JPS63114060A - Manufacture of paste for anode plate of nickel cadmium alkaline storage battery - Google Patents

Manufacture of paste for anode plate of nickel cadmium alkaline storage battery

Info

Publication number
JPS63114060A
JPS63114060A JP61259240A JP25924086A JPS63114060A JP S63114060 A JPS63114060 A JP S63114060A JP 61259240 A JP61259240 A JP 61259240A JP 25924086 A JP25924086 A JP 25924086A JP S63114060 A JPS63114060 A JP S63114060A
Authority
JP
Japan
Prior art keywords
powder
paste
kneading
kneaded
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61259240A
Other languages
Japanese (ja)
Other versions
JPH0610978B2 (en
Inventor
Ryosuke Morinari
森成 良佐
Masakazu Shimoda
下田 雅一
Katsuro Takahashi
高橋 勝朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP61259240A priority Critical patent/JPH0610978B2/en
Publication of JPS63114060A publication Critical patent/JPS63114060A/en
Publication of JPH0610978B2 publication Critical patent/JPH0610978B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To remarkably decrease the dispersion of the viscosity of the paste by kneading CdO powder, Ni powder, and EG, then adding PVA powder to the mixture. CONSTITUTION:The total amount of EG is put into a kneading container, then CdO powder, Ni powder, and CF is mixed, and the mixture is kneaded at the first speed (29rpm) for about 10 minutes. PVA powder is mixed to the kneaded mixture, and the mixture is kneaded at the same speed for about 10 minutes. The mixture is kneaded again at the fourth speed (90rpm) for 4 hours and 40 minutes. The pressure within the container is reduced after one hour kneading to 40-50mmHg. Thereby, the dispersion of the viscosity of the paste obtained is remarkably decreased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はペースト式陰極板を使用したニッケルカドミウ
ムアルカリ蓄電池に係り、活物質である酸化カドミウム
(以下「cdoJという)粉末、粘着剤であるポリビニ
ルアルコール(以下[PVAJという)粉末、溶剤であ
るエチレングリコール(以下「EGjという)等を混練
してなるペーストの製造方法の改良に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a nickel-cadmium alkaline storage battery using a paste-type cathode plate, and includes cadmium oxide (hereinafter referred to as "cdoJ") powder as an active material and polyvinyl alcohol (hereinafter referred to as "cdoJ") as an adhesive. The present invention relates to an improvement in a method for producing a paste made by kneading powder [hereinafter referred to as "PVAJ"], ethylene glycol (hereinafter referred to as "EGj"), and the like as a solvent.

従来の技術 最近のニッケルカドミウムアルカリ蓄電池、特に密閉円
筒形ニッケルカドミウムアルカリ蓄電池に於ては高容量
化が強く要求されており、この要求に応えるものとして
、いわゆるペースト式ニッケルカドミウムアルカリ蓄電
池といわれるものが開発されている。この電池は活物質
であるOdO粉末をペースト状にして芯材に塗着、乾燥
して成る陰極板を使用したもので、従来から広く使用さ
れてきた焼結式極板に比べて活物質保持体であるニッケ
ル(以下JNijという)焼結体を有していないため、
同じ厚さ、幅、長さであってもその分だけより多くの活
物質を極板に持たせられるという特徴を有している。通
常陽極板のそれの2倍以上(雷、気量換算)の活物質を
持たせなければならない陰極板にとっては、ペースト式
は非常に有益な手法であり、まさに高容量化という世の
中のニーズに応えるには不可欠の技術とも言えるわけで
ある。
Conventional Technology There is a strong demand for higher capacity in recent nickel-cadmium alkaline storage batteries, especially sealed cylindrical nickel-cadmium alkaline storage batteries, and to meet this demand, so-called paste-type nickel-cadmium alkaline storage batteries have been developed. being developed. This battery uses a cathode plate made by applying OdO powder, the active material, in a paste form to a core material and drying it, which retains the active material better than the sintered electrode plate that has been widely used in the past. Because it does not have a nickel (hereinafter referred to as JNij) sintered body,
The feature is that even if the thickness, width, and length are the same, the electrode plate can contain a correspondingly larger amount of active material. The paste method is an extremely useful method for cathode plates, which must contain more than twice as much active material (in terms of lightning and air volume) as normal anode plates, and meets the world's need for higher capacity. It can be said that this technology is indispensable to meet these demands.

