JPH05207658A - Power supply method in co-generation facility - Google Patents
Power supply method in co-generation facilityInfo
- Publication number
- JPH05207658A JPH05207658A JP4037270A JP3727092A JPH05207658A JP H05207658 A JPH05207658 A JP H05207658A JP 4037270 A JP4037270 A JP 4037270A JP 3727092 A JP3727092 A JP 3727092A JP H05207658 A JPH05207658 A JP H05207658A
- Authority
- JP
- Japan
- Prior art keywords
- power
- purchased
- generated
- generator
- lower limit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/14—Combined heat and power generation [CHP]
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、コージェネ設備におけ
る給電方法に係わり、詳しくは発電電力を最大にし且つ
買電電力を最小にし得るようにしたコージェネ設備にお
ける給電方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply method for a cogeneration facility, and more particularly to a power supply method for a cogeneration facility that maximizes generated power and minimizes purchased power.
【0002】[0002]
【従来の技術】近年、発電機を駆動するガスタービンか
らのガスタービン排ガスを排熱ボイラへ導入し、該ガス
タービン排ガスの熱エネルギにより水を加熱して蒸気を
生成し、生成した蒸気を冷暖房等での消費蒸気として使
用する、いわゆるコージェネ設備が種々検討されてい
る。2. Description of the Related Art In recent years, gas turbine exhaust gas from a gas turbine driving a generator is introduced into an exhaust heat boiler, water is heated by heat energy of the gas turbine exhaust gas to generate steam, and the generated steam is cooled and heated. Various so-called cogeneration facilities used as steam for steaming are being studied.
【0003】[0003]
【発明が解決しようとする課題】前述のコージェネ設備
において得られた電力は、コージェネ設備の種々の機器
の電力(負荷電力)として消費されるが、プラント設備
が最大能力で運転される場合はコージェネ設備で得られ
た電力では不足することがあり、この場合は不足分の電
力は電力会社から買う必要がある。而して斯かる事態に
対処するには、コージェネ設備の負荷に、コージェネ設
備の発電機で発電した発電電力と電力会社から買った買
電電力の何れをも供給し得るようにする必要がある。The electric power obtained in the above-mentioned cogeneration equipment is consumed as electric power (load electric power) of various equipment of the cogeneration equipment, but when the plant equipment is operated at the maximum capacity, the cogeneration equipment is operated. The electric power obtained from the equipment may be insufficient, and in this case, the shortage of electric power must be purchased from the electric power company. In order to deal with such a situation, it is necessary to supply the load of the cogeneration facility with both the generated power generated by the generator of the cogeneration facility and the purchased power purchased from the power company. ..
【0004】又コージェネ設備の発電機で発電された発
電電力と電力会社からの買電電力をコージェネ設備の負
荷に与えるようにしても、コージェネ設備の発電機の発
電能力に余裕があるのに電力会社から買う電力量が多く
ては無駄が多く、更にコージェネ設備の発電機の発電電
力が電力会社側へ給電される逆潮流が生じると、種々の
トラブルが発生する虞れがある。Further, even if the generated power generated by the generator of the cogeneration facility and the purchased power from the power company are applied to the load of the cogeneration facility, the power generation of the generator of the cogeneration facility has a margin, but the power is not enough. If the amount of electric power purchased from the company is large, there is a lot of waste, and if a reverse flow occurs in which the electric power generated by the generator of the cogeneration facility is supplied to the electric power company side, various troubles may occur.
【0005】本発明は、上述の実情に鑑み、コージェネ
設備の発電機による発電電力を最大にすると共に電力会
社からの買電電力を最小にし、しかもコージェネ設備の
発電機によって得られた発電電力が電力会社側へ逆潮流
しないようにすることを目的としてなしたものである。In view of the above situation, the present invention maximizes the power generated by the generator of the cogeneration facility and minimizes the power purchased from the power company, and the power generated by the generator of the cogeneration facility is minimized. The purpose was to prevent the reverse flow to the electric power company side.
【0006】[0006]
【課題を解決するための手段】本発明は、コージェネ設
備の負荷電力として該コージェネ設備の発電機により得
られた発電電力と電力会社の電力給電装置からの買電電
力を与えるコージェネ設備における給電方法において、
前記負荷電力が前記発電機の最大発電電力と前記電力給
電装置よりの、買電電力側へ逆潮流を発生させない下限
の電力である買電電力の下限値との和よりも大きい場合
は、発電機の発電電力を最大発電電力に保持して買電電
力を調整し、前記負荷電力が前記買電電力の下限値より
も大きいが、最大発電電力と買電電力の下限値との和よ
りも小さい場合は、買電電力を下限値に保持して発電電
力を調整するものである。又、買電電力が下限値よりも
大きい所定の値に下降した場合には、発電電力を減少さ
せ、買電電力が下限値よりも低下した場合或いは発電電
力が下限値よりも低下した場合には、電力供給装置から
発電機に至る線に設けた遮断器を開くようにしても良
い。DISCLOSURE OF THE INVENTION The present invention provides a power supply method in a cogeneration facility for supplying the generated power obtained by a generator of the cogeneration facility as the load power of the cogeneration facility and the purchased power from a power supply device of a power company. At
When the load power is larger than the sum of the maximum generated power of the generator and the lower limit value of the purchased power, which is the lower limit power that does not cause reverse power flow to the purchased power from the power supply device, the power generation The generated power of the machine is maintained at the maximum generated power to adjust the purchased power, and the load power is larger than the lower limit value of the purchased power, but is larger than the sum of the maximum generated power and the lower limit value of the purchased power. If it is smaller, the purchased power is kept at the lower limit value to adjust the generated power. When the purchased power falls to a predetermined value larger than the lower limit value, the generated power is reduced, and when the purchased power falls below the lower limit value or the generated power falls below the lower limit value. May open a circuit breaker provided on the line from the power supply device to the generator.
