JPS6311308Y2 - - Google Patents
Info
- Publication number
- JPS6311308Y2 JPS6311308Y2 JP1981030442U JP3044281U JPS6311308Y2 JP S6311308 Y2 JPS6311308 Y2 JP S6311308Y2 JP 1981030442 U JP1981030442 U JP 1981030442U JP 3044281 U JP3044281 U JP 3044281U JP S6311308 Y2 JPS6311308 Y2 JP S6311308Y2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- cooling water
- water temperature
- engine
- lubricating oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000498 cooling water Substances 0.000 claims description 31
- 239000000446 fuel Substances 0.000 claims description 25
- 238000002347 injection Methods 0.000 claims description 20
- 239000007924 injection Substances 0.000 claims description 20
- 239000010687 lubricating oil Substances 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000003921 oil Substances 0.000 claims description 5
- 238000002485 combustion reaction Methods 0.000 claims description 2
- 239000002826 coolant Substances 0.000 description 10
- 230000006866 deterioration Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000000889 atomisation Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
【考案の詳細な説明】
この考案は内燃機関の電子制御燃料噴射装置に
関する。[Detailed Description of the Invention] This invention relates to an electronically controlled fuel injection device for an internal combustion engine.
自動車用エンジン等の電子制御燃料噴射装置に
おける噴射量の制御は、周知のように、基本噴射
量に、機関の運転条件に基づく各種の補正量、例
えば回転数補正、空気温補正、加速増量、暖機増
量等を付加して、逐次最適の燃料噴射量を決定す
るようになされている。上記暖機増量は、エンジ
ン始動後、冷却水温に伴つて補正のための噴射量
を自動的に調節し、暖機運転を迅速かつスムース
に完了させるためのもので、第1図に概略的に示
すように、冷却水の流路を図外のラジエータと該
ラジエータをバイパスするバイパス通路とに選択
的に切換えるためのサーモスタツト1が介装され
た冷却水通路2において、上記サーモスタツト1
よりエンジン寄りに水温センサ3が配設されてお
り、コントロールユニツト4では、上記水温セン
サ3の出力に応じて基本噴射量に付加する燃料増
量係数を演算し、これに基づき燃料噴射弁5の開
弁時間を適宜延長制御している。第2図は、上記
増量係数と冷却水温度との関係を示しており、同
図から明らかなように、冷却水温度が低い程多量
の噴射増量が行なわれ、かつ所定温度(例えば70
℃)に到達した時点で増量が終了する。 As is well known, control of the injection amount in an electronically controlled fuel injection device for an automobile engine, etc., involves adding various correction amounts to the basic injection amount based on the operating conditions of the engine, such as rotational speed correction, air temperature correction, acceleration amount increase, etc. The optimal fuel injection amount is sequentially determined by adding a warm-up amount increase, etc. The warm-up increase described above is to automatically adjust the corrective injection amount according to the cooling water temperature after the engine starts, and to complete warm-up quickly and smoothly. As shown, in a cooling water passage 2 in which a thermostat 1 is interposed for selectively switching the cooling water flow passage between a radiator (not shown) and a bypass passage that bypasses the radiator, the thermostat 1
A water temperature sensor 3 is disposed closer to the engine, and a control unit 4 calculates a fuel increase coefficient to be added to the basic injection amount according to the output of the water temperature sensor 3, and controls the opening of the fuel injection valve 5 based on this. The valve time is controlled to be extended as appropriate. FIG. 2 shows the relationship between the above-mentioned increase coefficient and cooling water temperature. As is clear from the figure, the lower the cooling water temperature, the greater the increase in injection amount, and the lower the cooling water temperature, the greater the injection amount.
The increase in volume ends when the temperature (°C) is reached.
しかしながら、このように単に冷却水温度のみ
に基づいて暖機増量を行うように構成された従来
のものでは、機関始動後十分にアイドリングを行
つて緩慢に緩機させるようにした場合には何ら問
題はないが、アイドリングを行うことなく始動後
直ちに通常走行に移行した場合など冷却水温度が
比較的急激に上昇する場合には、冷却水温度が所
定温度に到達したとしても機関が十分な暖機状態
に無いため、上述の暖機増量終了後しばらくの間
運転性の悪化状態が生じる。 However, with conventional systems that are configured to warm up and increase the amount based solely on the cooling water temperature, there is no problem when the engine is idled sufficiently after starting and is allowed to slowly slow down. However, if the coolant temperature rises relatively rapidly, such as when the engine shifts to normal running immediately after starting without idling, the engine may not warm up sufficiently even if the coolant temperature reaches the specified temperature. As a result, drivability deteriorates for a while after the warm-up increase described above is completed.
