JPS63111269A - Exhaust heat utilizing device for engine - Google Patents

Exhaust heat utilizing device for engine

Info

Publication number
JPS63111269A
JPS63111269A JP61259053A JP25905386A JPS63111269A JP S63111269 A JPS63111269 A JP S63111269A JP 61259053 A JP61259053 A JP 61259053A JP 25905386 A JP25905386 A JP 25905386A JP S63111269 A JPS63111269 A JP S63111269A
Authority
JP
Japan
Prior art keywords
engine
element member
effect mode
heat
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61259053A
Other languages
Japanese (ja)
Inventor
Tatsumi Hagiwara
多津美 萩原
Kenji Kashiyama
謙二 樫山
Saburo Nakamura
三郎 中村
Taku Fuse
卓 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP61259053A priority Critical patent/JPS63111269A/en
Publication of JPS63111269A publication Critical patent/JPS63111269A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve the general engine performance by providing an element member adapted to absorb and generate heat corresponding to the direction of applying an electric current on a high temperature portion of an engine, and controlling element member to change an effect mode thereof according to the operating condition of the engine. CONSTITUTION:A cylinder block 1 includes an element member 13, the inner peripheral portion of which is positioned in a combustion chamber 6 and the outer peripheral portion thereof is positioned in a water jacket portion 11. The element member 13 is adapted to generate power according to Seebeck effect by endothermic, and to absorb and generate heat according to Peltier effect corresponding to the direction of applying an electric current. On the other hand, the water jacket 11 is fitted with a water temperature sensor 18, and according to a signal from the water temperature sensor 18 or the like, an effect mode of the element member 13 is controlled to change by CPU 20. For example, in case of conducting warming up, the element member 13 is set in a Peltier effect mode, so that an electric current is applied in a designated direction to heat the combustion chamber 6, thereby reducing the warming-up time.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ゼーベック効果およびベルチェ効果を生ず
る素子を用いてエンジン排熱を有効利用するようなエン
ジンの排熱利用装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an engine exhaust heat utilization device that effectively utilizes engine exhaust heat using elements that produce the Seebeck effect and the Bertier effect.

(従来技術) 従来、二種の異なる金属、または半導体を繋ぎ合せ、閉
回路を形成し、二つの接点に温度差を与えると、一定方
向に電流が流れるゼーベック効果(Secbeck e
ffect、熱電効果ともいう)と、二ツの異なる金属
、または半導体で閉回路を形成し、この開回路に電流を
流すと、繋ぎ合せの部分で熱の発生、吸収が生ずるベル
チェ効果(Pettier ef−fect)とが知ら
れている。
(Prior art) Conventionally, when two different metals or semiconductors are connected to form a closed circuit and a temperature difference is applied between the two contacts, the Seebeck effect (Secbeck effect), where current flows in a fixed direction, has been observed.
(also called the thermoelectric effect) and the Bertier effect (Pettier effect), which occurs when two different metals or semiconductors form a closed circuit, and when a current is passed through this open circuit, heat is generated and absorbed at the connected part. -fect) is known.

このようなげ−ベツク効果、ベルチェ効果を生ずる素子
を用いて、エンジン排熱を有効利用する装置としては、
例えば、特開昭60−195327号公報に記載の内燃
機関剤1ijX 13’aの冷却装置がある。
A device that effectively uses engine exhaust heat using an element that produces such a Nage-Beck effect and a Beltier effect is as follows.
For example, there is a cooling device for internal combustion engine agent 1ijX 13'a described in JP-A-60-195327.

すなわち、吸熱により上述のゼーベック効果に基づいて
発電する熱発電素子と、通電により上述のベルチェ効果
に基づいて吸熱Jる冷却素子とを前記熱発電素子の流す
電流により、該冷7Jl素子が吸熱作用を生ずるように
、各々結線して閉回路を構成し、前記熱発電素子を排気
マニホルド外周部やマフラ外周部などの内燃機関の放熱
部にF、Q tJ、1)θ記冷f、11素子を燃料噴射
弁や自動車用収納ボックスなどの内燃機関!11410
00要冷却部に設【Jた冷加装■である。
That is, the thermoelectric generating element generates electricity based on the above-mentioned Seebeck effect by absorbing heat, and the cooling element absorbs heat based on the above-mentioned Beltier effect when energized, and the cooling element absorbs heat by the current flowing through the thermoelectric generating element. F, Q tJ, 1) θ cooling f, 11 elements are connected to each other to form a closed circuit so as to generate Internal combustion engines such as fuel injection valves and automotive storage boxes! 11410
00 Cooling equipment installed in the cooling section.