【0007】[0007]
【作用】本発明においては、発電電力を最大発電電力と
し、買電電力を最小にして運転を行うことができるため
無駄が省け、又買電電力が下限値近傍まで下降した場合
は発電電力を減少させることにより逆潮流が防止され、
買電電力や発電電力が下限値よりも減少した場合には、
遮断器が開かれて逆潮流が防止される。In the present invention, since the generated power can be the maximum generated power and the operation can be performed with the purchased power being the minimum, waste is avoided, and the generated power is reduced when the purchased power falls near the lower limit value. Reverse flow is prevented by reducing
If the purchased power or generated power is below the lower limit,
The circuit breaker is opened to prevent reverse power flow.
【0008】[0008]
【実施例】以下、本発明の実施例を添付図面を参照しつ
つ説明する。Embodiments of the present invention will be described below with reference to the accompanying drawings.
【0009】図1及び図2(a)(b)(c)は本発明
の一実施例で、図中、1は互に並列接続された電力給電
本線2と電力給電予備線3を備えた電力会社側Aの電力
給電装置、4は電力給電本線2に接続された遮断器、5
は電力給電予備線3に接続された遮断器、6は電力給電
本線2或いは電力給電予備線3を通り電力会社側Aから
需要者側Bへ供給される電力量を検出するための電力計
である。1 and 2 (a) (b) (c) show an embodiment of the present invention, in which 1 is provided with a power feeding main line 2 and a power feeding standby line 3 which are connected in parallel with each other. Power supply device on the side of the power company A, 4 is a circuit breaker connected to the power supply main line 2, 5
Is a circuit breaker connected to the power supply backup line 3 and 6 is a power meter for detecting the amount of power supplied from the power company side A to the customer side B through the power supply main line 2 or the power supply backup line 3. is there.
【0010】7は電力計6に接続された電力受電本線、
8は電力計6に接続された電力受電予備線であり、電力
受電本線7と電力受電予備線8は互に並列接続されてい
る。又電力受電本線7と電力受電予備線8の中途部に
は、遮断器9,10及びトランス11,12並に遮断器
13,14が、給電方向Dの上流側から下流側へ向けて
順次直列に接続されている。7 is a power receiving main line connected to the power meter 6,
Reference numeral 8 denotes a power receiving standby line connected to the power meter 6, and the power receiving main line 7 and the power receiving standby line 8 are connected in parallel with each other. Further, circuit breakers 9, 10 and transformers 11, 12 as well as circuit breakers 13, 14 are serially arranged in the middle of the power receiving main line 7 and the power receiving standby line 8 from the upstream side in the power feeding direction D toward the downstream side. It is connected to the.
【0011】15は遮断器13の下流側で電力受電本線
7に接続された電力分配主線、16は遮断器14の下流
側で電力受電予備線8に接続された電力分配主線、17
は電力分配主線15,16同志を接続する遮断器、1
8,19,20は電力分配主線15から、又21,2
2,23は電力分配線16から、夫々分岐させた電力分
配支線、24,25,26,27,28,29は電力分
配支線18,19,20,21,22,23の中途部に
接続された遮断器であり、電力分配支線18〜23に
は、コージェネ設備の種々の電力消費機器(負荷)が接
続されている。Reference numeral 15 is a power distribution main line connected to the power receiving main line 7 on the downstream side of the circuit breaker 13, 16 is a power distribution main line connected to the power receiving standby line 8 on the downstream side of the circuit breaker 14, and 17
Is a circuit breaker that connects the power distribution main lines 15 and 16
8, 19, 20 are from the power distribution main line 15, and also 21, 21,
2, 23 are connected from the power distribution line 16 to the branched power distribution branch lines, and 24, 25, 26, 27, 28, 29 are connected to the midway portions of the power distribution branch lines 18, 19, 20, 21, 21, 22, 23. Various power consuming devices (loads) of the cogeneration equipment are connected to the power distribution branch lines 18 to 23.
