JPS63111471A - Vehicle speed measuring instrument - Google Patents

Vehicle speed measuring instrument

Info

Publication number
JPS63111471A
JPS63111471A JP25568586A JP25568586A JPS63111471A JP S63111471 A JPS63111471 A JP S63111471A JP 25568586 A JP25568586 A JP 25568586A JP 25568586 A JP25568586 A JP 25568586A JP S63111471 A JPS63111471 A JP S63111471A
Authority
JP
Japan
Prior art keywords
vehicle
spatial filter
vehicle height
amplifier
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25568586A
Other languages
Japanese (ja)
Inventor
Hiroyuki Saito
博之 斉藤
Jiro Takezaki
次郎 竹崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25568586A priority Critical patent/JPS63111471A/en
Publication of JPS63111471A publication Critical patent/JPS63111471A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate an error in the measurement of a speed due to variation in vehicle height measured by a vehicle height sensor by correcting the power of an optical system with the vehicle height measured by a vehicle speed sensor which uses a spatial filter. CONSTITUTION:Reflected light from a road surface 15 which is converted by a lens 2 is projected on the spatial filter 1, and converted photoelectrically and then inputted to a differential amplifier 3. Its differential output is inputted to an amplifier 8 and amplified with a specific gain. The output of the amplifier 8 is inputted to a microcomputer 13 through an A/D converter 12, and the microcomputer 13 controls the gain of the amplifier 8 so that the value is constant. A pulse sent by a transmitter 4 is reflected by a road surface and received by a receiver 5. A measurement part 6 measures the time difference between the sent and received pulses and the computer 13 inputs the difference to compensate variation in the power of the optical system due to variation in the vehicle height.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自動車用の速度測定装置に係わり、特に空間フ
ィルタを用いた速度測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a speed measuring device for an automobile, and more particularly to a speed measuring device using a spatial filter.

〔従来の技術〕[Conventional technology]

空間フィルタを用いた自動車の速度測定は、第2図のよ
うな配置において式(1)に基づいて行われる。
Vehicle speed measurement using a spatial filter is carried out based on equation (1) in an arrangement as shown in FIG.

v=f−M−P            ・・・(1)
ここで、■は速度、Mは光学系の倍率、Pは空間フィル
タのピッチ、fは空間フィルタの出力信号周波数である
。光学系の倍率Mは、レンズ100と空間フィルタ10
1との距離をa、路面102とレンズ100との距離す
としたとき ヤ= b / a               ・・
・(2)【”1発、明が解決しよ、うとする問題点〕・
    1 、 空間フィルタを用いた上記の速度測定では、車体の
上下動により路面とレンズ間の距離!〕の値が変化し、
一定速度で走行している場合でも速度測定値が変動して
しまう場合がある。このため従来では、特開昭52−1
43081に記載のように、レンズと空間フィルタ間の
レンズ焦点上に小孔を有する光しゃ析板を配直し、焦点
上の小孔を通過する光のみを空間フィルタに導入すると
いう方法がとられていた。しかし、この従来方法では小
孔を通過する光量は非常に少ないため、強力な光源を必
要とし、装置の大型化及び消費電力が大きくなってしま
うという問題があった。
v=f-M-P...(1)
Here, ■ is the speed, M is the magnification of the optical system, P is the pitch of the spatial filter, and f is the output signal frequency of the spatial filter. The magnification M of the optical system is the lens 100 and the spatial filter 10.
1 is the distance a, and the distance between the road surface 102 and the lens 100 is y = b / a...
・(2) [“One problem that Ming is trying to solve”]・
1. In the above speed measurement using a spatial filter, the distance between the road surface and the lens due to the vertical movement of the vehicle body! ] value changes,
Even when the vehicle is traveling at a constant speed, the measured speed value may fluctuate. For this reason, conventionally, JP-A-52-1
43081, a method is adopted in which a light shielding plate having a small hole is rearranged on the focal point of the lens between the lens and the spatial filter, and only the light that passes through the small hole on the focal point is introduced into the spatial filter. was. However, in this conventional method, since the amount of light passing through the small holes is very small, a powerful light source is required, resulting in an increase in the size of the device and high power consumption.

