JPS63113183A - Control device for pelton turbine operation - Google Patents

Control device for pelton turbine operation

Info

Publication number
JPS63113183A
JPS63113183A JP61260179A JP26017986A JPS63113183A JP S63113183 A JPS63113183 A JP S63113183A JP 61260179 A JP61260179 A JP 61260179A JP 26017986 A JP26017986 A JP 26017986A JP S63113183 A JPS63113183 A JP S63113183A
Authority
JP
Japan
Prior art keywords
water
control device
turbine
needle valve
deflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61260179A
Other languages
Japanese (ja)
Inventor
Setsu Tanaka
田中 節
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61260179A priority Critical patent/JPS63113183A/en
Publication of JPS63113183A publication Critical patent/JPS63113183A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Water Turbines (AREA)

Abstract

PURPOSE:To reduce the cost of power station facilities and improve the operation efficiency thereof by constituting a Pelton turbine in such a way that an input water quantity to the turbine is adjusted with a deflector and a discharge quantity from a power station is controlled with a needle valve, respectively independent of each other. CONSTITUTION:When a power line is out of order, for example, an input control device 5A controls the opening of a deflector 3 and reduces water supply to a Pelton turbine 1, thereby maintaining a proper water quantity. Also, a discharge control device 11A controls the opening of a needle valve 2 and maintains a required water quantity. When the fracture of the power line continues, the turbine 1 is put to an emergency stop and a main engine comes to stop completely. In this case, however, the needle valve 2 is adjusted to control a necessary discharge quantity. On the other hand, when the fracture has been eliminated, the number of revolutions of the turbine 1 is controlled with the deflector 3 interlocked with an input water quantity control device 5A and the needle valve 2 maintains the required discharge quantity. According to the aforesaid constitution of the operation control device, it becomes unnecessary to provide a water discharge mechanism and an overflow passage for a power station.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は水車への入力水量および放流水量を制御可能
にするペルトン水車運転制御装置に関する0 〔従来の技術〕 第4図は従来のペルトン水車運転制御装置を示す構成図
であり、図において、1は水車、2は水車1への入力水
量を調整するためのニードル弁、3は水車1の停止時に
、ニードル弁2を介して水車1に供給される入力水1t
をしゃ断するためのデフレクタ、4は通常運転時デフレ
クタ3の位置をニードル弁2の位置に追従させるための
リンク機構、5はニードル弁2よシの入力水量を調整す
ることで、水車10回転数、出力を調整するための調速
手段を備えた入力水量制御装置、6はその制御信号、1
Tはニードル弁1の開度を入力水量制御装置5へ伝える
フィードバック信号、7は非常時にデフレクタ3を全閉
するための信号、811″を上水槽、9は上水槽8よシ
水を水車1まで導くための導水管、10/l′iニード
ル弁2を通じて水を上水槽8よシ数量する以上に数量す
るための放流機構、11はその放流機構10を制御する
放流制御装置、12はその放流制御信号、13は発電所
の余水路である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a Pelton water turbine operation control device that makes it possible to control the amount of input water and the amount of water discharged to a water turbine. [Prior Art] Fig. 4 shows a conventional Pelton water turbine. This is a configuration diagram showing the operation control device. In the figure, 1 is a water turbine, 2 is a needle valve for adjusting the amount of water input to the water turbine 1, and 3 is a valve that is connected to the water turbine 1 via the needle valve 2 when the water turbine 1 is stopped. 1 ton of input water supplied
4 is a link mechanism for making the position of the deflector 3 follow the position of the needle valve 2 during normal operation; 5 is a link mechanism for adjusting the amount of water input to the needle valve 2 and the water turbine at 10 rotations. , an input water flow control device equipped with a regulating means for adjusting the output, 6 is a control signal thereof, 1
T is a feedback signal that transmits the opening degree of the needle valve 1 to the input water flow control device 5, 7 is a signal for fully closing the deflector 3 in an emergency, 811'' is a water tank, and 9 is a signal that transfers water from the water tank 8 to the water wheel 1. 10/l'i water conduit for guiding the water to the water tank 8 through the needle valve 2, a discharge mechanism for supplying water in a quantity exceeding that of the water tank 8, 11 a discharge control device for controlling the discharge mechanism 10, and 12 a discharge control device thereof. The discharge control signal 13 is the spillway of the power plant.

