JPS6311305Y2 - - Google Patents

Info

Publication number
JPS6311305Y2
JPS6311305Y2 JP1981082168U JP8216881U JPS6311305Y2 JP S6311305 Y2 JPS6311305 Y2 JP S6311305Y2 JP 1981082168 U JP1981082168 U JP 1981082168U JP 8216881 U JP8216881 U JP 8216881U JP S6311305 Y2 JPS6311305 Y2 JP S6311305Y2
Authority
JP
Japan
Prior art keywords
air flow
flow rate
piston
solenoid valve
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981082168U
Other languages
Japanese (ja)
Other versions
JPS57196235U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981082168U priority Critical patent/JPS6311305Y2/ja
Publication of JPS57196235U publication Critical patent/JPS57196235U/ja
Application granted granted Critical
Publication of JPS6311305Y2 publication Critical patent/JPS6311305Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【考案の詳細な説明】 この考案は、車両用内燃機関の始動時における
初期アイドリング制御時の吸入空気流量を段階的
に制御する吸入空気流量調整装置に関するもので
ある。
[Detailed Description of the Invention] This invention relates to an intake air flow rate adjusting device that controls the intake air flow rate in stages during initial idling control at the time of starting a vehicle internal combustion engine.

従来の吸入空気流量調整装置としては、例えば
第1図に示す熱変形式のような構成のものがあ
る。まず、構成を説明する。熱変形体、例えばバ
イメタルAに対するヒータBに電源を接続して発
熱させると、上記バイメタルAが変形してシヤツ
タCを閉じる方向に変位させ、これによつて吸入
空気流量を制御するものである。なお、図中の矢
印Dは空気流の方向を示す。
As a conventional intake air flow rate adjusting device, for example, there is one having a configuration of a thermally variable type as shown in FIG. First, the configuration will be explained. When a power source is connected to a heater B for a thermally deformable body, for example, a bimetal A, to generate heat, the bimetal A deforms and displaces the shutter C in the closing direction, thereby controlling the intake air flow rate. Note that arrow D in the figure indicates the direction of air flow.

しかし、このような従来の熱変形式の吸入空気
流量調整装置においては、バイメタルの熱変形を
利用しているため、製造上、周囲温度の制御や取
付位置の調整が必要となり、また、かなりの検査
工数を必要とするとともにバイメタル自体が振動
に対して弱いという問題点があつた。
However, since these conventional thermally deformable intake air flow rate regulators utilize thermal deformation of bimetals, it is necessary to control the ambient temperature and adjust the mounting position during manufacturing, and there is also a considerable amount of work involved. There were problems in that it required many inspection steps and the bimetal itself was vulnerable to vibration.

この考案は、このような従来の問題点に着目し
てなされたもので、上記のような熱変形体を使用
せずに、空気流通孔の口径は同一で、ピストンの
ストロークを設定するスペーサの長さを異ならせ
たことによつて全開時の通気面積が異なる開閉弁
機構を有する複数のソレノイドバルブを並列に設
けて、これらを所要吸入空気流量に応じて使い分
けることにより、上記問題点を解決することを目
的としたものである。
This idea was created by focusing on these conventional problems, and instead of using a thermally deformable body as described above, the diameter of the air circulation hole is the same, and the spacer that sets the stroke of the piston is used. The above problem is solved by installing multiple solenoid valves in parallel that have open/close valve mechanisms that have different ventilation areas when fully open due to their different lengths, and use these valves depending on the required intake air flow rate. It is intended to.

