JPS6311219A - Electric discharge machine - Google Patents

Electric discharge machine

Info

Publication number
JPS6311219A
JPS6311219A JP15338686A JP15338686A JPS6311219A JP S6311219 A JPS6311219 A JP S6311219A JP 15338686 A JP15338686 A JP 15338686A JP 15338686 A JP15338686 A JP 15338686A JP S6311219 A JPS6311219 A JP S6311219A
Authority
JP
Japan
Prior art keywords
current
discharge
electrode
electrolytic
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15338686A
Other languages
Japanese (ja)
Inventor
Atsushi Taneda
淳 種田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15338686A priority Critical patent/JPS6311219A/en
Publication of JPS6311219A publication Critical patent/JPS6311219A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To enable discharge current to be accurately controlled by measuring current flowing through two electrolytic current measuring electrodes and a working electrode to directly detect the electrolytic current during discharge for controlling the discharge current at a desired constant value. CONSTITUTION:Working current flowing through a variable limiting resistor 3 flows to a workpiece 4 through a working electrode 5 and electrolytic current measuring electrodes 6, 7. Here, the sum Ia of discharge current and electrolytic current flowing through the working electrode 5 and electrolytic currents Ib, Ic flowing through the electrolytic current measuring electrodes 6, 7 are respectively measured by current measuring devices 9-11. And a detector 12 obtains electrolytic current IE during discharge of working electrode 5 and further discharge current ID=Ia-IE from current values Ia-Ic and interpolar distances a, a+b, a+c so that the variable limiting resistor 3 is controlled by a control unit 15 to set the discharged current to a desired constant value. Thus, the discharge current can be controlled with higher accuracy and speed.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、加工液として導電性加工液を用いる放電加
工装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an electric discharge machining apparatus that uses a conductive machining fluid as a machining fluid.

[従来の技術] 従来、この種の放電加工装置として第2図に示すような
放電加工装置があった。
[Prior Art] Conventionally, there has been an electric discharge machining apparatus as shown in FIG. 2 as this type of electric discharge machining apparatus.

図において、(1)は直流電源、(2)はスイッチング
素子、(3)は可変制限抵抗、(4)は電極対向面積S
 (cm2)を有する被加工物、(5)は被加工物(5
)に対して極間圧al l (c+s)を保持して設け
られた加工電極、 (13)はスイッチング素子(2)
のトリガ用の発信器、(14)は電圧検出姦、(15)
は制御装置である。
In the figure, (1) is a DC power supply, (2) is a switching element, (3) is a variable limiting resistor, and (4) is an electrode facing area S.
(cm2), (5) is the workpiece (5
), and (13) is the switching element (2).
(14) is a voltage detection transmitter, (15)
is the control device.

上記の構成の放電加工装置において、加工液として導電
性加工液が用いられる場合には、加工に寄与しない電解
電流が流れることが知られている。
In the electric discharge machining apparatus having the above configuration, it is known that when a conductive machining fluid is used as the machining fluid, an electrolytic current that does not contribute to machining flows.

そのため被加工物(4)を加工するための加工電流が減
少する外、極間状態の変化に伴い電解電流、放電電流が
変動し、加工電流が所望の値からずれることが起る。
Therefore, not only the machining current for machining the workpiece (4) decreases, but also the electrolytic current and the discharge current fluctuate as the gap state changes, causing the machining current to deviate from a desired value.

かかる事態を防止、制御するために、従来では極間に所
定の電圧が印加され、かつ加工電流の制御を制御装置(
15)を用いて次のように行っていた。
In order to prevent and control such situations, conventionally a predetermined voltage is applied between the poles, and the machining current is controlled by a control device (
15) as follows.

すなわち、第3図(a)、(b)は、縦軸に極間電圧お
よび極間電流、横軸に時間を採ったときの極間電圧およ
び極間電流の変動を示す特性図である。
That is, FIGS. 3(a) and 3(b) are characteristic diagrams showing fluctuations in the inter-electrode voltage and inter-electrode current when the vertical axis represents the inter-electrode voltage and the inter-electrode current, and the horizontal axis represents time.

