JPS63111685A - Manufacture of composite piezoelectric material - Google Patents
Manufacture of composite piezoelectric materialInfo
- Publication number
- JPS63111685A JPS63111685A JP61256970A JP25697086A JPS63111685A JP S63111685 A JPS63111685 A JP S63111685A JP 61256970 A JP61256970 A JP 61256970A JP 25697086 A JP25697086 A JP 25697086A JP S63111685 A JPS63111685 A JP S63111685A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- piezoelectric material
- plate
- inorganic piezoelectric
- synthetic resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 108
- 239000002131 composite material Substances 0.000 title claims abstract description 64
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 61
- 229920003002 synthetic resin Polymers 0.000 claims abstract description 48
- 239000000057 synthetic resin Substances 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 15
- 239000003822 epoxy resin Substances 0.000 claims description 38
- 229920000647 polyepoxide Polymers 0.000 claims description 38
- 229910002113 barium titanate Inorganic materials 0.000 claims description 27
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 claims description 27
- 239000011159 matrix material Substances 0.000 claims description 17
- 239000007788 liquid Substances 0.000 claims description 12
- 238000004026 adhesive bonding Methods 0.000 claims description 3
- 238000000465 moulding Methods 0.000 abstract 7
- 239000000126 substance Substances 0.000 abstract 3
- 230000002093 peripheral effect Effects 0.000 abstract 2
- 229910052788 barium Inorganic materials 0.000 description 15
- 238000005520 cutting process Methods 0.000 description 11
- -1 polypropylene Polymers 0.000 description 11
- 239000004698 Polyethylene Substances 0.000 description 10
- 229920000573 polyethylene Polymers 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 9
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 7
- 150000001552 barium Chemical class 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 238000009415 formwork Methods 0.000 description 6
- 239000011368 organic material Substances 0.000 description 6
- 230000010287 polarization Effects 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 241000157282 Aesculus Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 235000010181 horse chestnut Nutrition 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Landscapes
- Ultra Sonic Daignosis Equipment (AREA)
- Transducers For Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、無機圧電体と有機質材料との複合圧電材料の
製作方法に関し、詳しくは、電気機械結合係数、すなわ
ち電気と外力の変換効率および感圧感度の目安となる圧
SS圧定数が大きい複合圧電材料を簡便に効率よく製作
する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a composite piezoelectric material of an inorganic piezoelectric material and an organic material, and more specifically, the electromechanical coupling coefficient, which is a measure of the conversion efficiency of electricity and external force and the pressure sensitivity. The present invention relates to a method for easily and efficiently manufacturing a composite piezoelectric material having a large pressure SS pressure constant.
本発明の複合圧電材料は、圧電圧効果を利用する圧電素
子、特に超音波の受波および感圧センサーとして利用す
るのに適している。The composite piezoelectric material of the present invention is suitable for use as a piezoelectric element that utilizes the piezoelectric effect, particularly as an ultrasonic wave receiver and a pressure-sensitive sensor.
チタン酸バリウムまたはPZT (チタン酸ジルコン酸
鉛Pb (Zr、Ti ) O)などの無機セ
ラミ1−x3
ックス圧電体は、電気機械結合係数は大きいが、圧電電
圧定数は有機高分子圧電体よりも小さい。Inorganic ceramic piezoelectric materials such as barium titanate or PZT (lead zirconate titanate Pb (Zr, Ti) O) have a large electromechanical coupling coefficient, but the piezoelectric voltage constant is lower than that of organic polymer piezoelectric materials. small.
また有機高分子圧電体は、圧電性があっても、電気機械
結合係数が小さい。Furthermore, even though organic polymer piezoelectric materials have piezoelectricity, they have a small electromechanical coupling coefficient.
圧電圧効果を利用する圧電材料、すなわち超音波の受信
素子または感圧センサーには、軟らかくて、電気機械結
合係数および圧電電圧定数の大きい圧電材料が望まれて
いて、チタン酸バリウムやPZTなどの無機セラミック
ス圧電材料と高分子有機材料を複合させて、電気機械結
合係数および圧電電圧定数の大きい圧電材料を製造する
ことが試みられている。米国のニューハムらは、細いP
ZTのファイバーをつくり、これを有機物と複合化して
、分極処理を行なっている。〔ジャーナル・オブ・ジ・
アメリカン・セラミック・ソサイエテイ(Journa
l of the American Ceramie
5ociety)第64巻第1号第5〜8頁〕しかし
ながら、この方法はPZTと有機物の電気特性が異なる
ために、その複合材料に一様に高電圧を印加するのが難
かしい。そこで竹内らは、分極処理を施したPZTの薄
板を切断加工して、同様な構造(]−3結3結造)の複
合圧電材料を製造した。(特開昭58−21.883号
公報)しかしながら1−3結合構造では、セラミックス
の体積分率が大きくなると、全体的に硬くなり、クラン
プ効果によって高圧電性を得ることができないから、セ
ラミックスの体積分率を小さくすることを必要とするが
、竹内らの方法によると、材料のセラミックスの体積の
50〜80%を切断によって捨ててしまわねばならず、
そのために、複合圧電材料の製造コストが上昇する。For piezoelectric materials that utilize the piezoelectric effect, that is, ultrasonic receiving elements or pressure-sensitive sensors, piezoelectric materials that are soft and have a large electromechanical coupling coefficient and piezoelectric voltage constant are desired, and piezoelectric materials such as barium titanate and PZT are desired. Attempts have been made to manufacture piezoelectric materials with large electromechanical coupling coefficients and piezoelectric voltage constants by combining inorganic ceramic piezoelectric materials and polymeric organic materials. In the United States, Newham et al.
We create ZT fibers, combine them with organic matter, and perform polarization treatment. [Journal of the
American Ceramic Society (Journa)
l of the American Ceramie
5ociety) Vol. 64, No. 1, pp. 5-8] However, in this method, it is difficult to uniformly apply a high voltage to the composite material because the electrical properties of PZT and the organic material are different. Therefore, Takeuchi et al. produced a composite piezoelectric material with a similar structure (]-3-3 connections) by cutting a thin plate of PZT that had been subjected to polarization treatment. (Japanese Unexamined Patent Application Publication No. 58-21.883) However, in the 1-3 bond structure, as the volume fraction of ceramics increases, the overall hardness increases, and high piezoelectricity cannot be obtained due to the clamping effect. Although it is necessary to reduce the volume fraction, according to the method of Takeuchi et al., 50 to 80% of the volume of the ceramic material must be discarded by cutting.