ところでペースト式陰極板を製造するに当っては、その
組成、混線方法は極めて重要なものとなることは言うま
でもない。これらの点については我々は種々検討を重ね
てきており、例えばOdO粉末100部、Ni粉末15
部、PVA粉末0.5部、OF(カットファイバ)0.
7部、EG24部(重量比)を原料とし、これらを常と
して実用化している。当初我々はPVAをEGに予め溶
解し、これを練液としてOdO粉、Ni粉等と混練する
手法を試みていたが、この方法であるとPVAのゲル化
が生じ、得られたペーストが保存中に固化して芯材に塗
着出来なくなるという問題に直面し、有効な解決策を見
出すのに非常に苦労した。前述した常温プロセスはこの
問題を解決した技術であり、この技術のポイントは出来
た極板の活物質層の強度を確保するのに必要なPVAは
ペーストを塗着した後の乾燥段階で溶解させ、混線中に
は極力溶解させないという点にある。このために混練を
常温付近で行なうわけであるが、実際にはある程度のP
VAは混線中に溶解させないとペースト自体の粘性を十
分に確保出来ないこともあり、混練中のペースト温度は
20°C以上かつ最高到達温度が30〜40″Cの間に
なる様に制御している。
By the way, in manufacturing a paste type cathode plate, it goes without saying that its composition and crosstalk method are extremely important. We have conducted various studies regarding these points. For example, 100 parts of OdO powder, 15 parts of Ni powder,
part, PVA powder 0.5 part, OF (cut fiber) 0.
7 parts of EG and 24 parts of EG (weight ratio) are used as raw materials, and these are usually put into practical use. Initially, we tried a method in which PVA was pre-dissolved in EG and this was mixed with OdO powder, Ni powder, etc. as a mixing solution, but this method caused gelation of PVA and the resulting paste was difficult to store. I was faced with the problem that the paint solidified inside and could not be applied to the core material, and it was very difficult to find an effective solution. The above-mentioned room temperature process is a technology that solves this problem, and the key point of this technology is that PVA, which is necessary to ensure the strength of the active material layer of the resulting electrode plate, is dissolved in the drying stage after applying the paste. The point is that it should not be dissolved as much as possible during crosstalk. For this reason, kneading is performed at around room temperature, but in reality, a certain amount of P
If VA is not dissolved during mixing, the paste itself may not have sufficient viscosity, so the paste temperature during kneading must be controlled so that it is at least 20°C and the maximum temperature is between 30 and 40"C. ing.

発明が解決しようとする問題点 我々は上述した様な常温プロセスによりペースト式陰極
板を製造してきたが、本プロセスに全く問題がないわけ
ではない。そのうちの1つが線上り粘度、すなわち混練
終了時に於けるペーストの粘度が極端に高いものが出る
という点である。−例をあげると前述したペースト組成
のもので線上り粘度の規格値は32000±3000c
psとなっているか、lO〜20パッチに1回程度の割
合で10万cpsを上まわるものが現れる。この様な高
い粘度のものをそのまま使用すると出来上った極板の厚
さ、重量か異り一定品質の電池を生産するのに大きな障
害となってくる。実際の作業に於ては、EGを加え適当
な時間混練しなおすという行なうわけであるが、この様
な作業は生産性、作業能率の面からも好ましくなく、早
急に改善を必要とされるところである。
Problems to be Solved by the Invention Although we have manufactured paste-type cathode plates by the above-mentioned room-temperature process, this process is not completely free from problems. One of these problems is that some pastes have an extremely high line viscosity, that is, the viscosity of the paste at the end of kneading. -For example, with the paste composition mentioned above, the standard value of line viscosity is 32000±3000c.
ps or more than 100,000 cps appears once every 20 patches. If such a highly viscous material is used as is, the thickness and weight of the resulting electrode plates will vary, creating a major hindrance in producing batteries of constant quality. In actual work, EG is added and kneaded again for an appropriate period of time, but this kind of work is unfavorable in terms of productivity and work efficiency, and urgent improvements are needed. be.