次に動作について説明する。水車1t−運転するには、
まず、入力水量制御装置5によって、ニードル弁2の開
度を調整する。これによって水車1へ噴射される入力水
量が調整され、水車10回転数及び出力が調整される。
Next, the operation will be explained. 1 ton water wheel - To operate it,
First, the opening degree of the needle valve 2 is adjusted by the input water amount control device 5. As a result, the amount of input water injected into the water turbine 1 is adjusted, and the rotation speed and output of the water turbine 10 are adjusted.

ま次、噴射水を水車1に対して徐々に当てるようにデフ
レクタ3が動作する。一方、上水槽8よシ導水管9を通
って導入される水の放流量を、水車1への入力水量以上
とする必要がある場合には、放流制御装置11にて放流
機構10を開放制御して放流を行う。
Next, the deflector 3 operates so that the water jet is gradually applied to the water turbine 1. On the other hand, when it is necessary to make the discharge amount of water introduced from the water tank 8 through the water conduit pipe 9 greater than the amount of water input to the water turbine 1, the discharge control device 11 controls the discharge mechanism 10 to open. and release water.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のペルトン水車運転制御装置は以上のように構成さ
れているので、水車1への入力水量以上に、上水槽8か
ら放流する必要がある場合には、放流機構10および発
電所の余水路13を発電所に備える必要があシ、発電所
の建設コストが高くなるなどの問題点があった。
Since the conventional Pelton turbine operation control device is configured as described above, when it is necessary to discharge more water from the water tank 8 than the amount of water input to the turbine 1, the discharge mechanism 10 and the spillway 13 of the power plant There were problems such as the need to equip the power plant with electricity, which increased the construction cost of the power plant.

この発明は上記のような問題点を解消する九めになされ
たもので、発電所として特別の放流機構を備えなくとも
、水車への入力水量との制御とは独立に、放流水量を制
御することができるペルトン水車運転制御装置を得るこ
とを目的とする。
This invention was made in the ninth attempt to solve the above-mentioned problems, and it is possible to control the amount of discharged water independently from the control of the amount of input water to the water turbine, without the need for a special discharge mechanism as a power plant. The purpose of this study is to obtain a Pelton turbine operation control device that can perform the following operations.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るペルトン水車運転制御装置は、水車への
入力水量を、入力水量制御装置によって作動制御される
デフレクタにて調整することで、水車の回転数、出力を
制御するとともに、放流制御装置によって作動制御され
るニードル弁を調節することで、発電所の放流水量を調
整するような構成としたものである。
The Pelton water turbine operation control device according to the present invention controls the rotation speed and output of the water turbine by adjusting the amount of water input to the water turbine with a deflector whose operation is controlled by the input water amount control device, and controls the rotation speed and output of the water turbine by controlling the input water amount by the discharge control device. The system is designed to adjust the amount of water discharged from the power plant by adjusting a needle valve whose operation is controlled.

〔作用〕[Effect]

この発明におけるデフレクタは、水車への入力水量、即
ち水車の回転数、出力を制御するように動作し、ニード
ル弁は発電所の放流量を調整するように作用する。
The deflector in this invention operates to control the amount of water input to the water turbine, that is, the rotation speed and output of the water turbine, and the needle valve operates to adjust the amount of water discharged from the power plant.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、5Aは入力水量制御装置であシ、デフレク
タ3を制御信号12によって制御し、水車1への入力水
量を調整することくよって、水車10回転数、出力を調
整する。11Aは第4図に示したものと略同様の放流制
御装置であるが、第4図と異るところは、ニードル弁2
を制御信号13によって制御する点である。14は放流
制御装置11Aよシブフレフタ3へ供給されるデフレク
タ開度の制御信号であり、この信号によって、ニードル
弁2による放流量に応じた適切な開度に、デフレクタを
制御することが可能になっている。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, 5A is an input water amount control device, which controls the deflector 3 using a control signal 12 and adjusts the amount of water input to the water turbine 1, thereby adjusting the number of rotations of the water turbine 10 and the output. 11A is a discharge control device that is almost the same as that shown in Fig. 4, but the difference from Fig. 4 is that the needle valve 2
is controlled by the control signal 13. Reference numeral 14 denotes a control signal for the deflector opening degree which is supplied from the discharge control device 11A to the sive deflector 3. This signal makes it possible to control the deflector to an appropriate opening degree according to the discharge amount by the needle valve 2. ing.

15 、16Fi各々ニードル弁2の開度信号およびデ
フレクタ3の開度信号を放流制御装置1tAへ帰還入力
するフィードバック信号である。
15 and 16Fi are feedback signals for feeding back the opening signal of the needle valve 2 and the opening signal of the deflector 3 to the discharge control device 1tA.