This increases the manufacturing cost of the composite piezoelectric material.
本発明者は、体積分率の小さい無機圧電体と有機質材料
の複合圧電材料を、材料の損失を少なく製作することを
企図して研究を重ね、無機圧電体の板状体を基板に所定
の間隔を空け、平行に並べて接着すれば、その所定の間
隔の分の材料の損失を防ぐことを見出し、その知見に基
づいて本発明に到達した。The present inventor has conducted extensive research with the aim of manufacturing a composite piezoelectric material of an inorganic piezoelectric material with a small volume fraction and an organic material with less loss of material, and has developed a composite piezoelectric material made of an inorganic piezoelectric material with a small volume fraction and an organic material. It has been discovered that if the materials are spaced apart and bonded in parallel, the loss of material corresponding to the predetermined distance can be prevented, and based on this knowledge, the present invention has been achieved.
本発明の目的は、体積分率の小さい無機圧電体と有機質
材料の複合圧電材料を、材料の損失を少なくして製作す
る方法を提供することにあり、詳しくは、無機圧電体と
有機質材料の複合圧′II8月料を1材料の損失および
労力を少なくして製作する方法を提供することにある。An object of the present invention is to provide a method for manufacturing a composite piezoelectric material of an inorganic piezoelectric material and an organic material with a small volume fraction while reducing material loss. It is an object of the present invention to provide a method for manufacturing a composite pressure 'II august material with less loss of material and less labor.
本発明は、所定の幅の切込を入れた無機圧電体の板状体
が所定の間隔を空け、平行に並べて接着された基板を、
成形型に入れ、成形型に硬化性合成樹脂液を充填し、硬
化した後、基板、無機圧電体の基板に接着した連続部分
および周囲の合成樹脂部分を切断除去して、角柱状の無
機圧電体が合成樹脂のマトリックスに規則正しく配列し
た複合圧電材料を得ることを特徴とする複合圧電材料の
製作方法である。The present invention comprises a substrate in which inorganic piezoelectric plate-like bodies with cuts of a predetermined width are arranged in parallel with a predetermined interval and bonded together.
The mold is filled with a curable synthetic resin liquid, and after it hardens, the substrate, the continuous portion of the inorganic piezoelectric material bonded to the substrate, and the surrounding synthetic resin portion are cut and removed to form a prismatic inorganic piezoelectric material. This is a method for producing a composite piezoelectric material, which is characterized by obtaining a composite piezoelectric material whose bodies are regularly arranged in a matrix of synthetic resin.
本発明の複合圧電材料の製作において、無機圧電体の板
状体に入れた切込の部分および無機圧電体を基板に平行
に並べて接着する場合の間隔の部分は、複合圧電材料に
おける合成樹脂の占める部分であって、本発明の複合圧
電材料はその合成樹脂のマトリックス中に、角柱状の無
機圧電体が規則正しく配列している。In the production of the composite piezoelectric material of the present invention, the notches made in the inorganic piezoelectric plate and the spacing when the inorganic piezoelectric materials are arranged parallel to the substrate and bonded are the synthetic resin in the composite piezoelectric material. In the composite piezoelectric material of the present invention, prismatic inorganic piezoelectric bodies are regularly arranged in a synthetic resin matrix.
本発明の複合圧電材料の製作は、無機圧電体の板状体を
、基板の上に所定の間隔を空け、平行に並べて接着し、
その基板を成形型に入れ、硬化性の合成樹脂液を成形型
に充填し、硬化した移、成形体を成形型から取り出し、
無機圧電体が平行に並んだ方向と直角の方向に、所定の
間隔を空けて切込を入れ、この切込を入れた成形体を再
び成形型に入れ、前記と同じ硬化性の合成樹脂液を成形
型に充填し、硬化した後、成形体を取り出し、基板、基
板に接着した無機圧電体の連続部分および周囲の合成樹
脂部分を切断除去することによって行なうことができる
。The composite piezoelectric material of the present invention is manufactured by gluing inorganic piezoelectric plate plates arranged in parallel on a substrate at a predetermined interval.
The substrate is placed in a mold, the mold is filled with a curable synthetic resin liquid, the cured material is removed from the mold,
Cuts are made at predetermined intervals in a direction perpendicular to the direction in which the inorganic piezoelectric materials are lined up in parallel, and the molded product with these cuts is placed into the mold again and filled with the same curable synthetic resin liquid as above. This can be carried out by filling a mold with the material, curing it, taking out the molded body, and cutting and removing the substrate, the continuous portion of the inorganic piezoelectric material adhered to the substrate, and the surrounding synthetic resin portion.
また本発明の交合圧電材料の製作は、無機圧電体の板状
体に、所定の間隔を空けて切込を入れ、この切込の入っ
た無機圧電体の板状体を、基板の上に所定の間隔を空け
、平行に並べて接着し、その基板を成形型に入れ、その
成形型に硬化性の合成樹脂液を充填し、硬化した後、成
形体を取り出し、前記と同様に基板、基板に接着した無
機圧電体の連続部分および周囲の合成樹脂部分を切断除
去することによって、行なうこともできる。Furthermore, in order to manufacture the hybrid piezoelectric material of the present invention, cuts are made at predetermined intervals in a plate-like inorganic piezoelectric material, and the plate-like inorganic piezoelectric material with the cuts is placed on a substrate. Leave a predetermined interval, arrange the substrates in parallel, and glue them together, put the substrates into a mold, fill the mold with a curable synthetic resin liquid, and after curing, take out the molded body, and insert the substrates and substrates in the same way as above. This can also be done by cutting and removing the continuous portion of the inorganic piezoelectric material and the surrounding synthetic resin portion adhered to the material.
本発明の複合圧電材料の製作において、基板の上に無機
圧電体の板状体を、所定の間隔を空け、平行に並べて接
着する場合、基板の]二に、両側壁に所定の間隔を空け
て形成された誘導溝を何する整列型枠を置き、その誘導
溝に無機圧電体の板状体をはめ込み、無機圧電体を基板
に接着することができる。この整列型枠の使用によって
、無機圧電体の板状体の基板への接着が簡単に、かつ正
確に行なうことができる。In the production of the composite piezoelectric material of the present invention, when bonding inorganic piezoelectric plate-shaped bodies on a substrate in parallel with a predetermined interval, leave a predetermined interval on both side walls of the substrate. The inorganic piezoelectric material can be bonded to the substrate by placing an alignment mold that fills the guide grooves formed by the method, and fitting a plate-shaped inorganic piezoelectric material into the guide grooves. By using this alignment mold, the inorganic piezoelectric plate can be easily and accurately bonded to the substrate.