この従来装置では、エンジン排熱を有効利用して必要箇
所を冷141する利点がある反面、エンジンの運転状態
に応じて、例えば、暖機運転時間の短縮を図るなどのエ
ンジン性能を向トさせることができない問題点を有して
いた。
While this conventional device has the advantage of effectively utilizing engine exhaust heat to cool the necessary parts, it also improves engine performance depending on the engine operating condition, for example by shortening the warm-up time. There was a problem that it could not be done.

(発明の目的) この発明は、エンジンの運転状態に対応して素子部材の
ベルチェ効果、ゼーベック効果の効果態様を変更制御す
ることで、エンジンの運転状態に応じたエンジン性能の
向上を図ることができるエンジンの排熱利用装置の提供
を目的とする。
(Objective of the Invention) The present invention is capable of improving engine performance according to the engine operating condition by changing and controlling the effects of the Beltier effect and the Seebeck effect of the element members in accordance with the engine operating condition. The purpose is to provide a device that utilizes engine exhaust heat.

(発明の構成) この発明は、エンジンの^湿部に設けられ、電流の通電
方向に対応して吸熱、発熱する素子部材と、エンジンの
運転状態を検出する運転状態検出手段と、上記運転状態
検出手段の出力に基づいて、上記素子部材の効果態様を
変更制御するi、11ti1手段とを備えたエンジンの
排熱利用装置であることを特徴とする。
(Structure of the Invention) The present invention provides an element member that is provided in a wet part of an engine and absorbs heat and generates heat in accordance with the direction of current flow, an operating state detection means that detects the operating state of the engine, and an element member that detects the operating state of the engine. The present invention is characterized in that it is an engine exhaust heat utilization device comprising: i, 11ti1 means for changing and controlling the effect mode of the element member based on the output of the detecting means.

(発明の効果) この発明によれば、上述の運転状態検出手段からの出力
の基づいて、制御手段が前述の素子部材の効果態様(ベ
ルチェ効果の態様にするか、或はゼーベック効果の態様
にするかの意)を変更制御するので、エンジンの運転状
態に応じたエンジン性能の向上を図ることができ、例え
ば、冷寒時にエンジンを始動して暖機運転を行なう場合
には、上述の制御手段で素子部材をペルチェ効果態様に
設定して、所定方向に電流を流すことで燃焼室を加熱し
、暖1a蓮転時間の短縮を図ることができる。
(Effects of the Invention) According to the present invention, the control means determines the effect mode of the element member (Beltier effect mode or Seebeck effect mode) based on the output from the above-mentioned operating state detection means. Since the engine performance can be improved depending on the operating state of the engine, for example, when starting the engine in cold weather to warm up the engine, the above-mentioned control By setting the element member in a Peltier effect mode and passing a current in a predetermined direction, it is possible to heat the combustion chamber and shorten the heating time 1a.

また、上述の暖i運転後の通常運転時もしくはエンジン
停止後においては、上述の制御手段で素子部材をゼーベ
ック効果態様に設定して、例えばシリンダボア上端部(
高温部)に配設した素子部材の所定端を燃焼室の高温雰
囲気で加熱りることで、熱起電力を発生させ、この熱起
電力でエンジン補機を作動させることがでさる効果があ
る。
In addition, during normal operation after the above-mentioned warm-up operation or after the engine is stopped, the element member is set to the Seebeck effect mode by the above-mentioned control means, so that, for example, the upper end of the cylinder bore (
By heating a predetermined end of the element member placed in the high-temperature part) in the high-temperature atmosphere of the combustion chamber, a thermoelectromotive force is generated, and this thermoelectromotive force is used to operate the engine auxiliary equipment, which is particularly effective. .