以下、この考案を図面に基づいて説明する。第
2図は、この考案の一実施例のソレノイドバルブ
部分の斜視図、第3図は、第2図のソレノイドバ
ルブの構成を示す縦断面図、第4図は、この考案
の一実施例の構成図を示す。なお、各図中、同一
または同等のものには、同一の符号を付ける。ま
ず、ソレノイドバルブ部分の構成について説明す
る。説明の便宜上、空気流通孔の内径は同一で、
後述する空気流の開閉弁機構の全開時における通
気面積が異る複数のソレノイドバルブとして、1
時間当りの空気流量がそれぞれ3m3/hr,6m3
hrおよび15m3/hrの三種類のソレノイドバルブ1
を各一個宛設けた筐体2の対向する側面に空気流
入口3および空気流出口4を備える。該空気流入
口3は、筐体2内において三方に分けて、上記ソ
レノイドバルブ1の非磁性体からなる本体5にそ
れぞれ設けた空気流入口6に接続し、該ソレノイ
ドバルブ1の本体5にそれぞれ設けた空気流出口
7に連結する図示してない空気導管は、筐体2内
において一つにまとめて、空気流出口4に接続す
る。上記本体5の上部には、以下に述べる各部材
を収納するカバー8の取付フランジ9を一体に設
け、かつ該フランジ9の中央部に、空気流の開閉
弁機構を設けるために、空気流通孔10の直径よ
り若干大きい口径のピストン嵌入孔11を、上記
空気流通孔10に対して直角にあけ、かつ該空気
流通孔10を貫通して、その下側の孔内壁を座ぐ
り、上記ピストン嵌入孔11に滑動自在に嵌入し
た強磁性体からなるピストン12の底面13が、
ソレノイドバルブ1の全閉時に、上記座ぐり面1
4に密に接触するようにする。また上記ソレノイ
ドバルブ1が作動して、ピストン12を引上げた
全開時の、矢印D方向から見たピストン12の底
面13と、空気流通孔10の内壁面からなる通気
面積が、上記1時間当りの空気流量の仕様のいず
れか一つに相当するような長さのスペーサ15を
ピストン12の上端面に固着する。16は、該ピ
ストン12の上端面と上記カバー8の上内面との
間に挿置した圧縮ばね、17は、カバー8内に設
置した励磁コイルを示し、上記カバー8を、例え
ば小ねじ18等の取付手段によつて、上記カバー
の取付フランジ9に取付ける。このようにカバー
8を取付けることにより、励磁コイル17は、カ
バー8の取付フランジ9の上端部とカバー8の上
内面との間に固定される。なお、19は、カバー
8に設けた励磁コイル17のリード線20の引出
口を示す。つぎに、この実施例の構成を第4図に
ついて説明する。21は感温素子、例えばサーミ
スタからなる水温センサで、一端をアースし、他
端は低抗22を介して図示してない電源の端子
に接続し、冷却水の温度によつて抵抗値が変化す
る上記水温センサ21の端子電圧信号を、後述す
る演算処理回路23に入力する。また24も感温
素子、例えばサーミスタからなる空気温度センサ
で、一端をアースし、他端は抵抗25を介して図
示してない電源の端子に接続し、周囲の気温に
よつて抵抗値が変化する上記空気温度センサ24
の端子電圧信号を、後述する演算処理回路23に
入力する。さらにスタータスイツチ26を介して
図示してない電源の端子に接続するスタータ2
7の端子電圧、すなわちスタータスイツチ信号
を、下記演算処理回路23に入力する。該演算処
理回路23は、上記スタータスイツチ信号を入力
した直後から、水温センサ21からの入力信号
と、空気温度センサ24からの入力信号とによつ
て演算した所要の空気流量を、何分間(約5分間
位)内燃機関に流してやればよいかを決定する回
路である。28は、上記演算処理回路23の出力
信号(アナログ出力信号またはデイジタル出力信
号)を入力して、複数個設けた出力端子のうち該
入力信号の情報に対応した出力端子から所要の信
号を出すデコーダで、29は、該デコーダ28か
らの入力信号に基づいて、上記三種類のソレノイ
ドバルブ1のうち、どの仕様のものを作動させる
かを制御する出力制御回路を示し、30はそれぞ
れ、該出力制御回路29の出力端子と、これに対
応する上記各ソレノイドバルブ1の励磁コイル1
7のリード線20とを接続する導線である。
This invention will be explained below based on the drawings. Fig. 2 is a perspective view of the solenoid valve portion of an embodiment of this invention, Fig. 3 is a longitudinal sectional view showing the structure of the solenoid valve of Fig. 2, and Fig. 4 is a perspective view of an embodiment of the solenoid valve of this invention. A configuration diagram is shown. In each figure, the same or equivalent parts are given the same reference numerals. First, the configuration of the solenoid valve section will be explained. For convenience of explanation, the inner diameter of the air circulation holes is the same;
As a plurality of solenoid valves having different ventilation areas when the air flow on/off valve mechanism is fully opened, which will be described later, 1
Air flow rate per hour is 3m 3 /hr and 6m 3 /hr, respectively.
Three types of solenoid valves 1 for hr and 15m 3 /hr
An air inlet 3 and an air outlet 4 are provided on opposite sides of the casing 2, one for each. The air inlet 3 is divided into three sides in the casing 2 and connected to air inlets 6 respectively provided in the main body 5 made of a non-magnetic material of the solenoid valve 1. Air conduits (not shown) connected to the provided air outlet 7 are brought together in the housing 2 and connected to the air outlet 4. A mounting flange 9 for a cover 8 that accommodates each member described below is integrally provided on the upper part of the main body 5, and an air flow hole is provided in the center of the flange 9 in order to provide an air flow opening/closing valve mechanism. A piston fitting hole 11 having a diameter slightly larger than the diameter of 10 is bored perpendicularly to the air circulation hole 10, and is penetrated through the air circulation hole 10 and counterbored in the inner wall of the hole on the lower side, into which the piston is fitted. The bottom surface 13 of the piston 12 made of ferromagnetic material is slidably fitted into the hole 11.