本発明の複合圧電材料の製作において、無機圧電体の板
状体は、基板に接着された面と直角の方向に分極処理さ
れたものを使用することができ、無機圧電体の板状体に
おける無機圧電体は、チタン酸バリウムを使用すること
ができ、硬化性合成wl!脂液における合成樹脂は、エ
ポキシ栃脂を使用することができ、また無機圧電体の板
状体を接着する基板は、エポキシ樹脂板を使用すること
ができる。In the production of the composite piezoelectric material of the present invention, the inorganic piezoelectric plate can be polarized in the direction perpendicular to the surface bonded to the substrate. Barium titanate can be used as the inorganic piezoelectric material, and curable synthesis wl! Epoxy horse chestnut resin can be used as the synthetic resin in the fat solution, and an epoxy resin plate can be used as the substrate to which the inorganic piezoelectric plate-shaped body is bonded.
本発明の複合圧電材料は、第4図に示すとおり、合成樹
脂の硬化物のマトリックス2中に多数の角柱状の無機圧
電体1が規則正しく配列したものである。As shown in FIG. 4, the composite piezoelectric material of the present invention has a large number of prismatic inorganic piezoelectric bodies 1 regularly arranged in a matrix 2 of a cured synthetic resin.
本発明による複合圧電材料の製作では、無機圧電体の板
状体を材料として用意する。この無機圧電体の板状体は
、長方形であって、その長方形の部方向に直流電圧を印
加し、分極処理されていることを必要とし、その厚さは
、合成樹脂のマトリックス2中に規則正しく配列した角
柱状の無機圧電体lの一辺の長さに等しいことを必要と
し、さらに無機圧電体の板状体の分極処理の方向は、製
品の複合圧電材料の合成樹脂のマトリックス2中に規則
正しく配列した角柱状の無機圧電体の高さ方向に一致す
ることを必要とする。In manufacturing the composite piezoelectric material according to the present invention, a plate-shaped body of an inorganic piezoelectric material is prepared as a material. This plate-like inorganic piezoelectric material is rectangular and needs to be polarized by applying a DC voltage in the direction of the rectangular part, and its thickness is set regularly within the synthetic resin matrix 2. It is necessary that the length of one side of the arrayed prismatic inorganic piezoelectric bodies l be equal to the length of one side, and furthermore, the direction of the polarization treatment of the plate-like bodies of the inorganic piezoelectric bodies must be regularly set in the matrix 2 of the synthetic resin of the composite piezoelectric material of the product. It is necessary to match the height direction of the arranged prismatic inorganic piezoelectric bodies.
長方形の幅方向に分極処理された無機圧電体の板状体4
は、第1図および第2図に示すとおり、成形型の底板6
の上に置かれた合成樹脂の基板3の上に、所定の間隔を
空け、平行に並べて接着する。これに成形型の側壁型枠
5をはめ込み、成形型を形成し、この成形型に硬化性の
合成樹脂液を流し込んで充填し、平行に並べて基板3に
接着された無機圧電体の板状体4の間の空間および無機
圧電体の板状体4と成形型の側壁型枠5の空間のすべて
に、硬化性の合成樹脂液を充填する。その充填後に、硬
化性の合成樹脂液を硬化し、その硬化後に成形体を成形
型から取り出す。この成形体を精密切断機のホルダーに
置き、その成形体に対して、成形体中に平行して並んで
いる無機圧電体の板状体4の長さ方向と直角の方向、す
なわち、第2図のA−A線の方向に、所定の間隔をおい
て所定の数の切込を入れる。この切込の形成によって、
無機圧電体の板状体4は切り離されて角柱状になるが、
その下部は基板3に接着され、さらにその側面の相対す
る二面が硬化した合成樹脂によって固定されているから
、角柱状の無機圧電体の配列は変らない。A rectangular inorganic piezoelectric plate polarized in the width direction 4
As shown in FIGS. 1 and 2, the bottom plate 6 of the mold is
They are adhered to the synthetic resin substrate 3 placed on the substrate 3, arranged in parallel with a predetermined interval. A side wall frame 5 of the mold is fitted into this to form a mold, and a curable synthetic resin liquid is poured into the mold and filled, and plate-shaped inorganic piezoelectric materials are arranged in parallel and bonded to the substrate 3. 4 and the space between the inorganic piezoelectric plate 4 and the side wall formwork 5 of the mold are all filled with a curable synthetic resin liquid. After filling, the curable synthetic resin liquid is cured, and after curing, the molded body is taken out from the mold. This molded body is placed in a holder of a precision cutting machine, and the molded body is placed in a direction perpendicular to the length direction of the inorganic piezoelectric plate-like bodies 4 arranged in parallel in the molded body, that is, a second A predetermined number of cuts are made at predetermined intervals in the direction of line A-A in the figure. By forming this notch,
The inorganic piezoelectric plate 4 is separated into a prismatic shape,
Its lower part is bonded to the substrate 3, and its two opposing sides are fixed with hardened synthetic resin, so the arrangement of the prismatic inorganic piezoelectric bodies remains unchanged.
この切込を入れた成形体を再び成形型に入れ、その切込
の部分に前記と同じ硬化性の合成樹脂液を充填し、硬化
した後、成形体を成形型から取り出すと、第3図の平面
図に示すとおりの合成樹脂のマトリックス2に角柱状の
無機圧電体が規則正しく配列した複合圧電材料の成形体
が得られる。The molded body with this incision is put into the mold again, and the cut area is filled with the same curable synthetic resin liquid as above, and after curing, the molded body is taken out of the mold, as shown in Figure 3. A molded body of a composite piezoelectric material in which prismatic inorganic piezoelectric bodies are regularly arranged in a synthetic resin matrix 2 as shown in the plan view is obtained.
この成形体を成形型から再び取り出し、その下部の基板
3および周囲の合成樹脂の部分を切断除去すると、第4
図に示すとおりの合成樹脂のマトリックス2中に角柱状
の無機圧電体が規則正しく配列した本発明の複合圧電材
料が得られる。This molded body is taken out from the mold again, and the lower substrate 3 and the surrounding synthetic resin portion are cut and removed.