(実施例) この発明の一実施例を以下図面に基づいて詳述する。(Example) An embodiment of the present invention will be described in detail below based on the drawings.

図面はエンジンの排熱利用装置を示し、第1図において
、シリンダブロック1の上端部にはガスケツ1へ2を介
してシリンダヘッド3を取fJ4ノ、このシリンダヘッ
ド3には吸気弁4、排気弁5の開閉により適宜燃焼室6
と連通ずる吸気ボート7および排気ボート8をそれぞれ
形成する一方、上述のシリンダブロック1内にはピスト
ン9を配設している。
The drawing shows an exhaust heat utilization system of an engine, and in FIG. The combustion chamber 6 is opened and closed as appropriate by opening and closing the valve 5.
An intake boat 7 and an exhaust boat 8 are respectively formed to communicate with the cylinder block 1, and a piston 9 is disposed within the cylinder block 1 described above.

また、上述のシリンダブロック1にはウォータジャケラ
1−10.11を形成すると共に、シリンダヘッド3に
は上述のウォータジャケット11と連通ずる別のウォー
タジャケット12を形成している。
Further, the above-mentioned cylinder block 1 is formed with a water jacket 1-10.11, and the cylinder head 3 is formed with another water jacket 12 which communicates with the above-mentioned water jacket 11.

そして、上述のシリンダブロック1にお1ノるシリンダ
ボア上端部には、素子部材13を配設してる。
An element member 13 is disposed at the upper end of the cylinder bore in the cylinder block 1 described above.

この素子部材13は内周部が燃焼室6に、また、外周部
がつA−クジ11ケツト11にそれぞれ位置する円環状
の素子部材で、かつ吸熱することにより発電すると共に
、電流の通電方向に対応して吸熱、発熱する。
This element member 13 is an annular element member whose inner periphery is located in the combustion chamber 6 and whose outer periphery is located in the A-pull 11 bracket 11, and generates electricity by absorbing heat. It absorbs heat and generates heat in response to.

」一連の素子部材13は、第2図に示すように、n型半
導体「)とp型”I’−)’J休体とを交互に配列する
とバに、燃焼室6側の内周部には、加熱板を兼ねる高温
側受熱板14を、また、ウォータジャケット11側の外
周部には、各半導体n、p毎に位置して、相互間を絶縁
性シール材15で絶縁した冷却板を兼ねる低温側放熱板
16をそれぞれ接合して、上述の?3温側受熱板14の
加熱時にピーベック効果により起電力を1!?、まlC
1各要素16.p。
As shown in FIG. There is a high temperature side heat receiving plate 14 which also serves as a heating plate, and on the outer periphery of the water jacket 11 side there is a cooling plate located for each semiconductor n and p and insulated from each other by an insulating sealing material 15. The low-temperature side heat sinks 16 that also serve as the above-mentioned ? 3 When heating the hot side heat receiving plate 14, the electromotive force is reduced by 1 due to the Pebeck effect! ? , MarC
1 each element 16. p.

14、n、16の順に電流を通電した時、ペルヂ1効果
にJ:す」上述の高温側受熱板14がジュール熱以外の
熱を発生Jるように構成している。
When current is applied in the order of 14, n, and 16, the Pelge 1 effect occurs.''The high temperature side heat receiving plate 14 is configured to generate heat other than Joule heat.

さらに、上述のn半導体nとp型半導体pとの間には断
熱材17を配設し、また素子部材13とシリングブロッ
ク1上端面との間にも断熱+A18を介設している。
Furthermore, a heat insulating material 17 is provided between the above-mentioned n semiconductor n and p type semiconductor p, and a heat insulating material +A18 is also provided between the element member 13 and the upper end surface of the sill block 1.