第3図はその一例として、機関を室温状態から
始動し、aのように始動後直ちに11モードにて走
行させた場合の冷却水温度b、燃料噴射増量係数
cを示しており、同図に明らかなように、冷却水
温度は始動後比較的急激に上昇し、かつ増量係数
はこの冷却水温度の上昇に伴い徐々に減少して冷
却水温度が設定温度(70℃)に到達した時点で0
となる。一方、ラジエータへの通流を制御する上
述のサーモスタツト1は、80〜90℃で開作動する
よう設定されているので、冷却水がこの温度に達
するとラジエータへエンジン内の冷却水を流して
放熱する。冷却水温度は最終的にこの温度付近に
維持されるが、このように冷却水温度が急激に上
昇した場合には、ラジエータ等との相対的な温度
差が大きいため、サーモスタツト1が開くと冷却
水温度が一時的に低下してサーモスタツト1が閉
じ、また再び冷却水温度が上昇してサーモスタツ
ト1が開く、というように冷却水の温度変動が大
きく生じる。そして、この温度変動が大きい間
は、一般に吸気マニホルドライザ部等は十分に暖
められていないため、燃料の霧化や分配が未だ十
分でない運転領域であり、これに反して暖機増量
が冷却水温70℃の時点で終了してしまうので、こ
の間がエミツシヨンが燃費の悪化を伴う運転性悪
化域となる。また一定時間経過して冷却水温度が
安定した状態では、サーモスタツト1は殆ど常時
開となり、この時点では一般に吸気マニホルド等
各部を含めて十分に暖まつた完全暖機状態とな
る。 As an example, Fig. 3 shows the cooling water temperature b and fuel injection increase coefficient c when the engine is started from room temperature and run in mode 11 immediately after starting as shown in a. As is clear, the cooling water temperature rises relatively rapidly after startup, and the increase coefficient gradually decreases as the cooling water temperature rises until the cooling water temperature reaches the set temperature (70℃). 0
becomes. On the other hand, the above-mentioned thermostat 1, which controls the flow of water to the radiator, is set to open at 80 to 90 degrees Celsius, so when the coolant reaches this temperature, it starts flowing the coolant in the engine to the radiator. Dissipate heat. The coolant temperature will eventually be maintained around this temperature, but if the coolant temperature rises rapidly like this, there is a large relative temperature difference with the radiator, etc., so if thermostat 1 opens, The temperature of the cooling water temporarily decreases and the thermostat 1 closes, and then the temperature of the cooling water rises again and the thermostat 1 opens, causing large fluctuations in the temperature of the cooling water. While this temperature fluctuation is large, the intake manifold riser section is generally not sufficiently warmed up, so it is an operating region where fuel atomization and distribution are not yet sufficient. Since it ends when the temperature reaches 70°C, during this period the emission becomes a region where drivability deteriorates accompanied by deterioration of fuel efficiency. Further, after a certain period of time has passed and the cooling water temperature has stabilized, the thermostat 1 is almost always open, and at this point, the engine is generally fully warmed up, including the intake manifold and other parts.
この考案は上記のような従来の問題点に鑑み、
機関を冷間始動後直ちに走行させた場合などで
も、機関の潤滑油温度は冷却水温度に比して緩慢
に温度上昇し、しかも完全暖機状態では冷却水温
度より高温となる特性に着目してなされたもので
あつて、両温度を比較して潤滑油温度が低い状態
では冷却水温度が所定温度以上であつても燃料増
量を行うことによつて、上述した一時的な運転性
の悪化、エミツシヨンの悪化を防止することを目
的としている。 This idea was created in view of the conventional problems mentioned above.
We focused on the characteristic that even when the engine is run immediately after a cold start, the lubricating oil temperature of the engine rises more slowly than the coolant temperature, and when it is fully warmed up, it becomes higher than the coolant temperature. When comparing both temperatures, when the lubricating oil temperature is low, increasing the amount of fuel even if the cooling water temperature is higher than the predetermined temperature will prevent the above-mentioned temporary deterioration of drivability. , the purpose is to prevent deterioration of emissions.
以下、この考案の一実施例を図面に基づいて詳
細に説明する。 Hereinafter, one embodiment of this invention will be described in detail based on the drawings.