さて上記常温プロセスによりペーストを混練する際には
、予め原料粉すなわちOdO粉、Ni粉、PVA粉、O
Fを練液すなわちEGを加えずに所定の時間混合し、粉
末同志を均一に分散させた状態にしておき、これにEG
を加えていわゆる混練に入っていた。この様な方法で混
練を行なうと、初期の粉末にEGかぬれてゆく段階に於
て、あたかも空気が十分に入ったゴムまりの様な、著し
く弾力性に富んだ状態を呈する。
Now, when kneading the paste using the above-mentioned room temperature process, the raw material powders, namely OdO powder, Ni powder, PVA powder, O
Mix F for a predetermined time without adding EG, leave the powder uniformly dispersed, and add EG to this.
was added to the so-called kneading process. When kneading is carried out in this manner, at the stage when the initial powder is wetted with EG, it becomes extremely elastic, like a rubber ball with sufficient air in it.

当然のことながらこの時期に於ては混練機側からみれば
負荷が最大となるわけで、この様な状態を呈しているペ
ーストを強制的に混線機の羽根がかきまわすことになる
ため、ペースト自体は急激な温度上昇をきたす。混練中
のペースト温度を連続的にモニターしてみると混練開始
時には25〜26°Cであったものが、混練開始時10
分程度のこの時期には35〜38°Cに達している。こ
のゴムまりの様な状態を呈する期間は高々10〜15程
度度であり、粉体にEGが十分にぬれるにつれて次第に
状態が変り、いわゆるペースト状となって負荷も小さく
なってくる。
Naturally, at this time, the load from the kneading machine side is at its maximum, and the paste in this state is forcibly stirred by the mixer blades, causing the paste itself to deteriorate. causes a rapid rise in temperature. When the paste temperature was continuously monitored during kneading, it was 25-26°C at the start of kneading, but it was 10°C at the start of kneading.
At this time of the year, the temperature reaches 35-38°C. The period during which this rubber ball-like state is exhibited is about 10 to 15 degrees at most, and as the powder becomes sufficiently wet with EG, the state gradually changes, becoming a so-called paste-like state, and the load becomes smaller.

さて、線上り粘度とPVAのEG中への溶解量の関係に
ついてふれておくと、線上り粘度か規格値内に入ったペ
ーストからEGを抽出し、EG中のPVA濃度を調べて
みると0.024程度である。一方前記した様な著しく
高い粘度を呈したものでは0.5〜0.6憾にもなって
おり、明らかにPVAか多量に溶解していることかわか
っている。EGの温度とPVAの溶解量との関係につい
て調べた結果によれば、溶解度は50〜60°C以上に
なると急激に増加することが把握されており、これらの
ことから、線上り粘度が異常に高くなったものは、混線
時に何らかの原因でペーストが通常よりも高い温度に達
し、その結果PVAか多量に溶解したのが原因と考えら
れる。
Now, to touch on the relationship between the linear viscosity and the amount of PVA dissolved in EG, when EG is extracted from a paste whose linear viscosity is within the standard value and the PVA concentration in EG is found to be 0. It is about .024. On the other hand, those exhibiting a significantly high viscosity as described above had a viscosity of 0.5 to 0.6, which clearly indicates that a large amount of PVA was dissolved. According to the results of investigating the relationship between the temperature of EG and the amount of PVA dissolved, it has been found that the solubility increases rapidly at temperatures above 50 to 60°C, and these results indicate that the line viscosity is abnormal. The reason for the increase in temperature is thought to be that the paste reached a higher temperature than normal for some reason during crosstalk, and as a result, a large amount of PVA melted.