【0012】例えば電力分配支線18に接続されている
系統について説明すると、29はガスタービン45によ
り駆動される発電機44によって得られた発電電力を給
電するための発電電力給電線、30は発電電力給電線2
9の中途部に接続された遮断器、31は電力分配支線1
8からの買電電力や発電機44から発電電力給電線29
を介して送電された発電電力を送電し得るよう、電力分
配支線18の遮断器24から発電電力給電線29の遮断
器30に至るまでの間に接続された電力給電線、32,
33,40は電力給電線31に接続された電力給電枝
線、34,35は電力給電枝線32,33の端部に接続
されて給電された電力により駆動し得るようにした、例
えばコージェネ設備のガス圧縮機駆動用或いはカスター
ビン始動の油圧ポンプ駆動用のモータ、36,37は電
力給電枝線32,33の中途部に接続されたヒューズ、
38,39は電力給電枝線32,33の中途部にヒュー
ズ36,37よりも給電方向Dに対し下流側に位置する
よう接続されたスイッチ、41は電力給電枝線40の端
部に接続されて給電された電力により作動し得るように
したコージェネ補機、42は電力給電枝線40の中途部
に接続されたスイッチ、43は電力給電枝線40の中途
部にスイッチ42よりも給電方向D対し下流側に位置す
るよう接続されたトランスである。Explaining the system connected to the power distribution branch line 18, for example, 29 is a generated power supply line for supplying generated power obtained by a generator 44 driven by a gas turbine 45, and 30 is generated power. Power supply line 2
Circuit breaker connected to the middle of 9 and 31 are power distribution branch lines 1
Power purchased from 8 and generator power supply line 29 from generator 44
So as to be able to transmit the generated power transmitted via the power distribution line 18, the power supply line connected from the breaker 24 of the power distribution branch line 18 to the breaker 30 of the generated power supply line 29,
33 and 40 are electric power supply branch lines connected to the electric power supply line 31, and 34 and 35 are connected to the ends of the electric power supply branch lines 32 and 33 so that they can be driven by the supplied electric power, for example, cogeneration equipment. , A motor for driving a gas compressor or a hydraulic pump for starting a gas turbine, 36 and 37 are fuses connected to the midway portions of the power supply branch lines 32 and 33,
38 and 39 are switches connected to midway portions of the power supply branch lines 32 and 33 so as to be located downstream of the fuses 36 and 37 in the power supply direction D, and 41 is connected to an end of the power supply branch line 40. A cogeneration auxiliary device adapted to be operated by the electric power supplied by the power supply, 42 is a switch connected to the middle part of the power supply branch line 40, and 43 is a power supply direction D more than the switch 42 in the middle part of the power supply branch line 40. On the other hand, it is a transformer connected so as to be located on the downstream side.
【0013】次に電力制御系について説明すると、46
は電力受電本線7の遮断器9とトランス11の間に接続
されて電力受電本線7を流れる電力会社の電力給電装置
1からの電力(買電電力)WRを検出するための電力検
出器であり、該電力検出器46により検出した買電電力
WRは電気信号として演算制御装置47へ与え得るよう
になっている。Next, the power control system will be described.
Is a power detector for detecting power (purchased power) W R from the power feeder 1 of the power company that is connected between the circuit breaker 9 and the transformer 11 of the power receiving main line 7 and flows through the power receiving main line 7. Therefore, the purchased electric power W R detected by the electric power detector 46 can be given to the arithmetic and control unit 47 as an electric signal.
【0014】48は電力分配支線18の遮断器30と発
電機44の間に接続され且つガスタービン45で駆動さ
れる発電機44により発電された電力(発電電力)WG
を検出するための電力検出器であり、該電力検出器48
により検出した発電電力WGは電気信号として演算制御
装置47へ与え得るようになっている。Reference numeral 48 is electric power (generated electric power) W G generated by the electric generator 44 which is connected between the circuit breaker 30 of the electric power distribution branch line 18 and the electric generator 44 and is driven by the gas turbine 45.
A power detector for detecting the
The generated power W G detected by the above can be given to the arithmetic and control unit 47 as an electric signal.
【0015】49は電力会社の電力給電装置1から給電
された買電電力WRとガスタービン45で駆動される発
電機44により発電された発電電力WGの電圧及び周波
数並に位相を合せるよう、一端が電力分配支線18の遮
断器24,30間に接続され、他端が電力検出器48と
電力分配支線18を接続する線50に接続された自動同
期装置であり、該自動同期装置49は、演算制御装置4
7からの指令Y1によって遮断器30が閉になった場合
にのみ作動し得るようになっている。Reference numeral 49 is to match the phase of the voltage and frequency of the purchased power W R supplied from the power supply device 1 of the electric power company and the generated power W G generated by the generator 44 driven by the gas turbine 45. An automatic synchronizer, one end of which is connected between the circuit breakers 24 and 30 of the power distribution branch line 18, and the other end of which is connected to a line 50 that connects the power detector 48 and the power distribution branch line 18, the automatic synchronization device 49. Is the arithmetic and control unit 4
It is possible to operate only when the circuit breaker 30 is closed by the command Y 1 from 7.
【0016】51は速度設定器であり、該速度設定器5
1へは演算制御装置47から速度増指令+V1及び速度
減指令−V1を与え得るようになっていると共に自動同
期装置49から自動同期指令Y2,Y3を与え得るように
なっている。Reference numeral 51 is a speed setting device, and the speed setting device 5
1 to the arithmetic and control unit 47 can be given a speed increase command + V 1 and a speed deceleration command −V 1, and can also be given automatic sync commands Y 2 and Y 3 from the automatic synchronizer 49. ..
【0017】52は速度設定器51からの速度設定指令
Vに対応して作動する電子ガバナ、53は電子ガバナ5
2の作動に対応して開閉される燃料流量制御弁であり、
該燃料流量制御弁53は、燃料をガスタービン45へ送
給する導管54の中途部に接続され、ガスタービン45
の燃焼室へ噴射される燃料流量を制御し得るようになっ
ている。Reference numeral 52 is an electronic governor which operates in response to a speed setting command V from the speed setting device 51, and 53 is an electronic governor 5.
A fuel flow control valve that opens and closes in response to the operation of 2.