本発明の目的は、車高変化による速度の誤計測がなく、
小型でかつ低ntffl力の、空間フィルタを用いた自
動車用の速度測定装置を提供するにある。
The purpose of the present invention is to eliminate erroneous speed measurement due to changes in vehicle height,
An object of the present invention is to provide a speed measuring device for an automobile using a spatial filter, which is small in size and has low ntffl power.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、レンズと路面との距離を測定する車高セン
サと、このセンサで測定した車高により一一き、 −ことにより達成される。
The above object is achieved by a vehicle height sensor that measures the distance between a lens and a road surface, and a vehicle height measured by this sensor.

〔作用〕[Effect]

車高センサによって走行中の車高を刻々と計測し、レン
ズト路面との距離boを算出する。静止時のこの距離を
bとしたとき、式(2)のMを次式に従ってMoに修正
し、これを式(1)の値として用いればよい。
A vehicle height sensor measures the height of the vehicle while it is running, and calculates the distance bo from the Lensto road surface. When this distance at rest is b, M in equation (2) may be modified to Mo according to the following equation, and this may be used as the value in equation (1).

MO二M−bo/b          ・・・(3)
このようにすると、小孔を用いる必要がないので光量の
減少がなく、光源の大型化及び消費電力の増大要必要と
しない。
MO2M-bo/b...(3)
In this case, there is no need to use small holes, so there is no reduction in the amount of light, and there is no need to increase the size of the light source or increase power consumption.

〔実施例〕〔Example〕

以下2本発明の一実施例を図面を用いて説明する。第1
図は本発明の装置の一実施例を示すもので、レンズ2に
よって集光された路面15からの反射光が空間フィルタ
1に投影され、光電変換された後、差動増進器3に入力
される。
Two embodiments of the present invention will be described below with reference to the drawings. 1st
The figure shows an embodiment of the device of the present invention, in which reflected light from a road surface 15 is focused by a lens 2, is projected onto a spatial filter 1, photoelectrically converted, and then input into a differential intensifier 3. Ru.

ここで、空間フィルタ1の構成例を第3図に示す、この
フィルタは差動型のもので、受光素子50がピッチPで
対向して並べられている。各々対向している受光素子5
0のピッチはP/2である。
Here, an example of the configuration of the spatial filter 1 is shown in FIG. 3. This filter is of a differential type, and light receiving elements 50 are arranged facing each other at a pitch P. Light receiving elements 5 facing each other
The pitch of 0 is P/2.

第1図へ戻って、両受光素子の出力は差動増進器3で増
進され、差動出力が得られる。この差動出力はアンプ8
に入力され、所定の利得で増幅される。アンプ8の出力
はA/Dコンバータ12経由でマイクロコンピュータ1
3へ入力され、マイクロコンピュータ13がこの入力値
を−、定とするようにアンプ8の利得を制御する。この
利得制御は1例えば道路上の交通表示用の白線の上を通
過したときに光量が急激に増大し、アンプ8が飽和する
のを防止するためのものである。アンプ8で増幅された
信号は中心周波数可変形バンドパスフィルタ10に送ら
れる。このようなバンドパスフィルタは1例えばスイソ
チトキャパシタフイルタで構成し、そのクロック周波数
を数値制御形発信器(Neo)9で制御することにより
実現できる。
Returning to FIG. 1, the outputs of both light receiving elements are amplified by a differential intensifier 3 to obtain a differential output. This differential output is the amplifier 8
and is amplified with a predetermined gain. The output of the amplifier 8 is sent to the microcomputer 1 via the A/D converter 12.
3, and the microcomputer 13 controls the gain of the amplifier 8 so that this input value is constant. The purpose of this gain control is to prevent the amplifier 8 from becoming saturated due to a sudden increase in the amount of light when the vehicle passes over, for example, a white line for traffic display on a road. The signal amplified by the amplifier 8 is sent to a variable center frequency bandpass filter 10. Such a bandpass filter can be realized by, for example, comprising a Swissotito capacitor filter and controlling its clock frequency with a numerically controlled oscillator (Neo) 9.