なお、このほかの第4図に示したものと同一の構成部分
には同一符号を付して、その重複する説明を省略する。
Note that other components that are the same as those shown in FIG. 4 are designated by the same reference numerals, and redundant explanation thereof will be omitted.

第2図はこのペルトン水車運転制御装置を具備した水車
が直結される発電機の電気的主回路を示し、1は水車、
21は水車1の主軸に直結される同期発′α機、22は
その発電機21を系統と連結するための発電機しゃ断器
、23は発電機21の端子電圧を昇圧するための主変圧
器、24は発電機21を系統と高電圧にて連結するため
の送電線しゃ断器、25は系統、26は発電所の所内回
路である。
Figure 2 shows the electrical main circuit of a generator to which a water turbine equipped with this Pelton water turbine operation control device is directly connected.
21 is a synchronous generator directly connected to the main shaft of the water turbine 1; 22 is a generator breaker for connecting the generator 21 to the grid; and 23 is a main transformer for boosting the terminal voltage of the generator 21. , 24 is a power transmission line breaker for connecting the generator 21 to the grid at high voltage, 25 is the grid, and 26 is an internal circuit of the power plant.

次に、動作について、第3図の状態遷移図に従つて屓次
説明する。
Next, the operation will be explained in detail according to the state transition diagram shown in FIG.

なお、第3図中の丸印はシステムの各時点の状態を示し
、矢印は各状態から別の状態への遷移の内容を示し、例
えば1pを状態1とし、矢印を遷移のステップとして記
述することとする。
Note that the circles in Figure 3 indicate the state of the system at each point in time, and the arrows indicate the content of the transition from each state to another. For example, 1p is defined as state 1, and the arrows are described as steps of the transition. That's it.

まず状態IFi主機の完全停止状態を表わし、この状態
1では第1図中に示すニードル弁2およびデフレクタ3
は全閉となっておシ、水車1も完全停止している。
First, state IFi represents a completely stopped state of the main engine, and in this state 1, the needle valve 2 and deflector 3 shown in FIG.
is fully closed, and waterwheel 1 is also completely stopped.

状態lにおいて、起動指令が与えられた場合には、状態
はステップ1を経由して状態2に遷移する。すなわち、
ステップIFi第1図中のニードル弁2の開操作が行わ
れ、これによる状態2は、ニードル弁2で水を放流しな
がらも、デフレクタ3が全閉のため、水車1がまだ、完
全停止となっている状態である。
When a start command is given in state 1, the state transitions to state 2 via step 1. That is,
Step IFi The opening operation of the needle valve 2 in Fig. 1 is performed, and the resultant state 2 is that even though the needle valve 2 is discharging water, the water turbine 1 is still completely stopped because the deflector 3 is fully closed. It is in a state of being

次に、ステップ2において、デフレクタ3をある一定の
開度まで開ける。これによシ水車1が回転を始める。こ
れが第3図中の状態3である。
Next, in step 2, the deflector 3 is opened to a certain opening degree. As a result, the water wheel 1 starts rotating. This is state 3 in FIG.

次に1ステツプ3において、この発明の待合の一つであ
る、デフレクタ3に連動した入力水量制御装置5Aを生
かすことで、水車10回転数を定格回転数近傍に保つ状
態4に遷移する。
Next, in step 3, by making use of the input water amount control device 5A linked to the deflector 3, which is one of the waiting points of the present invention, a transition is made to state 4 in which the number of rotations of the water turbine 10 is maintained near the rated number of rotations.

次に、ステップ4において水車1に連動する発電機21
t−系統と同期させ、並列運転の状態5に遷移する。状
態5においては、放流制御装置11Aによって、デフレ
クタ3をニードル弁2の放流を妨げない適切な位置に保
持する。水車1への入力はニードル弁2の開度によって
調整され、ニードル弁2の開度は、マニュアルまたは放
流制御装置11Aに組み込まれた木調運転機構等によっ
て調整される。
Next, in step 4, the generator 21 is connected to the water turbine 1.
Synchronize with the t-system and transition to state 5 of parallel operation. In state 5, the discharge control device 11A holds the deflector 3 at an appropriate position where it does not interfere with the discharge of the needle valve 2. The input to the water turbine 1 is adjusted by the opening degree of the needle valve 2, and the opening degree of the needle valve 2 is adjusted manually or by a wood-like operation mechanism built into the discharge control device 11A.