同図において、(16)は電解電流のみしか流れていな
い放電前状態の極間電圧であり、これをv、oとする。
In the same figure, (16) is the electrode-to-electrode voltage in the pre-discharge state where only electrolytic current is flowing, and these are denoted by v and o.

また、(17)は上記放電前状態における極間電流であ
り、これをIroとする。
Moreover, (17) is the interelectrode current in the above-mentioned pre-discharge state, and this is designated as Iro.

なお、図中(18)は加工に寄与しない電解電流IED
を示す。
In addition, (18) in the figure is an electrolytic current IED that does not contribute to machining.
shows.

そこで、従来では第3図の放電前状態等において、その
極間電圧VGOと極間電流IEOを測定することにより
、極間抵抗を算出していた。
Therefore, conventionally, the inter-electrode resistance has been calculated by measuring the inter-electrode voltage VGO and the inter-electrode current IEO in the pre-discharge state shown in FIG. 3, etc.

すなわち、極間抵抗をR,とすると、この極間抵抗Rf
を次の(1)式より算出し、放電時においても放電前と
等しい極間抵抗を持つものと仮定して、放電電流と電解
電流とを間接的に検出していた。
That is, if the inter-electrode resistance is R, then this inter-electrode resistance Rf
is calculated from the following equation (1), and the discharge current and electrolytic current are indirectly detected on the assumption that the electrode-to-electrode resistance is the same during discharge as before discharge.

Rg=v9o/lEo・・・・・・(1)式しかるに、
従来では上記(1)式から算出した結果に基づき、制御
装!!(15)を介して放電電流の制御を行っていた。
Rg=v9o/lEo...Equation (1) However,
Conventionally, the control device! ! The discharge current was controlled via (15).

[発明が解決しようとする問題点] 従来の放電加工装置における放電電流の制御は、上記の
よう間接的な算出結果に基づいて行っているが、放電中
、実際にはスラッジやガスが極間に発生するため、放電
時と放電していない時とでは極間抵抗値がかなり相違す
るものと考えられ、上記のような間接的な放電電流の検
出では、正確な放電電流の制御ができないという問題点
があった。
[Problems to be solved by the invention] The discharge current in conventional electrical discharge machining equipment is controlled based on indirect calculation results as described above, but during discharge, sludge and gas actually flow between the machining electrodes. Therefore, the interelectrode resistance value is considered to be quite different between when discharging and when not discharging, and it is said that indirect discharge current detection as described above cannot accurately control the discharge current. There was a problem.

この発明は、上記のような問題点を解決するためになさ
れたもので、間接的な放電電流の検出ではなく、放電中
においても、放電電流と電解電流とを分離して直接検出
し、その結果に基づき正確な放電電流の制御を行うこと
を目的とする。
This invention was made to solve the above-mentioned problems, and instead of detecting the discharge current indirectly, the present invention separates and directly detects the discharge current and electrolytic current even during discharge. The purpose is to accurately control the discharge current based on the results.

c問題点を解決するための手段] この発明に係る放電加工装置は、加工電極の外に、互い
に異る極間距離を有し、かつ前記加工電極に絶縁固定さ
れた2本の電解電流測定用電極を備えたものである。
C. Means for Solving Problems] The electric discharge machining apparatus according to the present invention includes two electrolytic current measuring wires, which have different distances from each other and are insulated and fixed to the machining electrode, in addition to the machining electrode. It is equipped with electrodes for

[作用] この発明における放電加工装置は、電解電流測定用電極
と加工電極を含めた3本の電極に流れる電流を、それぞ
れ電流測定用装置により測定し、それらの電流値から、
放電中の電解電流を検出装置により直接検出し、放電電
流が所望の一定値になるように電流制御を行う。
[Function] The electrical discharge machining apparatus of the present invention measures the current flowing through three electrodes including the electrolytic current measuring electrode and the machining electrode with the current measuring device, and from these current values,
The electrolytic current during discharge is directly detected by a detection device, and the current is controlled so that the discharge current is at a desired constant value.