また数値制御形発信器はPLLシンセサイザ等により実
現できる。このバンドパスフィルタはその中心周波数が
変えられ、その出力がA/Dコンバーター11経由でマ
イクロコンピュータ13へ与えられる。マイクロコンピ
ュータ13はこの入力から、空間フィルタ出力信号であ
る狭帯域不規則信号の平均周波数の推定を行う。
Further, the numerically controlled oscillator can be realized by a PLL synthesizer or the like. The center frequency of this bandpass filter is changed, and its output is given to the microcomputer 13 via the A/D converter 11. From this input, the microcomputer 13 estimates the average frequency of the narrowband irregular signal that is the spatial filter output signal.

第4A図は前記平均周波数推定の処理フローを示すも物
で、処理200では推定中心周波数の初期値fを次式に
よって定める。
FIG. 4A shows the processing flow for estimating the average frequency, and in process 200, the initial value f of the estimated center frequency is determined by the following equation.

f = v c/ (MX P ) ここではVCは現在の車速、MXは車高センサより求め
た現在の光学系倍率(後述)、Pは空間フィルタのピッ
チ(定数)である、処理201では初期値fを数値制御
形発信器9に設定する。処理202では、初期値周波数
fにおけるA/Dコンバータ11の出力値Aを読みこむ
。判断処理203では前回取り込んだA/Dコンバータ
出力Aoと今取り込んだ出力Aとを比較する。その差が
所定値i以内であれば処理209に進み、中心周波数推
定値fcttfとする。それ以外は判断処理204に進
む。尚、初回のみ今回値Aは0に初、期化しておく。判
断処理204では前述のA/D−妓し、Ao>Aなら処
理205で周波数増加ステップの係数αを−1にセット
し、Ao<Aなら処理206でα=1にセットする。続
いて処理207ではA/Dコンバータ出力値の前回値A
oをAに更新して次回の処理に備える。処理208では
処理205または206で定めたα値を用いて推定中心
周波数を定める。即ちfをf十α・Δfで置き換える。
f = v c / (MX P ) Here, VC is the current vehicle speed, MX is the current optical system magnification obtained from the vehicle height sensor (described later), and P is the pitch (constant) of the spatial filter. A value f is set in the numerically controlled oscillator 9. In process 202, the output value A of the A/D converter 11 at the initial value frequency f is read. In the judgment process 203, the previously captured A/D converter output Ao is compared with the currently captured output A. If the difference is within the predetermined value i, the process proceeds to step 209, where the estimated center frequency value is set as fcttf. Otherwise, the process proceeds to determination processing 204. Note that the current value A is initialized to 0 only for the first time. In judgment process 204, the above-mentioned A/D is determined. If Ao>A, the coefficient α of the frequency increase step is set to -1 in process 205, and if Ao<A, α=1 is set in process 206. Next, in process 207, the previous value A of the A/D converter output value is
Update o to A to prepare for the next process. In process 208, the estimated center frequency is determined using the α value determined in process 205 or 206. That is, f is replaced by f+α·Δf.

ここでΔfは1回のイ^正幅である。このようにfを修
正して処理201へ戻り、修正した周波数fを数値制御
形発信器9に設定し二以下の処理を繰り返す、こうして
空間フィルタ出力狭帯域信号の平均中心周波数fcが推
定される。
Here, Δf is the positive width of one time. After correcting f in this way, return to process 201, set the corrected frequency f to the numerically controlled oscillator 9, and repeat the following processes, thus estimating the average center frequency fc of the spatial filter output narrowband signal. .