第4図はこの考案に係る電子制御燃料噴射装置
の構成を概略的に示すもので、冷却水通路2のサ
ーモスタツト1よりエンジン6側に水温センサ3
が配設されているとともに、オイルパン7に潤滑
油温度を検出する油温センサ8が配設されてい
る。コントロールユニツト4では、これらセンサ
3,8の出力信号等に基づき燃料噴射弁5の開弁
時間つまり噴射量を制御しているが、その制御と
しては、上記水温センサ3から検出された冷却水
温度が所定温度以下の場合には、冷却水温度に応
じて逐次増量係数を演算設定し、これに基づき燃
料増量を行い、また上記油温センサ8から検出さ
れた潤滑油温度と冷却水温度とを比較して潤滑油
温度が相対的に低い場合には、冷却水温度が所定
温度以上であつても所定の増量係数に基づき燃料
増量を行うようになつている。 FIG. 4 schematically shows the configuration of the electronically controlled fuel injection device according to this invention, in which a water temperature sensor 3 is located closer to the engine 6 than the thermostat 1 in the cooling water passage 2.
An oil temperature sensor 8 for detecting the lubricating oil temperature is also provided in the oil pan 7. The control unit 4 controls the valve opening time, that is, the injection amount, of the fuel injection valve 5 based on the output signals of these sensors 3 and 8. is below a predetermined temperature, a fuel increase coefficient is calculated and set sequentially according to the cooling water temperature, the fuel amount is increased based on this, and the lubricating oil temperature detected by the oil temperature sensor 8 and the cooling water temperature are In comparison, when the lubricating oil temperature is relatively low, the amount of fuel is increased based on a predetermined increase coefficient even if the cooling water temperature is higher than a predetermined temperature.
第5図は、第3図と同様に、機関を室温状態か
ら始動し、aのように始動後直ちに11モードにて
走行させた場合の、冷却水および潤滑油温度b、
燃料噴射増量係数c、HC排出量dを示してお
り、特にc,dは従来のものと比較して示してあ
る。すなわち、同図bに明らかなように、潤滑油
温度は冷却水温度に比較して、その温度上昇が緩
慢であり、サーモスタツト1の作動温度付近に冷
却水温度が安定するまでは冷却水温度より相対的
に低いが、この潤滑油が十分に昇温した時点で
は、冷却水温度より高温となる特性を有し、特に
潤滑油温度が冷却水温度を超えた状態では、機関
がほぼ完全暖機状態に入つている。従つて、冷却
水温度が所定温度に到達してから、この冷却水温
度と潤滑油温度とが一致する時点までの間は、前
述した運転性悪化域にほぼ相当するものであり、
この間同図cに示す如く適宜な増量係数を維持す
ることによつて、燃料の霧化や分配の悪化に起因
する運転性の悪化を解消することができ、同図d
に示すようにエミツシヨンも大巾に改善されるの
である。 Figure 5 shows the cooling water and lubricating oil temperatures b, when the engine is started from room temperature and run in mode 11 immediately after starting as in Figure 3, as in Figure 3;
The fuel injection increase coefficient c and the HC emission amount d are shown, and in particular, c and d are shown in comparison with the conventional one. That is, as is clear from Figure b, the lubricating oil temperature rises more slowly than the cooling water temperature, and the cooling water temperature remains constant until the cooling water temperature stabilizes around the operating temperature of the thermostat 1. Although it is relatively lower, once the temperature of this lubricating oil has risen sufficiently, it has the characteristic of becoming higher than the coolant temperature, and especially when the lubricating oil temperature exceeds the coolant temperature, the engine will almost completely warm up. It is in the machine state. Therefore, the period from when the cooling water temperature reaches a predetermined temperature until the time when the cooling water temperature and the lubricating oil temperature match almost corresponds to the above-mentioned drivability deterioration region,
During this time, by maintaining an appropriate fuel increase coefficient as shown in c in the figure, it is possible to eliminate deterioration in drivability caused by deterioration in fuel atomization and distribution.
As shown in the figure, emission is also greatly improved.
以上の説明で明らかなように、この考案に係る
電子制御燃料噴射装置にあつては、冷間始動後直
ちに走行させたような場合でも、従来のように運
転性やエミツシヨンが一時的に悪化することがな
く、完全暖機状態に至るまで円滑な運転性を確保
することができる。 As is clear from the above explanation, with the electronically controlled fuel injection system according to this invention, even when the vehicle is started immediately after a cold start, the drivability and emissions deteriorate temporarily as in the case of the conventional system. This ensures smooth drivability until the engine is completely warmed up.