A composite piezoelectric material of the present invention is obtained in which prismatic inorganic piezoelectric bodies are regularly arranged in a synthetic resin matrix 2 as shown in the figure.
この本発明の複合圧電材料の製作において、無機圧電体
の板状体4が合成樹脂のマトリックス2中に平行に並ん
でいる成形体に、切込を入れる場合、その切込の深さを
基板3までとせずに止めておき、無機圧電体の板状体4
の基板3との接着部分に連続部分41を残し、無機圧電
体の板状体4の個々のものが、第5図に示すとおりの連
続部分41および角柱部分11からなる形状のものとす
ることができる。この場合、合成樹脂のマトリックス2
に角柱状の無機圧電体lが規則正しく配列した成形体の
下部の基板3を切断除去するときに、基板3に接着する
無機圧電体の連続部分41を基板3とともに切断除去す
れば、第4図に示すとおりの角柱状の無機圧電体1が合
成樹脂のマトリックス2に規則正しく配列した本発明の
複合圧電材料を製作することができる。In manufacturing the composite piezoelectric material of the present invention, when making cuts in the molded body in which the inorganic piezoelectric plate bodies 4 are arranged parallel to each other in the synthetic resin matrix 2, the depth of the cuts is set to the substrate. 3, and leave the inorganic piezoelectric plate-shaped body 4.
A continuous portion 41 is left at the bonded portion with the substrate 3, and each of the inorganic piezoelectric plate-like bodies 4 has a shape consisting of the continuous portion 41 and the prismatic portion 11 as shown in FIG. Can be done. In this case, the synthetic resin matrix 2
When cutting and removing the substrate 3 at the bottom of the molded body in which the prismatic inorganic piezoelectric materials l are regularly arranged, if the continuous portion 41 of the inorganic piezoelectric material adhered to the substrate 3 is cut and removed together with the substrate 3, as shown in FIG. The composite piezoelectric material of the present invention in which prismatic inorganic piezoelectric bodies 1 are regularly arranged in a synthetic resin matrix 2 can be manufactured as shown in FIG.
本発明の複合圧電材料は、無機圧電体の板状体に切込を
入れて、角柱状の無機圧電体を予め形成し、成形型内で
は角柱状の無機圧電体を形成しない以下に示す方法によ
って製作することができる。The composite piezoelectric material of the present invention can be produced by the following method in which a prismatic inorganic piezoelectric material is formed in advance by making cuts in a plate-like inorganic piezoelectric material, and the prismatic inorganic piezoelectric material is not formed in a mold. It can be manufactured by
この方法では、無機圧電体の板状体を精密切断機のホル
ダーに固定し、その−側面に所定の間隔をおいて切込を
入れて、第5図に示すとおりの連続部分41および角柱
部分11からなる櫛状の無機圧電体を製作する。この櫛
状の無機圧電体4を第1図に示すとおりの成形型の底板
6の上に置いた合成樹脂の基板3の上に、所定の間隔を
空け、平行に並べて接着する。これに成形型の側壁型枠
5をはめ込み、この成形型に硬化性の合成樹脂液を充填
し、硬化した後、成形体を成形型から取り出して、角柱
状の無機圧電体lが合成樹脂のマトリックス2に規則正
しく配列した成形体を製作する。In this method, a plate-shaped body of an inorganic piezoelectric material is fixed to a holder of a precision cutting machine, cuts are made at predetermined intervals on the side surface of the plate-shaped body, and a continuous portion 41 and a prismatic portion are formed as shown in FIG. A comb-shaped inorganic piezoelectric body consisting of 11 pieces is manufactured. The comb-shaped inorganic piezoelectric material 4 is adhered to a synthetic resin substrate 3 placed on a bottom plate 6 of a mold as shown in FIG. 1, in parallel rows at a predetermined distance. The side wall form 5 of the mold is fitted into this, and the mold is filled with a curable synthetic resin liquid. After curing, the molded body is taken out from the mold, and the prismatic inorganic piezoelectric body l is made of synthetic resin. A molded body regularly arranged in a matrix 2 is manufactured.
この成形体はその上部は、第3図に示すとおりに、角柱
状の無機圧電体1が合成樹脂マトリックス2の中に規則
正しく配列しているが、その下部の基板3の上は、櫛状
の無機圧電体の連続部分によって角柱状の無機圧電体1
が繋っている。この成形体の下部の基板3およびその上
に接着された無機圧電体の連続部分をいっしょに切断除
去し、さらに周囲の合成m指部分を切断除去して、第4
図に示すとおりの合成樹脂のマトリックス2に角柱状の
無機圧電体1が規則正しく配列した本発明の複合圧電材
料が得られる。The upper part of this molded body has prismatic inorganic piezoelectric bodies 1 regularly arranged in a synthetic resin matrix 2, as shown in FIG. A prismatic inorganic piezoelectric material 1 is formed by a continuous portion of the inorganic piezoelectric material.
are connected. The substrate 3 at the bottom of this molded body and the continuous portion of the inorganic piezoelectric material bonded thereon are cut and removed together, and the surrounding composite m-finger portion is further cut and removed.
A composite piezoelectric material of the present invention is obtained in which prismatic inorganic piezoelectric bodies 1 are regularly arranged in a synthetic resin matrix 2 as shown in the figure.
本発明の複合圧電材料の製作において、合成樹脂の基板
3の上に、無機圧電体の板状体4または櫛状の無機圧電
体4を、所定の間隔を空け、平行に並べて接着する場合
、第6図に示すとおりの両側壁の内側に誘導溝8.8.
8.8、・・・・を有する整列型枠7を置き、その誘導
溝8.8に無機圧電体の板状体4.4.4・・・・をは
め込み、この無機圧電体の板状体4.4、・・・・を合
成樹脂の基板3に接着することができる。In the production of the composite piezoelectric material of the present invention, when inorganic piezoelectric plate bodies 4 or comb-shaped inorganic piezoelectric bodies 4 are arranged and adhered in parallel with a predetermined interval on a synthetic resin substrate 3, Guide grooves 8.8 on the inside of both side walls as shown in FIG.
8.8,... is placed, and inorganic piezoelectric plate plates 4.4, 4... are fitted into the guide grooves 8.8 of the inorganic piezoelectric plate plates 7. The bodies 4.4, . . . can be bonded to the synthetic resin substrate 3.