常温プロセスでは混練中にはPVAを必要以上に溶解さ
せないことがポイントであることを記したが、この様な
観点からみると上述した様なこれまでの混練方法は問題
である。混線中に急激な温度上昇を伴う時期が必ず存在
するということは何らかの原因で、例えばEG投人後混
線を開始するまでの時間のちょっとした違いにより、温
度上昇の仕方が左右され、PVAが異常に溶解する機会
が必然的に内在していると考えられるからである。
It has been mentioned that in the room temperature process, it is important not to dissolve PVA more than necessary during kneading, but from this point of view, the above-mentioned kneading methods are problematic. The reason that there is always a period when the temperature rises rapidly during crosstalk is due to some reason; for example, a slight difference in the time after the EG is turned on until the crosstalk starts will affect the way the temperature rises, causing the PVA to become abnormal. This is because it is thought that there is inevitably an inherent opportunity for dissolution.

問題点を解決するための手段 上記した問題点を解析する手段として次の様な混練方法
が有効であることを見出した。そのポイントは言うまで
もなく混練時の負荷を極力小さくするということにあり
、その具体的手段としては■液体中に粉体を投入する。
Means for Solving the Problems It has been found that the following kneading method is effective as a means for analyzing the above-mentioned problems. Needless to say, the point is to reduce the load during kneading as much as possible, and the specific means for doing so is: (1) Adding powder to the liquid.

■粘度を上昇させる様な作用を有する成分、すなわちP
VAあるいはOFは混線当初から添加せず、ある程度ペ
ーストか出来た段階で投入する。■混練時の温度制御(
冷却水の温度調節、流量)をより細かく行なう等である
。この中で特に有効なのは■でありEG中にOdO粉と
Ni粉を投入して混練した場合には、これらの粉体に対
するEGのぬれは非常によく、極めて容易にペースト状
態を呈する。そしてこれにバインダであるPVA粉およ
びOFを添加しても従来の混線法で見られていた著しく
負荷の大きくなる領域はほとんど存在しない。従ってペ
ースト温度が急激に上昇することもないはずであり、事
実ペースト温度をモニターした結果でも、第1図に示し
た如く、混練容器のウォータジャケットに流している冷
却水の温度プラス6〜7°Cまでしか上らない。(従来
法では10〜12°C上昇)作用 出来上ったペーストの粘度のばらつきを抑制し安定した
品質の極板を生産することが出来る。
■Components that have the effect of increasing viscosity, that is, P
VA or OF is not added from the beginning of crosstalk, but is added once a paste has been formed to some extent. ■Temperature control during kneading (
For example, the temperature and flow rate of the cooling water can be adjusted more precisely. Among these, the most effective one is (2), and when OdO powder and Ni powder are added to EG and kneaded, the EG wets these powders very well and forms a paste very easily. Even if PVA powder and OF, which are binders, are added to this, there is almost no region where the load increases significantly, which was observed in the conventional cross-wire method. Therefore, the paste temperature should not rise suddenly, and in fact, the result of monitoring the paste temperature shows that the temperature of the cooling water flowing into the water jacket of the kneading vessel is plus 6 to 7 degrees, as shown in Figure 1. It only goes up to C. (In the conventional method, the temperature rises by 10 to 12° C.) Effect: Variations in the viscosity of the finished paste can be suppressed, and electrode plates of stable quality can be produced.

実施例 次に本発明の一実施例について説明する。Example Next, one embodiment of the present invention will be described.