次に、ステップ5において、送電線故障が′発生した場
合、第4図中の発電機21は送電線しゃ断器24を開放
することで系統25と電気的に分離される。その際には
、第2図中の水車1は、その速度が上昇するが、これに
対しては、入力水量制御装置5Aに再度連動され友デフ
レクタ3によって、水車1への入力水量を減少すること
で、適正な値に保持される。また、ニードル弁2#:を
放流制御装置11Aに要求される木調運転等を継続し、
発電所として要求されている放流tを維持する。
Next, in step 5, if a transmission line failure occurs, the generator 21 in FIG. 4 is electrically isolated from the grid 25 by opening the transmission line breaker 24. At that time, the speed of the water turbine 1 in FIG. 2 increases, but in response to this, the input water amount to the water turbine 1 is reduced by the friend deflector 3, which is again linked to the input water amount control device 5A. This will keep it at an appropriate value. In addition, the needle valve 2#: continues the wood-like operation required by the discharge control device 11A,
Maintain the discharge t required for the power plant.

このような状態が状態6となる。Such a state becomes state 6.

状態6において、故障が継続している際には、水車1を
ステップ8において非常停止し、状態1に移る。但し、
発電所としである流量を放流することが必要な場合は、
デフレクタ3を全閉し、ニードル弁2を適当に調整する
ことで、放流量を制御する。
If the failure continues in state 6, the water turbine 1 is brought to an emergency stop in step 8, and the state shifts to state 1. however,
If it is necessary to discharge a certain flow rate as a power plant,
The discharge amount is controlled by fully closing the deflector 3 and adjusting the needle valve 2 appropriately.

一方、状態6において、故障が除去された場合は、ステ
ップ6において状態7に遷移する。
On the other hand, if the fault has been removed in state 6, a transition is made to state 7 in step 6.

状態7においては、水車10回転数は、入力水量制御装
置5Aに連動するデフレクタ3によ量制御され、ニード
ル弁2は放流制御装置11A等に要求される放流量を維
持する。上記においては送電線しゃ断器24が開いてお
シ、発電機21は所内回路7のみに電力を供給している
状態である0次に状態7においては、系統25側に何ら
かの故障が継続して発生しているわけであるが、その故
障が除去された時点で、発電機21は、送電線しゃ断器
24f、投入することで、系統と同期並入される。その
際の発電機21の速度調整は、デフレクタ3にて行なわ
れる。これが状態7から状態5へのステップ7による遷
移である。
In state 7, the number of revolutions of the water turbine 10 is controlled by the deflector 3 which is linked to the input water flow control device 5A, and the needle valve 2 maintains the discharge amount required by the discharge control device 11A and the like. In the above case, the transmission line breaker 24 is open and the generator 21 is supplying power only to the in-house circuit 7. Next, in state 7, some kind of failure continues on the grid 25 side. However, when the fault is removed, the generator 21 is brought into synchronization with the grid by turning on the power transmission line breaker 24f. At this time, the speed of the generator 21 is adjusted by the deflector 3. This is the transition from state 7 to state 5 according to step 7.

なお、上記以外にも、任意の状態から停止操作によって
、状態1に復帰できるのは、当然である。
In addition to the above, it is of course possible to return to state 1 from any state by a stop operation.

なお、上記実施例では、入力水量制御装置5Aおよび放
流制御装置11Af:別々に設は九が、−体ノシーケン
スコントローラ等によって具体化してもよく、上記実施
例と同様の効果を奏する。
In addition, in the above embodiment, the input water amount control device 5A and the discharge control device 11Af may be separately configured by a sequence controller or the like, and the same effects as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、ペルトン水車運転制
御装置を水車への入力水量をデフレクタによって調整し
、発電所の放流量をニードル弁によって調整するように
構成したので、発電所の余水路および放流機構を省略す
ることができ、設備費の低減化が図れるとともに、発電
所の運転効率が高まるものが得られる効果がある。
As described above, according to the present invention, the Pelton turbine operation control device is configured to adjust the amount of water input to the water turbine using a deflector, and adjust the amount of water discharged from the power plant using a needle valve. Also, the discharge mechanism can be omitted, reducing equipment costs and increasing the operating efficiency of the power plant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるペルトン水車運転制
御装置の構成図、第2図は水車に連結される発電機を含
む電気的主回路図、第3図は運転制御による状態遷移図
、第4図は従来のペルトン水車運転制御装置の構成図で
ある。 1は水車、2はニードル弁、3はデフレクタ、5Aは入
力水量制御装置、aJd上水槽、9は導水管、11Aは
放流制御装置。 なお、図中、同一符号は同一、または相当部分を示す。 特許出願人  三菱電機株式会社 第1図 第2図  第3図 ステー、ア8
FIG. 1 is a block diagram of a Pelton water turbine operation control device according to an embodiment of the present invention, FIG. 2 is an electrical main circuit diagram including a generator connected to the water turbine, and FIG. 3 is a state transition diagram due to operation control. FIG. 4 is a block diagram of a conventional Pelton turbine operation control device. 1 is a water wheel, 2 is a needle valve, 3 is a deflector, 5A is an input water flow control device, aJd water tank, 9 is a water pipe, and 11A is a discharge control device. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Patent applicant: Mitsubishi Electric Corporation Figure 1 Figure 2 Figure 3 Stay A8