次にアンプ8の出力は、第1図のコンパレータ15に導
かれ、基1′l!!電圧erと比較されて矩形波に波形
整形される。微分回路16では前記矩形波形を第5図に
示すようなパルス波形に変換し、割込み信号IRQとし
て、マイコン13に入力する。
The output of the amplifier 8 is then led to the comparator 15 of FIG. ! It is compared with the voltage er and shaped into a rectangular wave. The differentiating circuit 16 converts the rectangular waveform into a pulse waveform as shown in FIG. 5, and inputs it to the microcomputer 13 as an interrupt signal IRQ.

この割込み信号によって前述の利得制御処理が開−始さ
れる。この処理フローは第4B図に示されてでは、A/
Dコンバータ12の出力値を3回読み込む9判断処理2
14では、この3回読み込んだA/D出力値の全てが規
定値A、以上か否かを調べる。この規定値は実験等によ
り定める。全てが規定値A1以上の場合は連続的にA/
D出力値が高レベルにある場合であり、このような場合
のみ利得制御を処理215で行なう、前記3つのA/D
出力値の平均値をAoとすれば、第6図に示すように現
在の利得直線g (A)および通常の利得直線go  
(A)から利得Gが求まる。この場合、A/Dコンバー
タ出力値が前記AIIXKになるようにする。尚1図中
のGcは利得制御を行なう前の利得であり、にはマージ
ン(=O,S 程度)である、また、go  (A)と
g (A)は平行である。
The above-described gain control process is started by this interrupt signal. This processing flow is shown in FIG. 4B.
9 Judgment process 2 of reading the output value of the D converter 12 three times
In step 14, it is checked whether all of the A/D output values read three times are equal to or greater than a specified value A. This specified value is determined through experiments, etc. If all values are above the specified value A1, the A/
This is a case where the D output value is at a high level, and gain control is performed in process 215 only in such a case.
If the average value of the output values is Ao, then the current gain line g (A) and the normal gain line go are shown in Fig. 6.
Gain G can be found from (A). In this case, the A/D converter output value is set to the AIIXK. Incidentally, Gc in Fig. 1 is the gain before gain control, and is a margin (about =O, S), and go(A) and g(A) are parallel.

処理216では割込みマスクを解除し処理217で第4
C図に示す利得監視プログラムを起動する。
In process 216, the interrupt mask is canceled and in process 217, the fourth
Start the gain monitoring program shown in Figure C.

このプログラムでは、処理218でA/Dコンバータ1
2出力A工を読み込む。判断処理219では第6図に示
すようにg−” (go  (AI ))の値がA、を
越えたかどうか判定する。これは−たん下げた利得値を
また通常の状態まで引き上げるためのものである。超え
ていれば処理222で第4A図の処理203における前
記のA/D変換値の前回値AOを、Ao 4−g(1−
” (g (Ao) )に更新する。これは、利得制御
プログラムで利得を下げたためにA/D出力も下がり、
このままでは中心周波数推定時に正しい推定ができなく
なるため、利得を下げた時点でのA/D出力値に補正を
しなければならないためである。処理219でg + 
z(go (AX) )がA、を越えていない場合は処
理220へ進み、利得Gを1だけ増し、処理221で前
述の処理222を同じ利得補正を行う0以上のように利
得制御を行いながら平均中心周波数fcを推定する。
In this program, in process 218, the A/D converter 1
Load 2-output A engineering. In the judgment process 219, as shown in FIG. 6, it is judged whether the value of g-'' (go (AI)) exceeds A.This is to raise the reduced gain value back to the normal state. If it exceeds, in step 222, the previous value AO of the A/D conversion value in step 203 of FIG. 4A is changed to Ao 4-g(1-
” (g (Ao)). This is because the gain has been lowered in the gain control program, so the A/D output has also decreased.
This is because if this continues, correct estimation cannot be made when estimating the center frequency, so it is necessary to correct the A/D output value at the time when the gain is lowered. In process 219, g +
If z(go(AX)) does not exceed A, the process proceeds to process 220, where the gain G is increased by 1, and in process 221, the gain control is performed so that the same gain correction is performed in the process 222 described above. while estimating the average center frequency fc.