[実施例] 以下、この発明の一実施例を図について説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

第1図は、この発明の放電加工装置の構を図である。FIG. 1 is a diagram showing the structure of an electric discharge machining apparatus according to the present invention.

図において、(6)  、 (7)は、加工電極(5)
と被加工物(4)との極間距離と異なる極間距離を有す
るように加工電極(5)に、絶縁支持台(11)を介し
て一体的に固定された電解電流測定用電極である。
In the figure, (6) and (7) are the processing electrodes (5)
The electrolytic current measuring electrode is integrally fixed to the processing electrode (5) via an insulating support (11) so as to have an inter-electrode distance different from the inter-electrode distance between the electrode and the workpiece (4). .

ここで、上記電解電流測定用電極(6)。Here, the electrolytic current measuring electrode (6).

(7)は、それぞれ単位面積の電極対向面積を持ち、か
つ電解電流測定用電極(G)  、 (7)の極間距離
は、それぞれ異なるものとする。
(7) each has a unit area of electrode facing area, and the distance between the electrolytic current measuring electrode (G) and (7) is different from each other.

(9)  、 (10) 、 (11)は、加工電極(
5)および電解電流測定用電極(6)  、 (7)の
それぞれに流れる電流を測定するための電流測定用装置
である。
(9), (10), (11) are the machining electrodes (
5) and the electrolytic current measuring electrodes (6) and (7), respectively.

今、加工電極(5)の電極対向面積なS、この加工電極
(5)および電解電流測定用電極(6)。
Now, the electrode facing area S of the processing electrode (5), this processing electrode (5), and the electrolytic current measuring electrode (6).

(7)の極間距離を第1図に示すようにa。(7) The distance between the poles is a as shown in FIG.

a+b 、 a+c (ただし、b≠c)とする。a+b, a+c (where b≠c).

また、放電時に加工電極(5)および電解電流測定用電
極(6)  、 (?)に流れる電流をそれぞれI a
  * I b  * I Cとする。
In addition, the current flowing through the machining electrode (5) and the electrolytic current measurement electrode (6), (?) during discharge is I a
* I b * I C.

ここで、1.は加工電極(5)に流れる放電電流と電解
電流との和、Ib、Icは、それぞれ電解電流測定用電
極(6)、(7)に流れる電解電流である。また、加工
電極(5)に流れる電解電流をIE、加工液の比抵抗を
p、放電電圧をV arcとする。
Here, 1. is the sum of the discharge current and electrolytic current flowing through the machining electrode (5), and Ib and Ic are the electrolytic currents flowing through the electrolytic current measuring electrodes (6) and (7), respectively. Further, the electrolytic current flowing through the machining electrode (5) is IE, the specific resistance of the machining fluid is p, and the discharge voltage is V arc.

さらに、加工電極(5)および電解電流測定用電極(6
)  、 (7)と、被加工物(0との間の極間抵抗を
それぞれR4−Rh + Reとする。
Furthermore, a processing electrode (5) and an electrolytic current measuring electrode (6
), (7) and the workpiece (0) are respectively R4-Rh + Re.

ところで、極間抵抗R,は次の(2)式より算出するこ
とができる。
Incidentally, the inter-electrode resistance R, can be calculated from the following equation (2).

R9=ρ・1/S  ・・・・・・(2)式ただし、R
1;極間抵抗値[Ω] ρ :加工液の比抵抗[Ω・cml l :極間距離[C會] S ;電極対向面m [0濡2J そこで、極間抵抗Ra −Rb * Reを用いて、1
1 、Ib、Ieを表わすと次式のようになる。
R9=ρ・1/S ・・・・・・Formula (2) However, R
1; Resistance between electrodes [Ω] ρ: Specific resistance of machining fluid [Ω・cml l: Distance between electrodes [C] S: Electrode facing surface m [0 wet 2J Therefore, the resistance between electrodes Ra - Rb * Re using, 1
1, Ib, and Ie are expressed as follows.