この整列型枠7の使用によって、無機圧電体の板状体4
または(2)状の無機圧電体の合成樹脂の基板3の上に
おける配列を簡便かつ正確に行なうことができる。By using this alignment formwork 7, the inorganic piezoelectric plate 4
Alternatively, the synthetic resin of the inorganic piezoelectric material (2) can be easily and accurately arranged on the substrate 3.
本発明の複合圧電材料の製作における無機圧電体は、チ
タン酸バリウム、チタン酸鉛およびチタン酸ジルコン酸
鉛(PZT )を使用することができ、また硬化性合成
樹脂は、エポキシ樹脂、ウレタン樹脂、シリコン樹脂、
ポリエステル樹脂またはフェノール樹腸等の熱硬化性1
脂、あるいはアクリル樹脂、ポリスチレン樹脂、ナイロ
ン樹脂、ポリエチレン樹脂またはポリプロピレン樹脂等
の熱可塑性樹脂を使用することができる。Barium titanate, lead titanate, and lead zirconate titanate (PZT) can be used as the inorganic piezoelectric body in producing the composite piezoelectric material of the present invention, and the curable synthetic resin can be epoxy resin, urethane resin, silicone resin,
Thermosetting 1 such as polyester resin or phenolic resin
Thermoplastic resins such as acrylic resins, polystyrene resins, nylon resins, polyethylene resins or polypropylene resins can be used.
次に実施例により本発明をさらに詳しく説明する。Next, the present invention will be explained in more detail with reference to Examples.
実施例1
(チタン酸バリウム板−エポキシ樹脂複合成形体の製作
)
ポリエチレン型〔30朋(内径)×30IIII(深さ
)〕の底板(径:3(1m)の上にエポキシ樹脂基板〔
30朋(径)X5朋(厚さ)〕を置き、この上に幅方向
に分極処理を施したチタン酸バリウム圧電体板(20m
m(長さ)X8朋(幅)×1.5順(厚さ)〕を、幅方
向を上下方向とし、分極方向をそろえて、300pmの
間隔を空け、接着剤(商品名ニアロンアルファ、東亜合
成化学社製品)を用いて、10枚並行に接着した。ポリ
エチレン型の側壁型枠をこの底板にはめ込んで、ポリエ
チレン型を形成した後、このポリエチレン型に、エポキ
シ樹脂〔商品名:エビコート807/エボメートB−0
02W(硬化剤)、油化シェル社製品〕を流し込んで、
チタン酸バリウム圧電体板の間および型枠との間の空間
にエポキシ樹脂を充填し、硬化して、エポキシ樹脂の硬
化物の中にチタン酸バリウム圧電体板10枚が300μ
mの間隔をおいて並行に埋め込まれたチタン酸バリウム
板−エポキシ樹脂複合成形体を製作した。Example 1 (Production of barium titanate plate-epoxy resin composite molded body) An epoxy resin substrate was placed on the bottom plate (diameter: 3 (1 m)) of a polyethylene mold [30 mm (inner diameter) x 30 III (depth)].
30 mm (diameter) x 5 mm (thickness)], and on top of this a barium titanate piezoelectric plate (20 m) polarized in the width direction.
m (length) x 8 mm (width) x 1.5 mm (thickness)] with the width direction as the vertical direction, aligning the polarization direction, and leaving an interval of 300 pm, using an adhesive (product name: Nearon Alpha, Toa 10 sheets were glued together in parallel using a product from Synthetic Kagaku Co., Ltd.). A polyethylene type side wall formwork is fitted into this bottom plate to form a polyethylene mold, and then an epoxy resin [trade name: Ebicoat 807/Evomate B-0] is applied to this polyethylene mold.
Pour 02W (hardening agent), a product of Yuka Shell Co., Ltd.
The space between the barium titanate piezoelectric plates and the mold is filled with epoxy resin and cured, and 10 barium titanate piezoelectric plates are placed in the cured epoxy resin with a thickness of 300 μm.
A barium titanate plate-epoxy resin composite molded body embedded in parallel with an interval of m was manufactured.
(チタン酸バリウム−エポキシ樹脂複合圧電体の製作)
チタン酸バリウム板−エポキシ樹脂複合成形体(30鰭
(外径)X25朋(高さ)〕をポリエチレン型から取り
出し、これを精密切断機のホルダーに固定し、300μ
mの厚さのダイヤモンド刃を使用しで、1.5+a+x
の間隔をおいて、300μm幅の溝(深さ:8++I)
をチタン酸バリウム圧電体板の並んでいる方向と直角の
方向の上下方向に、10本形成した。この溝付きのチタ
ン酸バリウム板−エポキシ樹脂複合成形体を前記のポリ
エチレン型に再び入れ、前記のエポキシ樹脂を溝に流し
込み、硬化して、エポキシ樹脂成形体の中にチタン酸バ
リウム圧電体の角柱〔1,5mm(タテ)×1・5朋(
ヨコ)X8鰭(長さ) :] 100本が30011r
rLの間隔で規則正、シく配列して埋め込まれたチタン
酸バリウム−エポキシ樹脂複合成形体を製作した。(Production of barium titanate-epoxy resin composite piezoelectric body) Take out the barium titanate plate-epoxy resin composite molded body (30 fins (outer diameter) x 25 mm (height)) from the polyethylene mold and place it in the holder of a precision cutting machine. fixed to 300μ
Using a diamond blade with a thickness of m, 1.5+a+x
300μm wide grooves (depth: 8++I) with intervals of
Ten pieces were formed in the vertical direction perpendicular to the direction in which the barium titanate piezoelectric plates were arranged. This grooved barium titanate plate-epoxy resin composite molded body is placed again into the polyethylene mold, and the epoxy resin is poured into the grooves and cured, and the barium titanate piezoelectric body is placed inside the epoxy resin molded body. [1.5 mm (vertical) x 1.5 mm (
Horizontal) x 8 fins (length):] 100 fins are 30011r
A barium titanate-epoxy resin composite molded body was manufactured in which the molded barium titanate-epoxy resin was embedded in a regular, dense array at intervals of rL.
