剤、可塑剤、滑剤、安定剤などを添加す
ることもできる。
Examples of the photoreaction initiator include 4,4'-dichloromethylbenzophenone, 2,2'-jethoxyacetophenone, acetophenone, 4'-phenoxy-2,2-dichloroacetophenone, benzophenone, benzoin isobutyl ether, 4,4' -bis(diethylamino)benzophenone, methyl-p-benzylbenzoate, O
-nitrotoluene, 2,4-dinitrotoluene, O-nitrobenzylpyridine, methylbis(2,4-dinitrophenyl)acetate, and the like. If necessary, diluents, plasticizers, lubricants, stabilizers, etc. can be added to these resins in order to improve moldability, mechanical properties, etc.

磁性合金粉末と合成樹脂との量的割合は、前記のように
硬化させた後取付けて使用する場合、重量比で100:
(1〜10)である、この合成樹脂量が1未満では、磁
性合金粉末の全表面に対して合成樹脂が充分湿潤せず、
一方10を超えると、本発明の好ましい製造法である圧
縮成形時、合成樹脂が絞り出る現象がおこり易くなる。
The quantitative ratio of the magnetic alloy powder and the synthetic resin is 100: by weight when used after being hardened as described above.
(1 to 10), and if the amount of the synthetic resin is less than 1, the synthetic resin will not sufficiently wet the entire surface of the magnetic alloy powder,
On the other hand, if it exceeds 10, the synthetic resin is likely to be squeezed out during compression molding, which is the preferred manufacturing method of the present invention.

また、磁性被膜をペースト状に形成した後硬化させて使
用する場合、重量比で100:(5〜40)である。
Further, when the magnetic coating is formed into a paste and then cured for use, the weight ratio is 100:(5 to 40).

この合成樹脂量が5未満では、塗布形成時円滑な塗布を
充分なし難く、塗布ムラが生じ易い。一方、40を超え
ると、被膜の磁気特性に不足を来し易い。
If the amount of the synthetic resin is less than 5, it is difficult to achieve a sufficiently smooth coating during coating formation, and uneven coating is likely to occur. On the other hand, if it exceeds 40, the magnetic properties of the film tend to be insufficient.

次に、本発明の合成樹脂磁石の製造方法について説明す
る。硬化させた後取付けて使用する磁石の製造の場合は
、前記磁性合金粉末と前記合成樹脂とを前記の重量比に
配合し、3軸ロール等で混合、混練する。得られた混練
物を磁場を印加した金型内で例えば、圧縮成形する。こ
の際、射出成形法、押出成形法は混練物の状態が流動性
に冨んでいるので不適当である。その後、この成形物に
紫外線もしくは電子線を照射して硬化させる。
Next, a method for manufacturing the synthetic resin magnet of the present invention will be explained. In the case of manufacturing a magnet that is used after being hardened, the magnetic alloy powder and the synthetic resin are blended in the weight ratio described above, and mixed and kneaded using a triaxial roll or the like. The obtained kneaded material is, for example, compression molded in a mold to which a magnetic field is applied. In this case, injection molding and extrusion molding are unsuitable because the kneaded product is highly fluid. Thereafter, this molded product is cured by irradiating it with ultraviolet rays or electron beams.

また、ペースト状に形成した後硬化させて使用する磁石
の製造の場合は、混合、混練まで、前記硬化させた後取
付けて使用する磁石の場合と同様に行ない、得られたペ
ーストをスクリーン印刷によって所望のパターンで基体
表面に塗布する。膜厚はスクリーンのマスク部厚さを選
択したり、重ね塗りしたりして調整できる。その後、こ
の磁性被膜に紫外線もしくは電子線を照射して硬化させ
る。
In addition, in the case of manufacturing a magnet that is used by forming it into a paste and then hardening it, the steps up to mixing and kneading are carried out in the same way as in the case of the magnet that is used by attaching it after being hardened, and the resulting paste is printed by screen printing. Coat the substrate surface in the desired pattern. The film thickness can be adjusted by selecting the thickness of the mask part of the screen or by overcoating. Thereafter, this magnetic coating is cured by irradiating it with ultraviolet rays or electron beams.