次に、上記(3)式、(0式を用い、かつ(5)式より
Varc/ρとaを消去すると、電解電流IEは次式に
よって表わされる。
Next, by using the above equations (3) and (0) and eliminating Varc/ρ and a from equation (5), the electrolytic current IE is expressed by the following equation.

上記のように、加工電極(5)の放電中の電解電流IE
は、極間用jllaに依存しないで求めること″ができ
る。
As mentioned above, the electrolytic current IE during the discharge of the machining electrode (5)
can be obtained without depending on the distance jlla.

ここで、たとえばc=2bに設定すると、となり、検出
装置(12)において、上記のようなアナログ演算を電
気回路で構成すれば、従来では不可能であった放電中の
電解電流を検出することができる。
Here, for example, if c=2b is set, then if the above-mentioned analog calculation is configured with an electric circuit in the detection device (12), it is possible to detect the electrolytic current during discharge, which was impossible with conventional methods. Can be done.

また1次の(8)式に示すように、放電電流を実時間で
直接検出することができ、加工電流(放電電流)Ioの
制御を行うことが可能となる。
Further, as shown in the first-order equation (8), the discharge current can be directly detected in real time, and the machining current (discharge current) Io can be controlled.

I O= I a −I E・・・・・・・・・・・・
・・・(8)式[発明の効果] 上記のように、この発明によれば、加工電極の外に、互
いに異る極間距離を有し、かつ前記加工電極に絶縁固定
された2本の電解電流測定用電極を備え、これら電解電
流測定用電極と前記加工電極を含めた3本の電極に流れ
る電流値から、放電中の電解電流を直接検出し、放電電
流が所望の一定値になるように電流制御を行うように構
成したので、より正確で、かつ、より高速の放電電流の
制御を行うことができるとともに、従来の極間抵抗値に
よる間接的な検出方法に比較し、導電性加工液中での放
電現象の解明により有効である等の効果ある。
I O= I a −I E・・・・・・・・・・・・
...Equation (8) [Effects of the Invention] As described above, according to the present invention, in addition to the processing electrode, two electrodes having mutually different interpolar distances and insulated and fixed to the processing electrode are provided. The electrolytic current during discharge is directly detected from the current value flowing through the three electrodes including these electrolytic current measuring electrodes and the processing electrode, and the discharge current is kept at a desired constant value. Since the structure is configured to control the current so that the discharge current is controlled more accurately and at a higher speed, the current This method is more effective in elucidating the discharge phenomenon in wet machining fluids.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の放電加工装置の構成図、第2図は
、導電性加工液を用いた従来の放電加工装置の構成図、
第3図(L) 、 (b)は、それぞれ縦軸に極間電圧
および極間電流、横軸に時間を採ったときの極間電圧お
よび極間電流の変動を示す特性図である。 (1)・・・直流電源、 (2)・・・スイッチング素子、 (3)・・・可変制限抵抗、 (0・・・被加工物、(5)・・・加工電極、(6) 
 、 (7)・・・電解電流測定用電極、(8)・・・
絶縁支持台、 (9)  、 (1G) 、 (11)・・・電流測定
用装置、(12)・・・検出装置、(13)・・・発信
器、(15)・・・制御装置。
FIG. 1 is a block diagram of an electric discharge machining apparatus according to the present invention, and FIG. 2 is a block diagram of a conventional electric discharge machining apparatus using a conductive machining fluid.
FIGS. 3(L) and 3(b) are characteristic diagrams showing variations in the inter-electrode voltage and inter-electrode current, with the vertical axis representing the inter-electrode voltage and inter-electrode current, and the horizontal axis representing time, respectively. (1)...DC power supply, (2)...Switching element, (3)...Variable limiting resistor, (0...Workpiece, (5)...Processing electrode, (6)
, (7)...electrode for electrolytic current measurement, (8)...
Insulating support stand, (9), (1G), (11)... Current measuring device, (12)... Detecting device, (13)... Transmitter, (15)... Control device.