When the solenoid valve 1 is fully closed, the counterbore surface 1
Make close contact with 4. In addition, when the solenoid valve 1 is operated and the piston 12 is fully opened when the piston 12 is pulled up, the ventilation area consisting of the bottom surface 13 of the piston 12 and the inner wall surface of the air circulation hole 10 as seen from the direction of the arrow D is as follows per hour. A spacer 15 having a length corresponding to one of the air flow specifications is fixed to the upper end surface of the piston 12. Reference numeral 16 indicates a compression spring inserted between the upper end surface of the piston 12 and the upper inner surface of the cover 8; 17 indicates an excitation coil installed within the cover 8; It is attached to the mounting flange 9 of the cover by means of the mounting means. By attaching the cover 8 in this manner, the excitation coil 17 is fixed between the upper end of the mounting flange 9 of the cover 8 and the upper inner surface of the cover 8. Note that 19 indicates an outlet for the lead wire 20 of the excitation coil 17 provided in the cover 8. Next, the configuration of this embodiment will be explained with reference to FIG. 21 is a water temperature sensor consisting of a temperature sensing element, for example a thermistor, one end of which is grounded and the other end connected to a terminal of a power supply (not shown) via a low resistor 22, the resistance value of which changes depending on the temperature of the cooling water. The terminal voltage signal of the water temperature sensor 21 is input to an arithmetic processing circuit 23, which will be described later. Also, 24 is an air temperature sensor consisting of a temperature sensing element, for example a thermistor, one end of which is grounded and the other end connected to a terminal of a power supply (not shown) via a resistor 25, the resistance value of which changes depending on the ambient temperature. The air temperature sensor 24
A terminal voltage signal of is input to an arithmetic processing circuit 23, which will be described later. Furthermore, the starter 2 is connected to a terminal of a power supply (not shown) via a starter switch 26.
The terminal voltage of No. 7, that is, the starter switch signal, is input to the arithmetic processing circuit 23 described below. Immediately after inputting the starter switch signal, the arithmetic processing circuit 23 calculates the required air flow rate based on the input signal from the water temperature sensor 21 and the input signal from the air temperature sensor 24 for several minutes (approx. This is a circuit that determines whether it is appropriate to run the internal combustion engine for about 5 minutes. 28 is a decoder which inputs the output signal (analog output signal or digital output signal) of the arithmetic processing circuit 23 and outputs a required signal from the output terminal corresponding to the information of the input signal among the plurality of output terminals provided. 29 indicates an output control circuit that controls which specification of the three types of solenoid valves 1 is to be operated based on the input signal from the decoder 28, and 30 indicates the output control circuit, respectively. The output terminal of the circuit 29 and the corresponding excitation coil 1 of each of the above-mentioned solenoid valves 1
This is a conducting wire that connects the lead wire 20 of No. 7.