このチタン酸バリウム−エポキシ樹脂複合成形体をポリ
エチレン型から取り出し、その周縁部のエポキシ樹脂だ
けの部分を切断除去して、チタン酸バリウム−エポキシ
樹脂複合圧電体〔18朋(タテ)x+am(ヨコ)X8
朋(高さ)〕を製作した。This barium titanate-epoxy resin composite molded body was taken out from the polyethylene mold, and the epoxy resin-only part at the periphery was cut and removed to form a barium titanate-epoxy resin composite piezoelectric body [18 mm (vertical) x + am (horizontal)]. X8
Tomo (height)] was produced.
このチタン酸バリウム−エポキシ樹脂複合圧電体は、エ
ポキシ樹脂マトリックスの中に角柱状のチタン酸バリウ
ム圧電体〔1,5111+(タテ)Xl、511jI(
ヨコ)X8朋(長さ) ) 100本が、300py
xの間隔をおいて、規則正しく配列しており、そのチタ
ン酸バリウムの体積分率は55%であり、また全体の密
度は3.8719/c11であった。This barium titanate-epoxy resin composite piezoelectric body has a prismatic barium titanate piezoelectric body [1,5111+(vertical)Xl,511jI(
Horizontal) x 8 (length) ) 100 pieces is 300py
They were regularly arranged at intervals of x, the volume fraction of barium titanate was 55%, and the overall density was 3.8719/c11.
(電気特性の測定)
チタン酸バリウム−エポキシ樹脂複合圧電体のチタン酸
バリウム圧電体の断面が規則正しく配列している面の両
面に、エポキシ導電性樹脂(商品名:エポキシ−338
0、スリーボンド社製品)を塗布して電極を形成し、比
誘導率(ε /ε )、電気機械結合係数kt (%
)および圧電定数(F )を測定した。(Measurement of electrical properties) Epoxy conductive resin (product name: Epoxy-338
0, a product of Three Bond Co., Ltd.) to form an electrode, and the specific inductivity (ε/ε) and electromechanical coupling coefficient kt (%
) and piezoelectric constant (F) were measured.
その結果は第1表に示すとおりであった。The results were as shown in Table 1.
実施例2
(チタン酸バリウム圧電体板の加工)
幅方向に分極処理を施したチタン酸バリウム圧電体板〔
20市(長さ)X8朋(幅)×1・5朋(厚さ)〕5枚
を、その分極方向をそろえて結束し、その結束体を精密
切断機のホルダーに固定し、300μmの厚さのダイヤ
モンド刃を使用して、1.84のピッチにおいて、板の
長さ方向に直角で、板の並ぶ方向に対して直角の方向に
、10本の溝(300μm(幅)X7朋(深す)〕ヲ形
成シタ後、結束を解いて、1.5+*m角の角柱がクシ
の刃状に並んで形成したクシ形のチタン酸バリウム圧電
体板を製作した。Example 2 (Processing of barium titanate piezoelectric plate) Barium titanate piezoelectric plate subjected to polarization treatment in the width direction [
20 mm (length) x 8 mm (width) x 1.5 mm (thickness)] 5 sheets were tied together with their polarization directions aligned, and the bundle was fixed in the holder of a precision cutting machine to a thickness of 300 μm. Using a diamond blade, cut 10 grooves (300 μm wide x 7 deep) at a pitch of 1.84 perpendicular to the length direction of the board and perpendicular to the direction in which the boards are lined up. After forming, the bundle was untied to produce a comb-shaped barium titanate piezoelectric plate in which 1.5+*m square prisms were arranged in a comb-blade shape.
(チタン酸バリウム−エポキシ樹脂複合圧電体の製作)
ポリエチレン型〔30朋(内径)×3o闘(深さ)〕の
底板(径:30su+)の上にエポキシ樹脂板(径=3
0關)を置き、その上に、クシ形のチタン酸バリウム圧
電体板を、クシ形の基体部分を下にして、接着剤(商品
名ニアロンアルファ、東亜合成化学社製品)を使用して
、2朋の間隔をおいて、並行に5並接着した。これにポ
リエチレン型の側壁型枠〔30IIII+(内径)X3
0問(深さ)〕をはめ込み、その中にエポキシ樹脂〔商
品8:エビコート807/エボメートB−002W(硬
化剤)、油化シェル社製品〕を流し込み、その空間を充
填し、硬化して、チタン酸バリウム−エポキシ樹脂複合
成形体を製作した。(Production of barium titanate-epoxy resin composite piezoelectric body) An epoxy resin plate (diameter = 3
0), place a comb-shaped barium titanate piezoelectric plate on top of it, with the comb-shaped base part facing down, and use adhesive (trade name: Nialon Alpha, manufactured by Toagosei Kagaku Co., Ltd.). Five pieces were glued in parallel, with an interval of 2 mm. Add polyethylene side wall formwork to this [30III + (inner diameter)
0 questions (depth)], pour the epoxy resin [Product 8: Ebikoat 807/Evomate B-002W (hardening agent), Yuka Shell Co., Ltd. product] into it, fill the space, harden it, A barium titanate-epoxy resin composite molded body was manufactured.
このチタン酸バリウム−エポキシ樹脂複合成形体をポリ
エチレン型から取り出し、その下部の下から6藺の部分
を切断して、クシ形のチタン酸バリウム圧電体の基体部
分およびエポキシ樹脂板を切断除去し、さらにその周縁
のエポキシ樹脂の部分を切断除去して、チタン酸バリウ
ム−エポキシ樹脂複合圧電体〔18朋(タテ) X 1
5.5闘(ヨコ)×7闘(厚さ)〕を製作した。This barium titanate-epoxy resin composite molded body was taken out of the polyethylene mold, and the 6-inch section was cut from the bottom of the body, and the base portion of the comb-shaped barium titanate piezoelectric body and the epoxy resin plate were cut and removed. Furthermore, the epoxy resin part around the periphery was cut and removed to form a barium titanate-epoxy resin composite piezoelectric body [18 mm (vertical) x 1
5.5 mm (horizontal) x 7 mm (thickness)].
このチタン酸バリウム−エポキシ樹脂複合圧電体は、エ
ポキシ樹脂のマトリックス中に、チタン酸バリウム圧電
体の角柱〔1,5間(タテ)Xl、5朋(ヨコ)×7闘
(高さ)〕が55110本0.3mm (タテ)X2m
lI(ヨコ)の間隔をおいて規則正しく配列して埋め込
まれており、そのチタン酸バリウム圧電体の体積分率は
29%であり、また全体の密度は3.39jJ/caで
あった。This barium titanate-epoxy resin composite piezoelectric material has a square column of barium titanate piezoelectric material [1, 5 (vertical) x 1, 5 (horizontal) x 7 (height)] in an epoxy resin matrix. 55110 pieces 0.3mm (vertical) x 2m
The barium titanate piezoelectric materials were embedded in regular arrays with intervals of lI (horizontal), the volume fraction of the barium titanate piezoelectric material was 29%, and the overall density was 3.39 jJ/ca.