The fuel flow rate control valve 53 is connected to a midway portion of a conduit 54 for supplying fuel to the gas turbine 45,
It is possible to control the flow rate of fuel injected into the combustion chamber of the.
【0018】なお、図示してないが、電力受電予備線8
側にも電力受電本線7側と同様の電力制御系が設置され
ている。Although not shown, the power receiving standby line 8
A power control system similar to that on the power receiving main line 7 side is also installed on the side.
【0019】上記設備では、ガスタービン45により発
電機44が駆動され、発電機44で発電された発電電力
は、発電電力給電線29、電力分配支線18等を通って
コージェネ設備の各機器のモータ34,35等に与えら
れると共に電力会社からの買電電力は、電力給電装置1
から電力受電本線7、電力分配支線18等を経てコージ
ェネ設備の各機器のモータ34,35等に与えられる。In the above facility, the generator 44 is driven by the gas turbine 45, and the generated power generated by the generator 44 passes through the generated power feed line 29, the power distribution branch line 18 and the like to the motor of each device of the cogeneration facility. The electric power supplied to the electric power feeding device 1
From the electric power receiving main line 7, the electric power distribution branch line 18, etc. to the motors 34, 35, etc. of each device of the cogeneration equipment.
【0020】この際、電力検出器48,46では夫々発
電電力WG及び買電電力WRが検出されて演算制御装置4
7へ与えられ、演算制御装置47からの各指令によりコ
ージェネ設備の機器で消費される負荷電力WLに対応し
て、電力会社の電力給電装置1からの買電電力WRとコ
ージェネ設備の発電機44により発電される発電電力W
Gが制御されるが、これら電力WR,WGの制御を図2
(a)(b)(c)をも参照しつつ、図1の電力給電本
線2を使用して給電する場合につき以下説明する。At this time, the electric power detectors 48 and 46 detect the generated electric power W G and the purchased electric power W R, respectively, and the arithmetic and control unit 4
7 corresponding to the load power W L consumed by the equipment of the cogeneration facility according to each command from the arithmetic and control unit 47, and the power purchased by the power feeder 1 of the power company W R and the power generation of the cogeneration facility. Power W generated by the machine 44
G is controlled, and control of these electric powers W R and W G is shown in FIG.
With reference to (a), (b) and (c) as well, description will be given below of a case where power is supplied using the power supply main line 2 of FIG.
【0021】例えば、コージェネ設備の各機器に必要な
負荷電力WLが、図2(a)に示すようにWL1で、コー
ジェネ設備のガスタービン45が図2(c)の時間t1
に示すように停止している場合には、演算制御装置47
へは電力検出器46で検出される買電電力WRは与えら
れるが、電力検出器48で検出される発電電力WGは零
である。このため演算制御装置47からは指令Y1が出
力され、電力受電本線7の系統では、遮断器30は開と
なり、それ以外の遮断器は閉となっている。なお、電力
受電予備線8の系統は今回は使用しないため、遮断器1
0も開となっている。従って、コージェネ設備の電力給
電線31へは、電力会社の電力給電装置1からの買電電
力WRのみが給電され、買電電力WRは負荷電力WL1に等
しく、WR=W L 1=W R1である。For example, necessary for each equipment of cogeneration equipment
Load power WLHowever, as shown in FIG.L1So
The gas turbine 45 of the generator is at time t in FIG. 2 (c).1
When it is stopped as shown in FIG.
To the power purchase power W detected by the power detector 46RIs given
Generated power W detected by the power detector 48GIs zero
Is. Therefore, the command Y is issued from the arithmetic and control unit 47.1Out
In the system of the power receiving main line 7, the circuit breaker 30 is opened.
The other circuit breakers are closed. The power
Since the system of the power receiving standby line 8 is not used this time, the circuit breaker 1
0 is also open. Therefore, the power supply of cogeneration equipment
Electric power is purchased from the electric power feeder 1 of the electric power company to the electric wire 31.
Power WROnly the power is supplied, and the purchased power WRIs the load power WL1And so on
WR= W L 1= W R1Is.
【0022】ガスタービン45の補機が始動されてガス
パージが行われ、ガスタービン45が始動して立上りが
終了すると、すなわち、図2(c)の時刻X1になる
と、発電機44では発電電力WG=WG1が発電される。
このため、演算制御装置47へは電力検出器46で検出
された電力と共に電力検出器48で検出された電力が与
えられ、その結果遮断器30に対して指令Y1が出力さ
れ、遮断器30は閉になる。このため、コージェネ設備
の電力給電線31には、電力会社からの買電電力WRの
他に発電機44で発電された発電電力WGが給電され
る。この際、図示していないが演算制御装置47から
は、電力給電装置1へ指令が与えられ、このときの買電
電力WRはWR=WL1−WG1=WR2となるよう調整され
る。When the auxiliary equipment of the gas turbine 45 is started to perform gas purging and the gas turbine 45 is started and the start-up is completed, that is, at time X 1 in FIG. W G = W G1 is generated.