つぎに作用を説明する。演算処理回路23は、
スタータスイツチ信号を入力した直後から、水温
センサ21からの入力信号と、空気温度センサ2
4からの入力信号とによつて演算した所要の空気
流量を、何分間、内燃機関に流してやればよいか
を決定して、その出力信号をデコーダ28に入力
する。該デコーダ28は、上記入力信号の情報に
対応した出力端子から、所要信号を出力制御回路
29に出力する。該出力制御回路29は、上記デ
コーダ28からの入力信号に基づいて、上記三種
類のソレノイドバルブ1のうち、どれも作動させ
ないか、いずれか1個を作動させるか、またはい
ずれか二個(二種類)を並列に作動させるか、さ
らにまた、三個(三種類)を並列に作動させるか
の実質的な出力制御を行なつて、導線30を介し
所要のソレノイドバルブ1の上記空気流開閉弁機
構を作動させる。該空気流開閉弁機構の作用を、
さらに詳述すれば、つぎのとおりである。すなわ
ち、第3図に示すように、導線30およびリード
線20を経て、ソレノイドバルブ1の励磁コイル
17に通電すると、圧縮ばね16の弾発力によつ
て、空気流通孔10を閉じていたピストン12
が、上記励磁コイル17の吸引力によつて、スペ
ーサ15の上端がカバー8の上内面に接触するま
で引上げられる。このときの空気流量を、上述の
三種類に設定しておけば、これらのソレノイドバ
ルブを使い分けることにより、0m3/hr〜24m3
hrの間で、0,3,6,9,15,18,21,24m3
hrの8段階に自動的に調整することができる。
Next, the effect will be explained. The arithmetic processing circuit 23 is
Immediately after inputting the starter switch signal, the input signal from the water temperature sensor 21 and the air temperature sensor 2
4 is used to determine how many minutes the required air flow rate should be allowed to flow through the internal combustion engine, and its output signal is input to the decoder 28. The decoder 28 outputs the required signal to the output control circuit 29 from an output terminal corresponding to the information of the input signal. The output control circuit 29 operates, based on the input signal from the decoder 28, to operate none of the three types of solenoid valves 1, to operate any one, or to operate any two (two) of the three types of solenoid valves. The above-mentioned air flow opening/closing valve of the required solenoid valve 1 is controlled via the conducting wire 30 by operating the three types (types) in parallel or by operating three types (three types) in parallel. Activate the mechanism. The action of the airflow opening/closing valve mechanism is
More details are as follows. That is, as shown in FIG. 3, when the excitation coil 17 of the solenoid valve 1 is energized through the conducting wire 30 and the lead wire 20, the piston which had closed the air circulation hole 10 due to the elastic force of the compression spring 16 12
However, due to the attractive force of the excitation coil 17, the upper end of the spacer 15 is pulled up until it comes into contact with the upper inner surface of the cover 8. If the air flow rate at this time is set to the three types mentioned above, by using these solenoid valves properly, the air flow rate can be adjusted from 0m 3 /hr to 24m 3 /hr.
Between hr, 0, 3, 6, 9, 15, 18, 21, 24m 3 /
It can be automatically adjusted to 8 levels of hr.