〔実施例〕〔Example〕

以下、本発明を実施例と比較例により更に詳細に説明す
る。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1 磁性合金粉末としてSmCo5 (SmCo、系、平均
粒径7μm)およびSm(Coo、 hbFeo、 z
+cuo、 oaTio、 as) s、 z(Sm2
Cott系、平均粒径2877111)各々50gに対
して、合成樹脂として不飽和ポリエステル樹脂(紫外線
硬化型)2.5g、光反応開始剤としてペンゾフヱノン
0.3gを加え乳鉢中で混練した。続いて、これらの混
練物を成形型中に装入し、13koeの磁場を加えなが
ら圧力約5ton/cdで圧縮成形した。この際、成形
型は6鶴x4mmX13mmの角柱状のものを使用し、
磁場の印加力向は型の長手方向である。この圧縮成形で
得られた試料に紫外線(高圧水銀灯5kW)を5秒間照
射することにより固化した。
Example 1 SmCo5 (SmCo, system, average particle size 7 μm) and Sm(Coo, hbFeo, z) were used as magnetic alloy powders.
+cuo, oaTio, as) s, z(Sm2
Cott type, average particle size: 2877111) 2.5 g of unsaturated polyester resin (ultraviolet curable type) as a synthetic resin and 0.3 g of penzophenone as a photoreaction initiator were added to 50 g of each, and kneaded in a mortar. Subsequently, these kneaded products were charged into a mold and compression molded at a pressure of about 5 ton/cd while applying a magnetic field of 13 koe. At this time, a prismatic mold of 6 cranes x 4 mm x 13 mm was used.
The applied force direction of the magnetic field is the longitudinal direction of the mold. The sample obtained by compression molding was solidified by irradiating it with ultraviolet light (high-pressure mercury lamp 5 kW) for 5 seconds.

得られた合成樹脂磁石の磁気特性および抗折力を測定し
、その結果を第1表に示す。
The magnetic properties and transverse rupture strength of the obtained synthetic resin magnet were measured, and the results are shown in Table 1.

なお、抗折力の測定は、JIS B 7704に基づい
て行なった。
Note that the transverse rupture strength was measured based on JIS B 7704.

実施例2 合成樹脂としてポリウレタンアクリレート(電子線硬化
型)2.5gを用い、光反応開始剤を用いなかった以外
は、実施例1と同様にして圧縮成形した。得られた試料
に電子線加速器で電子線を5秒間照射することにより固
化した。
Example 2 Compression molding was carried out in the same manner as in Example 1, except that 2.5 g of polyurethane acrylate (electron beam curing type) was used as the synthetic resin and no photoinitiator was used. The obtained sample was solidified by irradiating an electron beam for 5 seconds with an electron beam accelerator.

得られた合成樹脂磁石につき、実施例1と同様に測定し
、その結果を第1表に示す。
The obtained synthetic resin magnet was measured in the same manner as in Example 1, and the results are shown in Table 1.

比較例1 合成樹脂としてビスフェノールA型ノボラックエポキシ
樹脂(熱硬化性)3gにアデカハードナ−EIIIOI
  (旭電化工業社商品名、硬化剤)Ig、n−ブチル
グリシジルエーテル(希釈剤)0.5gを添加したもの
を用い、光反応開始剤を用いなかった以外は、実施例1
と同様にして圧縮成形した。
Comparative Example 1 Adeka Hardener EIIIOI was added to 3 g of bisphenol A type novolac epoxy resin (thermosetting) as a synthetic resin.
(Asahi Denka Kogyo Co., Ltd. trade name, curing agent) Example 1 except that 0.5 g of Ig and n-butyl glycidyl ether (diluent) were added and no photoinitiator was used.
Compression molding was performed in the same manner as above.

得られた試料を乾燥器中で120℃、2時間加熱するこ
とにより固化した。
The obtained sample was solidified by heating at 120° C. for 2 hours in a dryer.