容器容積が110!である混練機(品用製作所製110
DMA−rr形)を用い、OdO浦50ky、Ni粉7
.5kp、PVA粉2501、CF 350 f%EG
13.5kg力ら成る組成ノヘーストを本発明による方
法で混練し、線上8粘度のばらつきを従来のものと比較
した。本発明による混練の詳細は次の通りである。まず
混練容器にEG全全量投入、これにOdO粉、Ni粉、
OFの全量を投入し第1速(回転数29rpm)で10
分間混練した。次にこれにPVA粉の全量を投入し、同
じく第1速で10分間混練した。
Container volume is 110! A kneading machine (manufactured by Shinayo Seisakusho 110)
DMA-rr type), OdOura 50ky, Ni powder 7
.. 5kp, PVA powder 2501, CF 350 f%EG
A composition of 13.5 kg force was kneaded by the method according to the invention, and the variation in linear viscosity was compared with that of the conventional one. Details of the kneading according to the present invention are as follows. First, put the entire amount of EG into a kneading container, add OdO powder, Ni powder,
Inject the entire amount of OF and turn it to 10 in 1st gear (rotation speed 29 rpm).
Kneaded for a minute. Next, the entire amount of PVA powder was added thereto, and kneaded for 10 minutes at the first speed.

この後混線速度を4速(90rpm)にあけ4時間40
分間混練した。この間混線開始1時間経過時より混練容
器内圧力が40〜50oaHgになる様な減圧を行なっ
た。一方従来法による混線方法について記すと、まず容
器内に上記重量の粉末全部を投入、30分間混合し、次
にこれにEGを投入、第1速(29rpm)で3分間、
引続き第3速(6lrpm)で10分間混練し、さらに
この後4速(90rpm)にあげ4時間47分間混練す
る。混練開始20分目から混線容器内圧力が40〜50
■Hgになる様な減圧を行なう。なお冷却水の温度は2
5±1°Cに制御する。
After this, change the crosstalk speed to 4th gear (90 rpm) for 4 hours 40 minutes.
Kneaded for a minute. During this time, the pressure inside the kneading container was reduced to 40 to 50 oaHg from 1 hour after the start of the mixing. On the other hand, to describe the conventional method of cross-talk, first put all the powder of the above weight into a container, mix for 30 minutes, then add EG, and mix at first speed (29 rpm) for 3 minutes.
Subsequently, the mixture was kneaded for 10 minutes at the third speed (6 lrpm), and then increased to the fourth speed (90 rpm) and kneaded for 4 hours and 47 minutes. From 20 minutes after the start of kneading, the pressure inside the mixed line container is 40 to 50.
■Reduce the pressure to Hg. The temperature of the cooling water is 2.
Control at 5±1°C.

上述した方法で50バツチの混線を行なった際の線上り
粘度のばらつきを第1表に示した。
Table 1 shows the variation in line viscosity when 50 batches of crosstalk were performed using the method described above.

第  1  表 発明の効果 第1表より明らかな如(、本発明による混線方法を採用
したことにより、線上り一粘度のばらっきは従来法のそ
れに比べて著しく小さくなり、その効果が非常に大きい
ことがわかる。
Table 1 Effects of the Invention As is clear from Table 1 (by adopting the crosstalk method according to the present invention, the variation in line rise viscosity is significantly smaller than that of the conventional method, and the effect is extremely You can see that it's big.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法と従来法による混練時のペースト温度
の変化を示した比較曲線図である。
FIG. 1 is a comparative curve diagram showing changes in paste temperature during kneading according to the method of the present invention and the conventional method.