(電気特性の測定)
このチタン酸バリウム−エポキシ樹脂複合圧電体の電気
特性を実施例1と同様にして測定した。(Measurement of Electrical Properties) The electrical properties of this barium titanate-epoxy resin composite piezoelectric material were measured in the same manner as in Example 1.
その結果は第1表に示すとおりであった。The results were as shown in Table 1.
第1表 チタン酸バリウム−エポキシ樹脂複合実施例3
ポリエチレン型の底板の上に置かれたエポキシ樹脂板の
上に、左右の両側壁に幅が1.6間の誘導溝を0.2市
の間隔をおいて形成された整列型枠を置き、この誘導溝
に、幅方向に分極処理を施したチタン酸バリウム圧電体
板をはめ込んで、接着剤(実施例1と同じ)を使用して
、チタン酸バリウム圧電体板をエポキシ樹脂板に接着し
た後、整列型枠を取り去って、チタン酸バリウム圧電体
板を並行して、エポキシ樹脂板上に接着したこと以外は
、実施例1と同様にして、チタン酸バリウム−エポキシ
樹脂複合圧電体を製作した。Table 1 Barium titanate-epoxy resin composite Example 3 On the epoxy resin plate placed on the polyethylene bottom plate, guide grooves with a width of 1.6 mm were formed on the left and right side walls of the 0.2 mm width. Place the alignment formwork formed at intervals, fit a barium titanate piezoelectric plate that has been polarized in the width direction into the guide groove, and use adhesive (same as in Example 1) to After bonding the barium titanate piezoelectric plate to the epoxy resin plate, the alignment mold was removed and the barium titanate piezoelectric plate was bonded in parallel onto the epoxy resin plate, but the same procedure as in Example 1 was carried out. Then, a barium titanate-epoxy resin composite piezoelectric body was manufactured.
このチタン酸バリウム−エポキシ樹脂複合圧電体は、実
施例1のものと同じものであった。This barium titanate-epoxy resin composite piezoelectric body was the same as that of Example 1.
本発明において、無機圧電体の板状体を、基板の上に、
所定の間隔を空け、平行に並べて接着することにより、
合成初霜のマトリックス中に角柱状の無機圧電体が規則
正しく配列した本発明の複合圧電材料の製作における無
機圧電体の切削による損失を少なくすることができる。In the present invention, a plate-like body of an inorganic piezoelectric material is placed on a substrate,
By gluing them parallel to each other at specified intervals,
In manufacturing the composite piezoelectric material of the present invention in which prismatic inorganic piezoelectric bodies are regularly arranged in a matrix of synthetic first frost, loss due to cutting of the inorganic piezoelectric body can be reduced.
さらに切削の工程が少なくなることによって労力を節約
することもできる。Furthermore, labor can be saved by reducing the number of cutting steps.
本発明の複合圧電イ才んの製作において、無機圧電体の
板状体を基板の上に、所定の間隔を空け、平行に並べて
接着する場合、両側壁の内側にB4溝を設けた整列型枠
の使用により、無機圧電体の基板の上に対する接着操作
が簡単になり、またその配列を正確にすることができる
。In the production of the composite piezoelectric device of the present invention, when the inorganic piezoelectric plate-shaped bodies are arranged and bonded in parallel on the substrate at a predetermined interval, an aligned type with B4 grooves provided on the inside of both side walls is used. The use of the frame simplifies the operation of adhering the inorganic piezoelectric material onto the substrate, and also allows for accurate alignment.
第1図は、本発明の複合圧電材料の製作工程において、
無機圧電体の板状体を基板の上に接着した状態を示す側
面図、そして第2図はこれに成形型の側壁型枠をはめ込
んだ状態を示す平面図、そして第3図は、本発明の複合
圧電材料の製作工程における成形物の平面図である。第
4図は本発明により製作された複合圧電材料の斜視図、
第5図は、本発明の複合圧電材料の製作において、無機
圧電体の板状体に切込を入れ柵状にした中間製品の斜視
図、そして第6図は、本発明の複合圧電材料の製作にお
いて使用する整列型枠の斜視図である。
〔図面符号〕
1:角柱状の無機圧電体
2:合成I!l脂マトリックス
3:合成樹脂の基板
4:無機圧電体の板状体
5:成形型の側壁型枠
6:成形型の底板
7:整列型枠
8:誘4溝FIG. 1 shows the manufacturing process of the composite piezoelectric material of the present invention.
FIG. 2 is a side view showing a state in which an inorganic piezoelectric plate-like body is adhered to a substrate, FIG. FIG. 3 is a plan view of a molded product in the manufacturing process of the composite piezoelectric material. FIG. 4 is a perspective view of a composite piezoelectric material manufactured according to the present invention;
FIG. 5 is a perspective view of an intermediate product in which a plate-like inorganic piezoelectric material is cut into a fence shape in the production of the composite piezoelectric material of the present invention, and FIG. It is a perspective view of the alignment formwork used in manufacturing. [Drawing code] 1: Prismatic inorganic piezoelectric material 2: Synthesis I! l fat matrix 3: synthetic resin substrate 4: inorganic piezoelectric plate 5: mold side wall form 6: mold bottom plate 7: alignment form 8: dielectric 4 grooves
Claims (6)
定の間隔を空け、平行に並べて接着された基板を、成形
型に入れ、成形型に硬化性合成樹脂液を充填し、硬化し
た後、基板、無機圧電体の基板に接着した連続部分およ
び周囲の合成樹脂部分を切断除去して、角柱状の無機圧
電体が合成樹脂マトリックスに規則正しく配列した複合
圧電材料を得ることを特徴とする複合圧電材料の製作方
法。(1) A substrate on which inorganic piezoelectric plate-shaped bodies with cuts of a predetermined width are lined up in parallel with a predetermined interval and glued is placed in a mold, and the mold is filled with a curable synthetic resin liquid. After curing, the substrate, the continuous portion of the inorganic piezoelectric material adhered to the substrate, and the surrounding synthetic resin portion are cut and removed to obtain a composite piezoelectric material in which prismatic inorganic piezoelectric materials are regularly arranged in a synthetic resin matrix. A method for producing a composite piezoelectric material characterized by:
定の間隔を空け、平行に並べて接着された基板が、無機
圧電体の板状体を、基板の上に所定の間隔を空け、平行
に並べて接着すること、この基板を成形型に入れ、成形
型に硬化性合成樹脂液を充填し、硬化すること、その成
形体を成形型から取り出し、無機圧電体の板状体が平行
に並んだ方向と直角の方向に所定の間隔を空けて切込を
入れることによって製作されたものであることを特徴と
する特許請求の範囲第1項に記載の複合圧電材料の製作
方法。(2) A substrate in which plates of inorganic piezoelectric material with cuts of a predetermined width are glued to each other in parallel with a predetermined interval are placed on the substrate. Place this substrate in a mold, fill the mold with a curable synthetic resin liquid and harden it, take out the molded body from the mold, and form a plate-shaped inorganic piezoelectric material. Manufacturing the composite piezoelectric material according to claim 1, which is manufactured by making cuts at predetermined intervals in a direction perpendicular to the direction in which the bodies are arranged in parallel. Method.