For this reason, the electric power detected by the electric power detector 48 is given to the arithmetic and control unit 47 together with the electric power detected by the electric power detector 46, and as a result, the instruction Y 1 is output to the breaker 30 and the breaker 30 Will be closed. Therefore, the power supply line 31 of the cogeneration facility is supplied with the generated power W G generated by the generator 44 in addition to the purchased power W R from the power company. At this time, although not shown, the arithmetic and control unit 47 gives a command to the electric power feeder 1, and the purchased electric power W R at this time is adjusted so that W R = W L1 −W G1 = W R2. It
【0023】発電機44による発電電力WG=WG1の状
態が所定時間経過し、発電電力増加の指令が演算制御装
置47へ与えられ始めると、演算制御装置47からは、
速度増指令+V1が出力されて、速度設定器51に与え
られ、速度設定器51からは速度設定指令Vが出力され
て電子ガバナ52に与えられる。When the state in which the electric power generated by the generator 44 is W G = W G1 has passed for a predetermined time and a command to increase the generated electric power starts to be given to the arithmetic control unit 47, the arithmetic control unit 47
A speed increase command + V 1 is output and given to the speed setter 51, and a speed setting command V is output from the speed setter 51 and given to the electronic governor 52.
【0024】このため、燃料流量制御弁53の開度は電
子ガバナ52により徐々に大きく開かれ、導管54から
ガスタービン45へ供給される燃料流量が増加し、ガス
タービン45の出力が増加して発電機44により発電さ
れる発電電力WGが図2(c)に示すようにWG1から発
電機44の最大発電電力であるWG2へ徐々に増加する。
この際、負荷電力WL1は変化していないため演算制御装
置47からの指令により、電力給電装置1からの買電電
力WRはWR2から更に徐々に下降し、所定時間経過後に
は、WR=WL1−WG2=WR3になる。Therefore, the opening degree of the fuel flow rate control valve 53 is gradually opened by the electronic governor 52, the fuel flow rate supplied from the conduit 54 to the gas turbine 45 increases, and the output of the gas turbine 45 increases. The generated power W G generated by the generator 44 gradually increases from W G1 to W G2 which is the maximum generated power of the generator 44, as shown in FIG.
At this time, since the load power W L1 has not changed, the purchased power W R from the power supply device 1 further gradually decreases from W R2 according to a command from the arithmetic and control unit 47, and after a predetermined time has elapsed, W R = W L1 −W G2 = W R3 .
【0025】発電機44が最大発電電力WG2で運転され
てる間に、図2(a)の時刻X2に示すように負荷電力
WLがWL1からWL2へ増加すると、この場合には、発電
機44は最大発電電力WG2で運転されていてそれ以上の
発電電力を得ることはできないため、演算制御装置47
からの指令により電力給電装置1からの買電電力WRは
WL2−WL1だけ増加し、WR=(WL1−WG2)+WL2−
WL1=WL2−WG2=WR4となる。When the load power W L increases from W L1 to W L2 as shown at time X 2 in FIG. 2A while the generator 44 is operating at the maximum generated power W G2 , in this case , The generator 44 is operating at the maximum generated power W G2 and cannot generate more power, so the arithmetic and control unit 47
The electric power W R from the power supply device 1 is increased by W L2 −W L1 in accordance with the command from W R2 = (W L1 −W G2 ) + W L2 −
W L1 = W L2 −W G2 = W R4 .
【0026】上述のように、負荷電力WL1が発電機44
の最大発電電力WG2と電力給電装置1よりの買電電力W
Rの後述の下限値WR5の和よりも大きい場合、発電電力
WGは最大発電電力WG2に保持され買電電力WRが調整さ
れる。As described above, the load power W L1 is generated by the generator 44.
Maximum generated power W G2 and power W purchased from the power supply device 1
When it is larger than the sum of the lower limit value W R5 of R described later, the generated power W G is held at the maximum generated power W G2 and the purchased power W R is adjusted.
【0027】図2(a)の時刻X3に示すように、負荷
電力WLが減少してWL3になると、負荷電力WL3が最大
発電電力WG2よりも大きい場合には、発電電力WG2は変
えず、買電電力WRを減少させ、WR=WR4−(WL2−W
L3)=WL2−WG2−WL2+WL3=WL3−WG2=WR5に調
整する。As shown at time X 3 in FIG. 2A, when the load power W L decreases to W L3 and the load power W L3 is larger than the maximum generated power W G2 , the generated power W W G2 is not changed, and the purchased electric power W R is reduced, and W R = W R4 − (W L2 −W
L3 ) = W L2 −W G2 −W L2 + W L3 = W L3 −W G2 = W R5
【0028】負荷電力WLが更に低下してWL4となった
場合に、前述の買電電力WR=WR5が電力会社の電力給
電装置1にとって下限値(コージェネ設備側から電力会
社側へ逆潮流を生じない下限の電力)である場合は、買
電電力WR5をそれ以上減少させることはできない。そこ
で、この場合には、発電電力WGを調整してWG3に下降
させる。すなわちWG=WL4−WR5=WL4−WL3+WG2
=WG3となるよう、発電機44の発電電力WGを低下さ
せる。この場合、演算制御装置47からは速度減指令−
V1が出力されて速度設定器51に与えられることにな
る。When the load power W L further decreases to W L4 , the above-mentioned purchased power W R = W R5 is the lower limit value for the power feeder 1 of the power company (from the cogeneration facility side to the power company side). If it is the lower limit power that does not generate reverse power flow), the purchased power W R5 cannot be further reduced. Therefore, in this case, the generated power W G is adjusted and lowered to W G3 . That is, W G = W L4 −W R5 = W L4 −W L3 + W G2
The generated power W G of the generator 44 is reduced so that = W G3 . In this case, the speed reduction command from the arithmetic and control unit 47-
V 1 is output and given to the speed setter 51.