得られた合成樹脂磁石につき、実施例1と同様に測定し
、その結果を第1表に示す。
The obtained synthetic resin magnet was measured in the same manner as in Example 1, and the results are shown in Table 1.

実施例3 磁性合金粉末としてSmCo5 (SmCos系、平均
粒径2μm)およびSm(Coo、 bbFeo、 z
+cuo、 osTjo、 os) a、 z(Sm2
Co+、系、平均粒径2μm)各々50gに対して、合
成樹脂として不飽和ポリエステル樹脂(紫外線硬化型)
15g、光反応開始剤としてアセトフェノン1.8gを
加え三軸ロールで混練した。得られたペーストは、30
龍角のアルミナ基板上に10鶴角のパターン面を印刷塗
布した。その後、この被膜に紫外線(高圧水銀灯5kW
)を5秒間照射することにより固化した。
Example 3 SmCo5 (SmCos system, average particle size 2 μm) and Sm(Coo, bbFeo, z) were used as magnetic alloy powders.
+cuo, osTjo, os) a, z(Sm2
Unsaturated polyester resin (ultraviolet curable type) as a synthetic resin for 50 g of each Co + type, average particle size 2 μm)
15 g and 1.8 g of acetophenone as a photoreaction initiator were added and kneaded with a three-screw roll. The paste obtained was 30
A pattern surface of 10 Tsuru-kaku was printed and coated on a Ryukaku alumina substrate. After that, this coating was coated with ultraviolet light (high-pressure mercury lamp 5kW).
) was solidified by irradiation for 5 seconds.

次いでこのアルミナ基板から511角の磁性被膜を切り
取り、コンデンサー式着脱磁電源装置でパルス着磁を行
なった。
Next, a 511 square magnetic coating was cut from this alumina substrate, and pulsed magnetization was performed using a capacitor-type magnetization/demagnetization power supply.

得られた合成樹脂磁石の磁気特性を測定し、その結果を
第2表に示す。
The magnetic properties of the obtained synthetic resin magnet were measured, and the results are shown in Table 2.

第2表 実施例4 合成樹脂としてポリウレタンアクリレート(電子線硬化
型)15gを用い、光反応開始剤を用いなかった以外は
、実施例3と同様にして印刷塗布した。その後、この被
膜に電子線加速器で電子線を5秒間照射することにより
固化した。次いで、実施例3と同様にして着磁を行ない
、得られた合成樹脂磁石の磁気特性を測定し、その結果
を第2表に示す。
Table 2 Example 4 Printing and coating were carried out in the same manner as in Example 3, except that 15 g of polyurethane acrylate (electron beam curing type) was used as the synthetic resin and no photoinitiator was used. Thereafter, this film was solidified by irradiating it with an electron beam for 5 seconds using an electron beam accelerator. Next, magnetization was carried out in the same manner as in Example 3, and the magnetic properties of the obtained synthetic resin magnets were measured, and the results are shown in Table 2.

比較例2 合成樹脂としてビスフェノールA型ノボラックエポキシ
樹脂(熱硬化性)8gにアデカハードナ−[11101
(旭電化工業社商品名、硬化剤)3g、n−ブチルグリ
シジルエーテル(希釈剤)4gを添加したものを用い、
光反応開始剤を用いなかった以外は、実施例3と同様に
して印刷塗布した後、100℃、30分間加熱すること
により固化した。
Comparative Example 2 Adeka Hardener [11101
(Asahi Denka Kogyo Co., Ltd. trade name, hardening agent) 3g, n-butyl glycidyl ether (diluent) 4g was added,
After printing and coating in the same manner as in Example 3 except that no photoinitiator was used, the coating was solidified by heating at 100° C. for 30 minutes.

次いで、実施例3と同様にして着磁を行ない、得られた
合成樹脂磁石の磁気特性を測定し、その結果を第セ表に
示す。
Next, magnetization was carried out in the same manner as in Example 3, and the magnetic properties of the obtained synthetic resin magnet were measured, and the results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

以上から明らかなように、本発明は、生産性が高いのみ
ならず、広範囲の用途に供し得る磁気特性の優れた合成
樹脂磁石を提供するものである。
As is clear from the above, the present invention provides a synthetic resin magnet that is not only highly productive but also has excellent magnetic properties that can be used in a wide range of applications.