次に、光学系の倍率を補正する車高センサであるが、本
実施例においては車高センサは超音波センサを用いてい
る。すなわち第1図の送信器4から発射された送信パル
スが路面に反射して受信器5に受信されるが、第7図の
よう、にこの送受信パルスは車高に対応した時間差τを
もつ、そして車、/高すなわちレンズ2と路面14との
距離boとて・:、門 bo=vs t/2           −(4)の
関係にある。ここでvsは音速である。では時間差測定
部6で測定され、カウンタ7でディジタル化されてマイ
クロコンピュータ−3にとりこまれる6マイクロコンピ
ユーター3は式(4)から車高boを算出し、これと推
定平均中心周波数fcを用いて、速度Vを v=fc−P ”  (bo/b)’ M     ・
”(5)により算出する。ここでpは空間フィルタのピ
ッチ、bは静止時のレンズと路面との距離、Mは静止時
の光学系の倍率である。
Next is a vehicle height sensor that corrects the magnification of the optical system. In this embodiment, an ultrasonic sensor is used as the vehicle height sensor. That is, the transmitted pulse emitted from the transmitter 4 in FIG. 1 is reflected on the road surface and received by the receiver 5, but as shown in FIG. 7, the transmitted and received pulses have a time difference τ corresponding to the vehicle height. Then, the height of the vehicle, that is, the distance bo between the lens 2 and the road surface 14 is expressed as: bo = vs t/2 - (4). Here vs is the speed of sound. Then, the time difference is measured by the time difference measuring section 6, digitized by the counter 7, and taken into the microcomputer 3.The microcomputer 3 calculates the vehicle height bo from equation (4), and uses this and the estimated average center frequency fc. , the speed V is v=fc-P''(bo/b)' M ・
"(5). Here, p is the pitch of the spatial filter, b is the distance between the lens and the road surface when it is stationary, and M is the magnification of the optical system when it is stationary.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、空間フィルタを用いた軍法センサにお
いて、車高の変化による光学系の倍率の変化のために起
こる測度の誤計測を防止でき、かつ強力な光源が不要と
なり、装置の小型化及び低消電力化がはかれるという効
果がある。
According to the present invention, in a military law sensor using a spatial filter, it is possible to prevent measurement errors caused by changes in the magnification of the optical system due to changes in vehicle height, and also eliminates the need for a powerful light source, resulting in miniaturization of the device. This also has the effect of reducing power consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置の一実施例を示す図、第2図は空
間フィルタとレンズの位置関係を示す図、第3図は空間
フィルタの一構成例を示す図、第4A図は空間フィルタ
出力の平均周波数を推定する処理のフローチャート、第
4B図及び第4C図は空間フィルタ出力のレベルを一定
に制御する処理のフローチャート、第5図は第4B図の
処理を起動する割込み発生機構の説明図、第6図は第4
B図及び第4C図の処理の説明図、第7図は車高センサ
の動作説明図である。 1・・・空間フィルタ、2・・・レンズ、3・・・差動
増幅器。 4・・・送信器、5・・・受信器、6・・・時間差測定
部、7・・・カウンタ、8・・・アンプ、9・・・数値
制御層発振器。 10・・・バンドパスフィルタ、11,12・・・A/
D第20 第4.A区      第4e1図 第4c 図 も5の めらの 7”(is(/11す
FIG. 1 is a diagram showing an embodiment of the device of the present invention, FIG. 2 is a diagram showing the positional relationship between the spatial filter and the lens, FIG. 3 is a diagram showing an example of the configuration of the spatial filter, and FIG. 4A is a diagram showing the spatial relationship between the spatial filter and the lens. Figures 4B and 4C are flowcharts of the process of estimating the average frequency of the filter output, Figures 4B and 4C are flowcharts of the process of controlling the level of the spatial filter output to a constant level, and Figure 5 is a flowchart of the interrupt generation mechanism that starts the process of Figure 4B. Explanatory diagram, Figure 6 is the 4th
FIG. B and FIG. 4C are explanatory diagrams of the processing, and FIG. 7 is an explanatory diagram of the operation of the vehicle height sensor. 1... Spatial filter, 2... Lens, 3... Differential amplifier. 4... Transmitter, 5... Receiver, 6... Time difference measuring section, 7... Counter, 8... Amplifier, 9... Numerical control layer oscillator. 10... Band pass filter, 11, 12... A/
D 20th 4th. Area A Figure 4e1 Figure 4c