Claims (1)

【特許請求の範囲】[Claims] 酸化カドミウム粉、ニッケル粉、ポリビニルアルコール
粉等とエチレングリコールとを混練してペーストとする
際に、予め酸化カドミウム粉、ニッケル粉等とエチレン
グリコールとを混練しておき、最後にバインダであるポ
リビニルアルコール粉を投入することを特徴とするニッ
ケルカドミウムアルカリ蓄電池陰極板用ペーストの製造
方法。
When kneading cadmium oxide powder, nickel powder, polyvinyl alcohol powder, etc. and ethylene glycol to make a paste, the cadmium oxide powder, nickel powder, etc. and ethylene glycol are kneaded in advance, and then the binder polyvinyl alcohol is mixed. A method for producing a paste for a cathode plate of a nickel-cadmium alkaline storage battery, which comprises adding powder.
JP61259240A 1986-10-30 1986-10-30 Manufacturing method for paste for nickel cadmium alkaline storage battery cathode plate Expired - Lifetime JPH0610978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61259240A JPH0610978B2 (en) 1986-10-30 1986-10-30 Manufacturing method for paste for nickel cadmium alkaline storage battery cathode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61259240A JPH0610978B2 (en) 1986-10-30 1986-10-30 Manufacturing method for paste for nickel cadmium alkaline storage battery cathode plate

Publications (2)

Publication Number Publication Date
JPS63114060A true JPS63114060A (en) 1988-05-18
JPH0610978B2 JPH0610978B2 (en) 1994-02-09

Family

ID=17331354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61259240A Expired - Lifetime JPH0610978B2 (en) 1986-10-30 1986-10-30 Manufacturing method for paste for nickel cadmium alkaline storage battery cathode plate

Country Status (1)

Country Link
JP (1) JPH0610978B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55155470A (en) * 1979-05-23 1980-12-03 Japan Storage Battery Co Ltd Manufacture of negative plate for alkaline cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55155470A (en) * 1979-05-23 1980-12-03 Japan Storage Battery Co Ltd Manufacture of negative plate for alkaline cell

Also Published As

Publication number Publication date
JPH0610978B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
JP7427149B2 (en) How to prepare battery plates
US4216045A (en) Process for preparation of electrode for alkaline battery
CN105720300A (en) Gel electrolyte membrane, gel polymer lithium ion battery, preparation methods thereof and electromobile
KR20240108445A (en) Solid electrolyte membrane and its manufacturing method, uses, and solid battery
JPH0740485B2 (en) Method for manufacturing positive electrode mixture for lithium secondary battery
JP2022078959A (en) Dry electrode manufacture with composite binder
JPS63114060A (en) Manufacture of paste for anode plate of nickel cadmium alkaline storage battery
CN110289395B (en) Paste for cathode of zinc-nickel battery and preparation method thereof
CN113097457A (en) High-stability fluorinated carbohydrate slurry and preparation method thereof
JP2002313136A (en) Reversible sol-gel electrolyte composite and electrolyte film using same
CN102157721A (en) Method for manufacturing simulated battery pole piece used for laboratory
JP2979856B2 (en) Active material paste for lead-acid batteries
JPH03129666A (en) Manufacture of positive electrode mix
JPH0519261B2 (en)
CN118460149A (en) Novel composite water-based conductive adhesive and preparation process thereof
JPS6216507B2 (en)
JPS62113360A (en) Manufacture of slurry type cadmium plate
JPH09147849A (en) Negative electrode for paste-type alkaline storage battery and its manufacture
EP3813153A1 (en) Alkaline battery and method for producing negative-electrode gel for alkaline battery
JPS6251158A (en) Manufacture of paste for anode plate for nickel-cadmium alkaline storage battery
JPH03184261A (en) Manufacture of anode electrode plate for alkaline storage battery
CN113896187A (en) Method for continuously producing aqueous graphene slurry
CN116613374A (en) Novel solid-state battery of gradient LATP solid-state electrolyte
CN118610554A (en) Lithium-conducting solid electrolyte material, preparation method thereof, solid electrolyte dry film, solid battery and electric equipment
JPH11260353A (en) Manufacture of nonaqueous electrolyte secondary battery