Claims (1)

【特許請求の範囲】[Claims] デフレクタおよびニードル弁を備え、水車への入力水量
および放流水量を制御可能にしたペルトン水車運転制御
装置において、上記水車への入力水量の制御を上記デフ
レクタに実施させる入力水量制御装置、および上記放流
水量の制御を上記ニードル弁に実施させる放流制御装置
をそれぞれ設けたことを特徴とするペルトン水車運転制
御装置。
A Pelton water turbine operation control device comprising a deflector and a needle valve and capable of controlling the amount of water input to the water turbine and the amount of water discharged, the input water amount control device causing the deflector to control the amount of water input to the water turbine, and the amount of water discharged. A Pelton water turbine operation control device, characterized in that a discharge control device is provided for causing the needle valves to perform the following control.
JP61260179A 1986-10-31 1986-10-31 Control device for pelton turbine operation Pending JPS63113183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61260179A JPS63113183A (en) 1986-10-31 1986-10-31 Control device for pelton turbine operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61260179A JPS63113183A (en) 1986-10-31 1986-10-31 Control device for pelton turbine operation

Publications (1)

Publication Number Publication Date
JPS63113183A true JPS63113183A (en) 1988-05-18

Family

ID=17344421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61260179A Pending JPS63113183A (en) 1986-10-31 1986-10-31 Control device for pelton turbine operation

Country Status (1)

Country Link
JP (1) JPS63113183A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63212775A (en) * 1987-02-27 1988-09-05 Toshiba Corp Control device for pelton turbine
JPS6469777A (en) * 1987-09-09 1989-03-15 Toshiba Engineering Co Start control method for pelton wheel
JPH01147165A (en) * 1987-12-01 1989-06-08 Toshiba Eng Co Ltd Controller for pelton wheel
JPH0233474A (en) * 1988-07-22 1990-02-02 Hitachi Ltd Control device for pelton turbine
JPH0252978U (en) * 1988-10-11 1990-04-17

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63212775A (en) * 1987-02-27 1988-09-05 Toshiba Corp Control device for pelton turbine
JPS6469777A (en) * 1987-09-09 1989-03-15 Toshiba Engineering Co Start control method for pelton wheel
JPH01147165A (en) * 1987-12-01 1989-06-08 Toshiba Eng Co Ltd Controller for pelton wheel
JPH0233474A (en) * 1988-07-22 1990-02-02 Hitachi Ltd Control device for pelton turbine
JPH0252978U (en) * 1988-10-11 1990-04-17

Similar Documents

Publication Publication Date Title
US5953902A (en) Control system for controlling the rotational speed of a turbine, and method for controlling the rotational speed of a turbine during load shedding
JPS63113183A (en) Control device for pelton turbine operation
CZ382892A3 (en) Device with a gas turbine and method for starting thereof
CN111412023A (en) Coordination control method for realizing stable operation of steam-electricity dual-drive system
JPH01110075A (en) Pumping operation stop control method for ac excited synchronous machine
US6563228B1 (en) Power plant with a gas turbine and method of operating it
JPH0278704A (en) Steam turbine control system by output feedback
JPH0374142A (en) Exhaust gas turbine generator apparatus
JPH05207658A (en) Power supply method in co-generation facility
JPS6332868A (en) Fuel cell power generating system
JPS6239655B2 (en)
JPH04183976A (en) Control device of turbine discharge
SU1288323A1 (en) Method of controlling turbine at load drop
JPS58105306A (en) Water supply controller
JPS58211505A (en) High speed valve control system
JPH03179171A (en) Control method of water turbine
JPH0141914Y2 (en)
JPS5752606A (en) Automatic control system for turbine
JP2753028B2 (en) Parallel operation of water turbine or pump turbine
JPS59201638A (en) Output controller of composite generating plant
JPH02308924A (en) Air flow control device for gasifying furnace
CN110219706A (en) The feed pump vapour source steam supply control circuit of Steam Turbine, device and method
JPH02294566A (en) Pelton water turbine
JPH04347597A (en) Non-utility generator facility
JPS5896904A (en) Controller for flow rate of feedwater