Claims (1)

【特許請求の範囲】[Claims] 1、路面よりの反射光を光学系を介して空間フィルタへ
とり込み、空間フィルタ出力信号中の平均周波数を検出
し、上記光学系の倍率と上記検出した平均周波数に比例
する値として車両の走行速度を求めるように構成した車
両速度測定装置において、車両の固定位置の路面からの
高さを測定する車高センサと、上記固定位置の車両静止
時の高さと上記車高センサで検出した高さとから走行時
に於る上記光学系の倍率を算出する手段を設けたことを
特徴とする車両速度測定装置。
1. The reflected light from the road surface is taken into a spatial filter via an optical system, the average frequency in the spatial filter output signal is detected, and the value proportional to the magnification of the optical system and the detected average frequency is calculated as a value proportional to the vehicle's running. A vehicle speed measuring device configured to determine speed includes a vehicle height sensor that measures the height of a fixed position of the vehicle from the road surface, a height of the vehicle at the fixed position when the vehicle is stationary, and a height detected by the vehicle height sensor. A vehicle speed measuring device characterized in that it is provided with means for calculating the magnification of the optical system when the vehicle is traveling.
JP25568586A 1986-10-29 1986-10-29 Vehicle speed measuring instrument Pending JPS63111471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25568586A JPS63111471A (en) 1986-10-29 1986-10-29 Vehicle speed measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25568586A JPS63111471A (en) 1986-10-29 1986-10-29 Vehicle speed measuring instrument

Publications (1)

Publication Number Publication Date
JPS63111471A true JPS63111471A (en) 1988-05-16

Family

ID=17282201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25568586A Pending JPS63111471A (en) 1986-10-29 1986-10-29 Vehicle speed measuring instrument

Country Status (1)

Country Link
JP (1) JPS63111471A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093454A (en) * 2016-06-30 2016-11-09 中国人民解放军国防科学技术大学 Non-calibrating vehicle-mounted space filtering speed measuring device and speed-measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093454A (en) * 2016-06-30 2016-11-09 中国人民解放军国防科学技术大学 Non-calibrating vehicle-mounted space filtering speed measuring device and speed-measuring method

Similar Documents

Publication Publication Date Title
JPH06148003A (en) Ultrasonic temperature measuring equipment
US5274326A (en) Circuit configuration for processing the output signals of a speed sensor to eliminate noise
JPS63111471A (en) Vehicle speed measuring instrument
JP2007208400A (en) Triangular wave generating circuit
JP2019183650A (en) On-vehicle device, clock setting method of on-vehicle device and program
JP2738800B2 (en) Triangulation distance meter and inter-vehicle distance control device
JP3974670B2 (en) Optical displacement measuring device
JP2539749B2 (en) Distance correction method for radar range finder
JPH07128349A (en) Speed detector
JPH0648190B2 (en) Optical displacement measuring device
JPH0130405B2 (en)
JPH089761Y2 (en) Fuzzy controller
JP2560595B2 (en) Doppler ground speed detector
JPH07159423A (en) Vehicle body mounting structure of angular velocity sensor for vehicle
JP3697970B2 (en) Vehicle speed calculation method
SU1413596A1 (en) Follow-up system
JPS62163910A (en) Front road surface condition detector
JPH10295073A (en) Apparatus and method for phase detection
JPH0352639Y2 (en)
JPH10221088A (en) Fiber-optic gyro
JPH0450686A (en) Method and apparatus for tracking target
JPS587578A (en) Fm-cw radar
SU824148A1 (en) Device for adjusting regulators
JPH02504552A (en) fiberglass gyroscope
JPH0792268A (en) Data processor of laser range finder