なお、上記の説明においては、便宜上、3,
6,15m3/hrの三種類の空気流量仕様のソレノイ
ドバルブを各一個を使用した実施例について述べ
たが、何らこのような制限はなく、必要に応じて
1時間当りの空気流量を別の値に選んでも、また
使用する個数を増減しても、段階的に吸入空気流
量を制御できることは勿論である。
In addition, in the above explanation, for convenience, 3,
Although we have described an example using one solenoid valve with each of three types of air flow specifications of 6 and 15 m 3 /hr, there is no such restriction at all, and the air flow rate per hour can be adjusted to different values as needed. It goes without saying that the intake air flow rate can be controlled in stages by selecting a specific value or by increasing or decreasing the number of units used.

以上説明してきたように、この考案によれば、
例えばバイメタルのような熱変形体を使用せず
に、空気流通孔の口径は同一で、ピストンのスト
ロークを設定するスペーサの長さを異ならせたこ
とによつて全開時の通気面積が異なる開閉弁機構
を有する複数のソレノイドバルブを並設し、これ
らを所要吸入空気流量に応じて使い分ける構成に
したことにより、製造工程において、周囲温度管
理や取付位置調整の必要がなくなり、検査工数も
短縮できるとともに、振動に対する問題点もなく
すことができるという効果が得られる。
As explained above, according to this idea,
For example, an open/close valve that does not use a thermally deformable body such as a bimetal, but has the same diameter of the air circulation hole, but has a different ventilation area when fully opened by varying the length of the spacer that sets the stroke of the piston. By arranging multiple solenoid valves with mechanisms in parallel and configuring them to be used depending on the required intake air flow rate, there is no need for ambient temperature control or adjustment of the mounting position during the manufacturing process, and inspection man-hours can be shortened. , it is possible to obtain the effect that problems related to vibration can also be eliminated.

また、さらに以下のような効果がある。すなわ
ち、従来のバイメタル加熱用ヒータには、連続的
に通電しておく必要があつたが、この考案によれ
ば、初期アイドリング時のみ通電すればよいため
に、燃費が若干向上する。また、一般に考えられ
るように、異なつた内径の空気流通孔のソレノイ
ドバルブを何種類か使用して、それらをON・
OFFする方式ではなく、同一構造のソレノイド
バルブのスペーサの長さを変えるだけで済むた
め、コストが安い。
Furthermore, there are the following effects. That is, while conventional bimetal heaters required continuous energization, this invention only requires energization during initial idling, resulting in a slight improvement in fuel efficiency. Also, as is commonly thought, it is possible to use several types of solenoid valves with air flow holes of different inner diameters and turn them on and off.
The cost is low because it is not an OFF method, and all you have to do is change the length of the spacer of the solenoid valve with the same structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来例の構成図、第2図は、この考
案の一実施例のソレノイドバルブ部分の斜視図、
第3図は、第2図のソレノイドバルブの構成を示
す縦断面図、第4図は、この考案の一実施例の構
成図を示す。 符号の説明、A……バイメタル、B……ヒー
タ、C……シヤツタ、D……空気流の方向、1…
…ソレノイドバルブ、2……筐体、3,6……空
気流入口、4,7……空気流出口、5……ソレノ
イドバルブの本体、8……カバー、9……カバー
の取付フランジ、10……空気流通孔、11……
ピストン嵌入孔、12……ピストン、13……ピ
ストンの底面、14……座ぐり面、15……スペ
ーサ、17……励磁コイル、18……小ねじ、1
9……リード線の引出口、20……リード線、2
1……水温センサ、22,25……抵抗、23…
…演算処理回路、24……空気温度センサ、26
……スタータスイツチ、27……スタータ、28
……デコーダ、29……出力制御回路、30……
導線。
FIG. 1 is a configuration diagram of a conventional example, and FIG. 2 is a perspective view of a solenoid valve portion of an embodiment of this invention.
FIG. 3 is a longitudinal sectional view showing the structure of the solenoid valve shown in FIG. 2, and FIG. 4 is a block diagram showing an embodiment of the invention. Explanation of symbols: A... Bimetal, B... Heater, C... Shutter, D... Direction of air flow, 1...
... Solenoid valve, 2 ... Housing, 3, 6 ... Air inlet, 4, 7 ... Air outlet, 5 ... Solenoid valve body, 8 ... Cover, 9 ... Cover mounting flange, 10 ...Air circulation hole, 11...
Piston fitting hole, 12... Piston, 13... Bottom surface of piston, 14... Counterbore surface, 15... Spacer, 17... Excitation coil, 18... Machine screw, 1
9... Lead wire outlet, 20... Lead wire, 2
1...Water temperature sensor, 22, 25...Resistance, 23...
... Arithmetic processing circuit, 24 ... Air temperature sensor, 26
...Starter switch, 27...Starter, 28
... Decoder, 29 ... Output control circuit, 30 ...
Conductor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 内燃機関の吸気系に通路面積が同一の空気通路
を複数個並列に接続し、かつ、それぞれの空気通
路にピストンと励磁コイルと該ピストンのストロ
ークを設定するスペーサとを備えたソレノイドバ
ルブを設け、上記スペーサの長さを選定すること
によつてソレノイドバルブの開状態時における各
空気通路の通気面積を設定し、また、機関温度を
検出する手段と、機関の始動時を検出する手段
と、少なくとも上記両手段の検出結果に応じて始
動時からの制御継続時間と空気流量とを演算し、
その演算結果に応じて上記各ソレノイドバルブを
開閉する制御手段とを備え、始動後の吸入空気流
量を段階的に調整することを特徴とする段階的制
御形吸入空気流量調整装置。
A plurality of air passages having the same passage area are connected in parallel to an intake system of an internal combustion engine, and each air passage is provided with a solenoid valve having a piston, an excitation coil, and a spacer for setting the stroke of the piston, By selecting the length of the spacer, the ventilation area of each air passage when the solenoid valve is in the open state is set, and a means for detecting engine temperature and a means for detecting when the engine is started are provided. The control duration time and air flow rate from the time of startup are calculated according to the detection results of both of the above means,
A stepwise control type intake air flow rate adjusting device comprising a control means for opening and closing each of the solenoid valves according to the calculation results, and adjusting the intake air flow rate after startup in steps.
JP1981082168U 1981-06-05 1981-06-05 Expired JPS6311305Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981082168U JPS6311305Y2 (en) 1981-06-05 1981-06-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981082168U JPS6311305Y2 (en) 1981-06-05 1981-06-05