【0029】負荷電力WLが再び上昇してWL5となり、
且つ負荷電力WL5が、発電機44の最大発電電力WG2と
買電電力の下限値WR5の和よりも大きい場合、すなわち
WL5>WG2+WR5の場合は、発電電力WGは最大発電電
力WG2まで上昇させ、買電電力WRはWR=WL5−WG2=
WR6>WR5となる。なお、時刻X4で、図2(c)に示
すように買電電力WRはWR5からWR6へ向って増加して
いるが、これは時刻X4までは、負荷電力WLはWG2+W
R5より小さく、買電電力WR=WR5であり、増加させる
必要がないが、時刻X4を過ぎると負荷電力WLはWG2+
WR5より大きくなり、買電電力WRを増加させる必要が
生じるためである。The load power W L rises again to W L5 ,
And load power W L5 is greater than the sum of the maximum generated power W G2 and purchased electric power lower limit value W R5 of the generator 44, that is, when the W L5> W G2 + W R5 , maximum generated power W G The generated power W R is increased to W G2 , and the purchased power W R is W R = W L5 −W G2 =
W R6 > W R5 . At time X 4 , the purchased power W R increases from W R5 to W R6 as shown in FIG. 2C, but this is because the load power W L is W up to time X 4. G2 + W
It is smaller than R5 and the purchased power W R = W R5 , and it is not necessary to increase it, but after time X 4 , the load power W L becomes W G2 +
This is because it becomes larger than W R5 and it becomes necessary to increase the purchased electric power W R.
【0030】負荷電力WLが図2(a)の時刻X5から急
激に大きく低下すると、買電電力WRは下限値WR5まで
下って以後は一定に保持されるため、発電電力WGは更
に下降する。而して、負荷電力WLの下降と共に発電電
力WGが下降し、予め定めた所定の発電電力WG4まで下
降すると、演算制御装置47から遮断器30に指令Y1
が与えられて遮断器30は開の状態になる。このため、
発電機44で得られた発電電力WGは、コージェネ設備
へは給電されなくなり、時刻X6においてはコージェネ
設備へ給電される発電電力WGは零になる。このよう
に、遮断器30を開にするのは、発電電力WGがWG4以
下に下降すると、電力給電装置1からの買電電力WRが
発電機44へ流れる潮流が生じ、発電機44が電動機と
して電力を消費することになるので、これを防止するた
めである。When the load power W L sharply and drastically decreases from the time X 5 in FIG. 2A, the purchased power W R falls to the lower limit value W R5 and is kept constant thereafter, so that the generated power W G Goes down further. When the load power W L decreases and the generated power W G decreases to a predetermined power generation W G4 which is set in advance, the arithmetic and control unit 47 sends a command Y 1 to the circuit breaker 30.
Is given and the circuit breaker 30 is opened. For this reason,
The generated power W G obtained by the generator 44 is no longer supplied to the cogeneration facility, and at time X 6 , the generated power W G supplied to the cogeneration facility becomes zero. In this way, the circuit breaker 30 is opened because when the generated power W G drops below W G4 , a power flow occurs in which the purchased power W R from the power feeding device 1 flows to the generator 44, which causes the generator 44 to move. This is because it consumes electric power as an electric motor, and is for preventing this.
【0031】なお、遮断器30が開になっても、ガスタ
ービン45及び発電機44は停止することなく連続的に
駆動されており、買電電力WRは負荷電力WL7と等し
く、WR=WL6=WR7となる。Even if the circuit breaker 30 is opened, the gas turbine 45 and the generator 44 are continuously driven without stopping, and the purchased power W R is equal to the load power W L7 and W R = W L6 = W R7 .
【0032】図2(a)の時刻X7以後のように遮断器
30が開になって後一定時間t2以上経過し、再び負荷
電力WLが上昇をし始めた場合に、買電電力WRにおいて
予め定めた基準となる買電電力WR8以上の状態が時間t
3以上継続すると、演算制御装置47からの指令により
遮断器30は閉の状態になり、再び発電電力WGは自動
的に制御される。而して、負荷電力WLがWL6からWL7
まで上昇する場合に遮断器30が再び閉になるまでは、
買電電力WRは負荷電力WLの上昇に伴って上昇するが、
遮断器30が閉になって発電機44の発電電力WG=W
G1がコージェネ設備の電力給電線31に送られるように
なると、図2(b)の買電電力WR9に示すように、買電
電力WRは、発電電力WG=WG1だけ減少する。When the circuit breaker 30 is opened after the time X 7 in FIG. 2A and a certain time t 2 or more elapses, and the load power W L starts to increase again, the power purchased A state in which the purchased electric power W R8 , which is a predetermined reference in W R , is equal to or longer than time t
When it continues for 3 or more, the circuit breaker 30 is closed by a command from the arithmetic and control unit 47, and the generated power W G is automatically controlled again. Therefore, the load power W L changes from W L6 to W L7.
Until circuit breaker 30 closes again when rising
The purchased power W R rises as the load power W L rises,
Power generated by the generator 44 when the circuit breaker 30 is closed W G = W
When G1 comes to be sent to the power supply line 31 of the cogeneration facility, the purchased power W R is reduced by the generated power W G = W G1 as shown by the purchased power W R9 in FIG. 2B.