Claims (1)

【特許請求の範囲】[Claims] 加工電極と被加工物との間に放電を発生させ、そのとき
の放電エネルギーで被加工物に加工を施す放電加工装置
において、前記加工電極の外に、互いに異る極間距離を
有し、かつ前記加工電極に絶縁固定された2本の電解電
流測定用電極と、これら電解電流測定用電極と前記加工
電極を含めた3本の電極に流れる電流を測定する電流測
定用装置と、この電流測定用装置により測定した電流値
から、放電中の電解電流を直接検出し、放電電流が所望
の一定値になるように電流制御を行うための検出装置と
を有することを特徴とする放電加工装置。
In an electric discharge machining device that generates an electric discharge between a machining electrode and a workpiece and processes the workpiece with the discharge energy at that time, the machining electrode has different distances between the machining electrodes, and two electrolytic current measuring electrodes that are insulated and fixed to the processing electrode, a current measuring device that measures the current flowing through the three electrodes including these electrolytic current measuring electrodes and the processing electrode, and this current. An electrical discharge machining device characterized by having a detection device for directly detecting an electrolytic current during discharge from a current value measured by a measuring device and controlling the current so that the discharge current becomes a desired constant value. .
JP15338686A 1986-06-30 1986-06-30 Electric discharge machine Pending JPS6311219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15338686A JPS6311219A (en) 1986-06-30 1986-06-30 Electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15338686A JPS6311219A (en) 1986-06-30 1986-06-30 Electric discharge machine

Publications (1)

Publication Number Publication Date
JPS6311219A true JPS6311219A (en) 1988-01-18

Family

ID=15561345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15338686A Pending JPS6311219A (en) 1986-06-30 1986-06-30 Electric discharge machine

Country Status (1)

Country Link
JP (1) JPS6311219A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257520A (en) * 1988-04-08 1989-10-13 Shizuoka Seiki Co Ltd Machining method for electrolyte finishing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257520A (en) * 1988-04-08 1989-10-13 Shizuoka Seiki Co Ltd Machining method for electrolyte finishing

Similar Documents

Publication Publication Date Title
CN105637611B (en) Apparatus and method for monitoring the electric discharge in corona treatment portion
KR950000279A (en) Electric discharge machine
WO1988003453A1 (en) Method and apparatus for discharge machining
JPH0481908A (en) Positioning method and positioning device
JPS6311219A (en) Electric discharge machine
JPS597523A (en) Wire-cut electric discharge machine
RU140217U1 (en) DEVICE FOR MEASURING EARTH RESISTANCE
JP2005531417A (en) Method and apparatus for electrochemical machining
JPS6348655B2 (en)
JPH0460765B2 (en)
JP2019041029A (en) Vacuum device and attraction power source
US20240060922A1 (en) Fluid state detection sensor
JP2557929B2 (en) Electric discharge machine
US2891137A (en) Control circuit for electrical discharge metal machining apparatus
JP3082110B2 (en) Water detection circuit
JPH0615124B2 (en) Power supply for wire electrical discharge machining
JPS60255312A (en) Electric discharge machining apparatus
JPS61125730A (en) Electric discharge machine
JPS61238469A (en) Short circuit and arc discriminating method in consumable electrode type arc welding
JPS63150112A (en) Electric discharge machine
JPH0250788B2 (en)
CN116352196A (en) Wire electric discharge machine and wire electric discharge machining method
JPS62130124A (en) Electric discharge machining device
JPS61230814A (en) Conductivity measuring apparatus of working liquid in electric discharge machine
JPS61152323A (en) Electric discharge detecting circuit for electric discharge machine