定の間隔を空け、平行に並べて接着された基板が、無機
圧電体の板状体に所定の間隔を空けて切込を入れること
、およびこの無機圧電体を、基板の上に所定の間隔を空
け、平行に並べて接着することによって製作されたもの
であることを特徴とする特許請求の範囲第1項に記載の
複合圧電材料の製作方法。(3) Plates of inorganic piezoelectric material with cuts of a predetermined width are cut at predetermined intervals, and a substrate, which is lined up and bonded in parallel, is cut into the plate of inorganic piezoelectric material at predetermined intervals. Claim 1 is characterized in that the inorganic piezoelectric body is manufactured by attaching the inorganic piezoelectric body to the substrate and arranging the inorganic piezoelectric body in parallel with a predetermined interval on the substrate and gluing it. A method for manufacturing composite piezoelectric materials.
空け、平行に並べて接着することが、基板の上に両側壁
に所定の間隔を空けて形成された誘導溝を有する整列型
枠を置き、この誘導溝に無機圧電体の板状体をはめ込み
、無機圧電体の板状体を基板に接着することによって行
なわれることを特徴とする特許請求の範囲第2項または
第3項に記載の複合圧電材料の製作方法。(4) Inorganic piezoelectric plate-shaped bodies are arranged and bonded in parallel on a substrate at a predetermined interval, and guide grooves are formed on both side walls of the substrate at a predetermined interval. Claim 2 or 3, characterized in that the method is carried out by placing an alignment mold, fitting a plate-like inorganic piezoelectric material into the guide groove, and bonding the plate-like inorganic piezoelectric material to a substrate. A method for producing a composite piezoelectric material according to item 3.
角の方向に分極処理されたものであることを特徴とする
特許請求の範囲第1項ないし第4項のいずれかに記載の
複合圧電材料の製作方法。(5) According to any one of claims 1 to 4, wherein the inorganic piezoelectric plate is polarized in a direction perpendicular to the surface bonded to the substrate. A method of manufacturing the composite piezoelectric material described.
体であり、そして硬化性合成樹脂液における合成樹脂が
、エポキシ樹脂であり、そして基板がエポキシ樹脂の基
板であることを特徴とする特許請求の範囲第1項ないし
第5項のいずれかに記載の複合圧電材料の製作方法。(6) The inorganic piezoelectric plate is a barium titanate plate, the synthetic resin in the curable synthetic resin liquid is an epoxy resin, and the substrate is an epoxy resin substrate. A method for manufacturing a composite piezoelectric material according to any one of claims 1 to 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61256970A JPS63111685A (en) | 1986-10-30 | 1986-10-30 | Manufacture of composite piezoelectric material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61256970A JPS63111685A (en) | 1986-10-30 | 1986-10-30 | Manufacture of composite piezoelectric material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63111685A true JPS63111685A (en) | 1988-05-16 |
JPH0317386B2 JPH0317386B2 (en) | 1991-03-07 |
Family
ID=17299899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61256970A Granted JPS63111685A (en) | 1986-10-30 | 1986-10-30 | Manufacture of composite piezoelectric material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63111685A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55166980A (en) * | 1979-06-13 | 1980-12-26 | Toko Inc | Piezo-electric porcelain structure |
-
1986
- 1986-10-30 JP JP61256970A patent/JPS63111685A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55166980A (en) * | 1979-06-13 | 1980-12-26 | Toko Inc | Piezo-electric porcelain structure |
Also Published As
Publication number | Publication date |
---|---|
JPH0317386B2 (en) | 1991-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5539965A (en) | Method for making piezoelectric composites | |
US8330332B2 (en) | Ultrasound transducer featuring a pitch independent interposer and method of making the same | |
JPH0448040B2 (en) | ||
JP4896331B2 (en) | Method for manufacturing piezoelectric transducer | |
JP2001179640A5 (en) | ||
US5376859A (en) | Transducers with improved signal transfer | |
US4788096A (en) | Devices for making piezoelectric ceramic or ceramic-base composite sensors | |
JPS63111685A (en) | Manufacture of composite piezoelectric material | |
JPH0475718B2 (en) | ||
CN85102335A (en) | Composite ultrasonic transducers and manufacture method thereof | |
JPH0153516B2 (en) | ||
JPH0251289A (en) | Manufacture of composite piezoelectric element material by laser beams | |
JPH0415633B2 (en) | ||
JP2626241B2 (en) | Method for manufacturing composite piezoelectric body | |
CN218868611U (en) | Piezoelectric composite ceramic material manufacturing structure | |
JP2868607B2 (en) | Ultrasonic layered transducer | |
JPH01293799A (en) | Ultrasonic probe and its manufacture | |
JPS61195000A (en) | Manufacture of composite piezoelectric body | |
JPS62231599A (en) | Manufacture of ultrasonic probe | |
JPH04207698A (en) | Production of composite piezoelectric body | |
JPH07108040B2 (en) | Ultrasonic probe and manufacturing method thereof | |
JPH0462640B2 (en) | ||
JPH0448454B2 (en) | ||
JPS58120397A (en) | Production of ultrasonic probe | |
JPS61210798A (en) | Composite piezo-electric material |