第1図は従来の電子制御燃料噴射装置の構成説
明図、第2図は増量係数と冷却水温度の関係を示
すグラフ、第3図は11モードで走行させた場合の
従来の特性図、第4図はこの考案に係る電子制御
燃料噴射装置の構成説明図、第5図は11モードで
走行させた場合の本考案特性図である。
1……サーモスタツト、3……水温センサ、4
……コントロールユニツト、5……燃料噴射弁、
8……油温センサ。
Figure 1 is an explanatory diagram of the configuration of a conventional electronically controlled fuel injection system, Figure 2 is a graph showing the relationship between increase coefficient and cooling water temperature, Figure 3 is a conventional characteristic diagram when running in 11 modes, FIG. 4 is an explanatory diagram of the configuration of the electronically controlled fuel injection system according to the present invention, and FIG. 5 is a characteristic diagram of the present invention when running in the 11 mode. 1...Thermostat, 3...Water temperature sensor, 4
...Control unit, 5...Fuel injection valve,
8...Oil temperature sensor.
Claims (1)
滑油温度を検出する油温センサと、これらセンサ
の出力信号に基づき暖機中の噴射燃料量を補正制
御するコントロールユニツトとを具備し、冷却水
温度が所定温度以下の冷間時に、冷却水温度に応
じて設定される増量係数に基づき噴射燃料増量を
行うとともに、冷却水温度と潤滑油温度とを比較
して潤滑油温度が低い状態では、冷却水温度が所
定温度以上であつても所定の増量係数に基づき噴
射燃料増量を行うように構成されたことを特徴と
する内燃機関の電子制御燃料噴射装置。 The engine is equipped with a water temperature sensor that detects the engine cooling water temperature, an oil temperature sensor that detects the lubricating oil temperature, and a control unit that corrects and controls the amount of fuel injected during warm-up based on the output signals of these sensors. When the temperature is cold below a predetermined temperature, the amount of injected fuel is increased based on the increase coefficient set according to the cooling water temperature, and when the lubricating oil temperature is low by comparing the cooling water temperature and the lubricating oil temperature, 1. An electronically controlled fuel injection device for an internal combustion engine, characterized in that it is configured to increase the amount of injected fuel based on a predetermined increase coefficient even when the cooling water temperature is higher than a predetermined temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981030442U JPS6311308Y2 (en) | 1981-03-05 | 1981-03-05 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981030442U JPS6311308Y2 (en) | 1981-03-05 | 1981-03-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57144231U JPS57144231U (en) | 1982-09-10 |
JPS6311308Y2 true JPS6311308Y2 (en) | 1988-04-02 |
Family
ID=29827950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1981030442U Expired JPS6311308Y2 (en) | 1981-03-05 | 1981-03-05 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6311308Y2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4718197U (en) * | 1971-03-31 | 1972-10-31 |
-
1981
- 1981-03-05 JP JP1981030442U patent/JPS6311308Y2/ja not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4718197U (en) * | 1971-03-31 | 1972-10-31 |
Also Published As
Publication number | Publication date |
---|---|
JPS57144231U (en) | 1982-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3119050B2 (en) | Valve timing control device for internal combustion engine | |
JP2002266688A (en) | Control device for internal combusion engine | |
JPS5944494B2 (en) | Electronically controlled fuel injection system for internal combustion engines | |
US5806486A (en) | Automative engine idle speed control | |
JPS6311308Y2 (en) | ||
JP3656777B2 (en) | Idle operation control device for internal combustion engine | |
JP3586975B2 (en) | Idle speed control device for internal combustion engine | |
JPH11218044A (en) | Heating control device of oxygen sensor | |
JPH0771293A (en) | Idle rotational speed control device for internal combustion engine | |
JP3329658B2 (en) | Engine fuel injection device | |
JP3329659B2 (en) | Engine fuel injection device | |
JP2685104B2 (en) | Engine idle speed control device | |
JPH0540275Y2 (en) | ||
JP2007071047A (en) | Control device of internal combustion engine | |
JPH0526049A (en) | Supercharging control device for mechanical supercharger | |
JPH0645662Y2 (en) | Engine intake air amount control device | |
JPH0325618B2 (en) | ||
JPS6120701B2 (en) | ||
JPH029182B2 (en) | ||
JPS611842A (en) | Idling-up control of internal-combustion engine | |
JPH0788802B2 (en) | Air flow controller for internal combustion engine idle time | |
JPS59215938A (en) | Idle rotation control method during warm-up | |
JPH089394Y2 (en) | Revolution speed control device at engine start | |
JPS59103940A (en) | Starting fuel control method of internal-combustion engine | |
JP3335462B2 (en) | Engine air-fuel ratio control device |