Publications (2)

Publication Number Publication Date
JPS57196235U JPS57196235U (en) 1982-12-13
JPS6311305Y2 true JPS6311305Y2 (en) 1988-04-02

Family

ID=29877651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981082168U Expired JPS6311305Y2 (en) 1981-06-05 1981-06-05

Country Status (1)

Country Link
JP (1) JPS6311305Y2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845718A (en) * 1971-10-13 1973-06-29
JPS575530A (en) * 1980-06-10 1982-01-12 Nissan Motor Co Ltd Auxiliary air control

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845718A (en) * 1971-10-13 1973-06-29
JPS575530A (en) * 1980-06-10 1982-01-12 Nissan Motor Co Ltd Auxiliary air control

Also Published As

Publication number Publication date
JPS57196235U (en) 1982-12-13

Similar Documents

Publication Publication Date Title
KR100415204B1 (en) Internal Combustion Engine
JPH0421068B2 (en)
JPS6311305Y2 (en)
JPS59120718A (en) Swirl control device
US4102315A (en) Proportional controller for controlling air flow to an engine
US4297980A (en) Motor vehicle carburetor choke mechanism
US4311129A (en) Auxiliary air regulator for internal combustion engine
US2583795A (en) Thermoelectric gas valve
US3840001A (en) Air humidifying apparatus
GB2032517A (en) Induction air temperature regulation in ic engines
GB1432456A (en) Choke control unit for internal combstion engine
US3980065A (en) Automatic actuator for carburetor choke valve
JPH0128286Y2 (en)
JPS6153539B2 (en)
JPH0746757Y2 (en) Vaporizer automatic starter
JPH0617718A (en) Throttle body heating device for internal combustion engine
JPH01315654A (en) Valve controller
JPH0450209B2 (en)
JPS5983316A (en) Temperature adjusting device for air conditioner
JPH0227183Y2 (en)
JPH0792227B2 (en) Combustion control device for water heater
JPS585449A (en) Control device of engine
JPH0623555B2 (en) Idle speed control device
JPH0491314A (en) Cooling controller of water cooling engine
JPS5918125Y2 (en) Engine auxiliary air control device