【0033】例えば図示していないが買電電力WRが下
限値WR5よりも大きい所定の値に下降した場合には、発
電電力WGを減少させて発電機44から電力給電装置1
への逆潮流を防止するために、遮断器30は開かれる。
又負荷電力WLが低下して買電電力WRが下限値WR5より
も低い値になると、発電電力WGが電力会社の電力給電
装置1側へ流れる逆潮流が生じる虞れがある。従って、
買電電力WRがWR5よりも低くなる場合には、演算制御
装置47からの指令により遮断器9を開く。Although not shown, for example, when the purchased electric power W R drops to a predetermined value larger than the lower limit value W R5 , the generated electric power W G is decreased to change the electric power from the generator 44 to the electric power feeder 1.
Circuit breaker 30 is opened to prevent reverse flow into the circuit.
Further, when the load power W L decreases and the purchased power W R becomes a value lower than the lower limit value W R5 , there is a possibility that a reverse flow of the generated power W G to the electric power feeder 1 side of the electric power company may occur. Therefore,
When the purchased power W R becomes lower than W R5, the circuit breaker 9 is opened by a command from the arithmetic and control unit 47.
【0034】なお本発明の実施例の説明においては、発
電機の出力とガスタービンに取り込まれる外気温度との
関係については特に触れてはいないが、実際の運転にお
いては、発電機の出力は外気温度の影響を受けるため、
外気温度によって発電機44の最大出力は変化すること
になる。しかし、発電機の最大出力が変化する状態で、
電力制御を行うと、制御が複雑になるため、発電機の最
大出力は一定値を越えないよう外気温度を考慮した制御
を行うことが望ましい。In the description of the embodiments of the present invention, the relationship between the output of the generator and the temperature of the outside air taken into the gas turbine is not particularly mentioned, but in the actual operation, the output of the generator is the outside air. As it is affected by temperature,
The maximum output of the generator 44 changes depending on the outside air temperature. However, with the maximum output of the generator changing,
When the power control is performed, the control becomes complicated. Therefore, it is desirable to perform the control in consideration of the outside air temperature so that the maximum output of the generator does not exceed a certain value.
【0035】[0035]
【発明の効果】本発明のコージェネ設備における給電方
法によれば、コージェネ設備の発電機の発電電力を最大
にできると共に電力会社からの買電電力を最小にするこ
とができ、又コージェネ設備側から電力会社側への電力
の逆潮流を防止できる、等種々の優れた効果を奏し得
る。According to the power supply method for the cogeneration facility of the present invention, the power generated by the generator of the cogeneration facility can be maximized and the power purchased from the power company can be minimized. It is possible to achieve various excellent effects such as preventing reverse power flow to the electric power company side.
【図1】本発明のコージェネ設備における給電方法の一
実施例のブロック図である。FIG. 1 is a block diagram of an embodiment of a power feeding method in a cogeneration facility of the present invention.
【図2】図2は電力が時間と共に変化する様子を示すグ
ラフであり、(a)は負荷電力が変化する様子を示すグ
ラフ、(b)は買電電力が変化する様子を示すグラフ、
(c)は発電電力が変化する様子を示すグラフである。FIG. 2 is a graph showing how electric power changes with time, (a) shows a graph showing how load electric power changes, and (b) shows a graph showing how electric power purchased changes.
(C) is a graph showing how the generated electric power changes.
1 電力給電装置 18 電力分配支線(線) 29 発電電力給電線(線) 30 遮断器 44 発電機 WR 電力(買電電力) WG 電力(発電電力) WL 負荷電力 WR1,WR2,WR3,WR4,WR6,WR7,WR8,WR9
買電電力 WR5 買電電力(下限値) WG1,WG3,WG4 発電電力 WG2 最大発電電力 WL1,WL2,WL3,WL4,WL5,WL6,WL7 負荷電
力1 power supply device 18 power distribution branch line (line) 29 generated power supply line (line) 30 circuit breaker 44 generator W R power (purchased power) W G power (generated power) W L load power W R1 , W R2 , WR3 , WR4 , WR6 , WR7 , WR8 , WR9
Purchased power W R5 Purchased power (lower limit) W G1 , W G3 , W G4 Generated power W G2 Maximum generated power W L1 , W L2 , W L3 , W L4 , W L5 , W L6 , W L7 Load power
Claims (2)
ジェネ設備の発電機により得られた発電電力と電力会社
の電力給電装置からの買電電力を与えるコージェネ設備
における給電方法において、前記負荷電力が前記発電機
の最大発電電力と前記電力給電装置よりの、買電電力側
へ逆潮流を発生させない下限の電力である買電電力の下
限値との和よりも大きい場合は、発電機の発電電力を最
大発電電力に保持して買電電力を調整し、前記負荷電力
が前記買電電力の下限値よりも大きいが、最大発電電力
と買電電力の下限値との和よりも小さい場合は、買電電
力を下限値に保持して発電電力を調整することを特徴と
するコージェネ設備における給電方法。1. A power supply method in a cogeneration facility, wherein the generated power obtained by a generator of the cogeneration facility and the purchased power from a power feeder of a power company are used as the load power of the cogeneration facility, wherein the load power is the power generation. If the sum of the maximum generated power of the generator and the lower limit value of the purchased power, which is the lower limit power that does not generate reverse power flow to the purchased power from the power supply device, is the maximum generated power of the generator. If the load power is greater than the lower limit value of the purchased power but smaller than the sum of the maximum generated power and the lower limit value of the purchased power, the purchased power is adjusted by holding the generated power and adjusting the purchased power. A power supply method in a cogeneration facility, characterized in that the generated power is adjusted by holding the power at a lower limit value.