Claims (1)

【特許請求の範囲】[Claims] (1)希土類元素を含有する磁性合金粉末とそのバイン
ダーである合成樹脂とからなる合成樹脂磁石において、
該合成樹脂が紫外線硬化型樹脂または電子線硬化型樹脂
であることを特徴とする合成樹脂磁石。
(1) In a synthetic resin magnet made of magnetic alloy powder containing rare earth elements and a synthetic resin as its binder,
A synthetic resin magnet, wherein the synthetic resin is an ultraviolet curable resin or an electron beam curable resin.
JP61258330A 1986-10-31 1986-10-31 Synthetic resin magnet Pending JPS63114107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61258330A JPS63114107A (en) 1986-10-31 1986-10-31 Synthetic resin magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61258330A JPS63114107A (en) 1986-10-31 1986-10-31 Synthetic resin magnet

Publications (1)

Publication Number Publication Date
JPS63114107A true JPS63114107A (en) 1988-05-19

Family

ID=17318747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61258330A Pending JPS63114107A (en) 1986-10-31 1986-10-31 Synthetic resin magnet

Country Status (1)

Country Link
JP (1) JPS63114107A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009154564A (en) * 2007-12-25 2009-07-16 Fujikura Ltd Lever shaft position detecting device
WO2010006573A2 (en) * 2008-07-17 2010-01-21 Schaeffler Kg Bearing and motor comprising a magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009154564A (en) * 2007-12-25 2009-07-16 Fujikura Ltd Lever shaft position detecting device
WO2010006573A2 (en) * 2008-07-17 2010-01-21 Schaeffler Kg Bearing and motor comprising a magnet
WO2010006573A3 (en) * 2008-07-17 2010-03-11 Schaeffler Kg Bearing and motor comprising a magnet

Similar Documents

Publication Publication Date Title
US11590717B2 (en) Extrudable magnetic ink and novel 3D printing method to fabricate bonded magnets of complex shape
US4832891A (en) Method of making an epoxy bonded rare earth-iron magnet
KR101572518B1 (en) manufacturing method of conductor using dual curing composition for 3D printing
EP0418807A3 (en) Magnetic dispersions of ferrite particles with high magnetic energy product in flexible highly saturated nitrile rubber and methods of producing the same
US3668176A (en) Method of molding utilizing thermosetting resins and magnetized filler material
JP2017043749A (en) Soft magnetic powder composition and manufacturing method of magnetic element
JPS63114107A (en) Synthetic resin magnet
JP2009094405A (en) Magnet paste and thick film magnet
JP2000077221A (en) Granulated powder for rare earth magnet and manufacture of the same, and resin bonded magnet using the same and manufacture of the magnet
JP2020053515A (en) Manufacturing method of multipole bonded magnet composite
JPH01310522A (en) Manufacture of resin-bonded type permanent magnet
JP2724740B2 (en) Manufacturing method of radial anisotropic bonded magnet
JPS59208812A (en) Highly uniform magnetic field generator
JP2002199668A (en) Manufacturing method of cylindrical-shaped magnet for polar magnetizing
DE102014112531A1 (en) Method for producing a loudspeaker membrane
JPH05295083A (en) Epoxy resin composition for mold and resin mold made thereof
DE19910182B4 (en) Method for producing and magnetizing permanent magnetic films
JPH10275718A (en) Anisotropic rare-earth bond magnet and its manufacture
JP2002080725A (en) Magnetic body particle-containing molding
JPS62167368A (en) Paste for forming magnetic coating film
JP2024052582A (en) Manufacturing method of anisotropic magnetic powder compression molded body and bonded magnet
JPH0273613A (en) Manufacture of resin coupling type permanent magnet
JPS5991165A (en) Magnetic permeable adhesive composition
CN115206658A (en) 4D printing method of magnetic composite material
JPS60208817A (en) Manufacture of anisotropic resin magnet