に下降した場合には、発電電力を減少させ、買電電力が
下限値よりも低下した場合或いは発電電力が発電機の下
限値よりも低下した場合には、電力供給装置から発電機
に至る線に設けた遮断器を開く請求項1に記載のコージ
ェネ設備における給電方法。2. When the purchased power falls to a predetermined value larger than the lower limit value, the generated power is reduced, and when the purchased power falls below the lower limit value or the generated power falls below the lower limit value of the generator. The power supply method in a cogeneration facility according to claim 1, wherein a circuit breaker provided on a line from the power supply device to the generator is opened when the power is lowered.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4037270A JPH05207658A (en) | 1992-01-28 | 1992-01-28 | Power supply method in co-generation facility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4037270A JPH05207658A (en) | 1992-01-28 | 1992-01-28 | Power supply method in co-generation facility |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05207658A true JPH05207658A (en) | 1993-08-13 |
Family
ID=12492986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4037270A Pending JPH05207658A (en) | 1992-01-28 | 1992-01-28 | Power supply method in co-generation facility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05207658A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1023670A (en) * | 1996-06-28 | 1998-01-23 | Shinko Electric Co Ltd | Method for controlling output of non-utility feeding device and output controlling device |
JPH11289671A (en) * | 1998-04-03 | 1999-10-19 | Rengo Co Ltd | Control method of parallel power supply system |
JP2000080928A (en) * | 1998-09-03 | 2000-03-21 | Toyota Motor Corp | Gas turbine output control device |
JP2001258293A (en) * | 2000-03-08 | 2001-09-21 | Osaka Gas Co Ltd | Power generating equipment |
JP2012080680A (en) * | 2010-10-01 | 2012-04-19 | Shimizu Corp | Power supply output controller, demand power control system, power supply output control method, and power supply output control program |
JP2014168328A (en) * | 2013-02-28 | 2014-09-11 | Shimizu Corp | Self-sustained operation system and method of distributed power supply |
JP2018003598A (en) * | 2016-06-27 | 2018-01-11 | 有限会社庄野環境デザインラボ | Electrical power*heat medium production system and its control method |
JP2021097540A (en) * | 2019-12-18 | 2021-06-24 | オムロン株式会社 | Operation control system, operation control device, and operation control method |
-
1992
- 1992-01-28 JP JP4037270A patent/JPH05207658A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1023670A (en) * | 1996-06-28 | 1998-01-23 | Shinko Electric Co Ltd | Method for controlling output of non-utility feeding device and output controlling device |
JPH11289671A (en) * | 1998-04-03 | 1999-10-19 | Rengo Co Ltd | Control method of parallel power supply system |
JP2000080928A (en) * | 1998-09-03 | 2000-03-21 | Toyota Motor Corp | Gas turbine output control device |
JP2001258293A (en) * | 2000-03-08 | 2001-09-21 | Osaka Gas Co Ltd | Power generating equipment |
JP2012080680A (en) * | 2010-10-01 | 2012-04-19 | Shimizu Corp | Power supply output controller, demand power control system, power supply output control method, and power supply output control program |
JP2014168328A (en) * | 2013-02-28 | 2014-09-11 | Shimizu Corp | Self-sustained operation system and method of distributed power supply |
JP2018003598A (en) * | 2016-06-27 | 2018-01-11 | 有限会社庄野環境デザインラボ | Electrical power*heat medium production system and its control method |
JP2021097540A (en) * | 2019-12-18 | 2021-06-24 | オムロン株式会社 | Operation control system, operation control device, and operation control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4343427B2 (en) | Steam power plant output adjustment method and its steam power plant | |
US5533337A (en) | Feed water supply system of power plant | |
KR880001189B1 (en) | Steam turbine control | |
US4468171A (en) | Method of controlling air flow rate of fan | |
JPH05207658A (en) | Power supply method in co-generation facility | |
CA2242073C (en) | Combined cycle power generation plant | |
JPH08246814A (en) | Combined cycle generation plant using refuse incinerator | |
JPS5956827A (en) | Non-utility generator | |
JP3680329B2 (en) | Method for controlling power generator | |
JP2000028102A (en) | Auxiliary steam control method in boiler for thermal electric power generation | |
JPS6229706A (en) | Controlling method for output of back pressure turbine generator | |
JPS6239653B2 (en) | ||
JP2001197789A (en) | Controller for combined cycle power plant | |
JPS5965507A (en) | Operation of complex cycle power generating plant | |
JP2692974B2 (en) | Control method for combined cycle power plant | |
JPS6239655B2 (en) | ||
JPH07133703A (en) | Control method for power generating plant | |
JP3010086B2 (en) | Cogeneration power plant | |
JP2001221010A (en) | Load control method and apparatus of electric power plant | |
JPS622129B2 (en) | ||
JPS63314136A (en) | Purchasing energy controller | |
JP2003032898A (en) | Private generating facility | |
JP3747253B2 (en) | Thermal power plant protection system | |
JP2632147B2 (en) | Combined cycle plant | |
JPH06284797A (en) | Emergency counter measures system for generator equipment |