ここで、前1本の素子部材13の形成材料としては、例
えば、カルコゲン化合物(Bi2Tc3. PbTE 
)、望ましくはカルコゲン系のアモルファス半導体や金
属珪化物のCrSi2.HnSil、73.FeSi2
.CoSi 、望ましくはFcSi2薄膜のアモルファ
ス半導体、その他を用いることができる。
Here, as a material for forming the first element member 13, for example, a chalcogen compound (Bi2Tc3.PbTE
), preferably chalcogen-based amorphous semiconductors or metal silicides such as CrSi2. HnSil, 73. FeSi2
.. CoSi, preferably an amorphous semiconductor such as FcSi2 thin film, and others can be used.

ところで、前述のシリンダブロック1にはウォータジャ
ケット10内の水温を検出する水温セン1J18を取イ
」りている。
By the way, the aforementioned cylinder block 1 is equipped with a water temperature sensor 1J18 for detecting the water temperature inside the water jacket 10.

まlζ、CPU20は、上)木の水温ヒンナ18からの
水温信号およびエンジン回転数信号等の各種信号の入力
に基づいて、ROM19に格納されたプログラムに沿っ
て、素子部材13に効果態様を変更制御し、RAM21
は予め設定した水温信号データなどの必要なデータを記
tQする。
The CPU 20 changes the effect mode on the element member 13 according to the program stored in the ROM 19 based on the input of various signals such as the water temperature signal and the engine rotation speed signal from the wood water temperature hinge 18 (above). control, RAM21
records necessary data such as preset water temperature signal data.

なお、第1図において、22はバルブシート、23はバ
ルブガイド、24は直流電源である。
In addition, in FIG. 1, 22 is a valve seat, 23 is a valve guide, and 24 is a DC power source.

このように構成したエンジンの排熱利用装置の動作を、
第3図のフローブヤートを参照して説明する。
The operation of the engine exhaust heat utilization device configured in this way is as follows.
This will be explained with reference to the flowchart shown in FIG.

第1ステツプ31で、CPU20は、エンジン回転数信
号、水温信号などの各種信号を読込む。
In a first step 31, the CPU 20 reads various signals such as an engine speed signal and a water temperature signal.

次に、第2ステツプ32で、CPLJ20は」−述の水
温センサ18からの水温信号にVづいて、現在の水温が
予め設定した水温、例えば、80℃よりも大か否かを判
定し、t≦80℃で暖は運転中であると判定した際には
次の第3ステツプ33に、逆にt>80℃で通常の運転
中であると判定した際には、別の第4ステツプ34に移
行する。
Next, in a second step 32, the CPLJ 20 determines whether the current water temperature is higher than a preset water temperature, for example, 80° C., based on the water temperature signal V from the water temperature sensor 18 mentioned above. When t≦80°C and it is determined that the machine is in warm operation, the process goes to the next third step 33, and conversely, when it is determined that t>80°C and the machine is in normal operation, it goes to another fourth step. 34.

上述の第3ステツプ33で、CPU20は素子部材13
をベルチェ効果態様に設定する。すなわち、該素子部材
13の各要素に直流電源24を16、p、1/1.n、
16の順に通常づることで、高温側受熱板14を加熱板
として作用させ、この加熱板からジュール熱以外の熱を
発生さUることで、燃焼室6を加熱する。
In the third step 33 described above, the CPU 20
Set to Beltier effect mode. That is, the DC power supply 24 is applied to each element of the element member 13 at 16, p, 1/1. n,
16, the high temperature side heat receiving plate 14 acts as a heating plate, and the combustion chamber 6 is heated by generating heat other than Joule heat from this heating plate.

この結果、暖機連転時間の短縮を図ることができる効果
がある。
As a result, there is an effect that the warm-up continuous rotation time can be shortened.

一方、前述の第4ステツプ34では、CPU 20は素
子部材13をゼーベック効果態様に設定する。すなわち
、上述の素子部′vi13に対りる直流電源24の接続
を回路的に除去し、この素子部材13の内周部に位置す
る高温側受熱板14を、燃焼室6の几温雰囲気で加熱し
、また外周部に位置する低温側放熱板16をウォータジ
ャケット11内のエンジン冷IJ1水で冷IJ1する。
On the other hand, in the fourth step 34 described above, the CPU 20 sets the element member 13 to the Seebeck effect mode. That is, the connection of the DC power supply 24 to the above-mentioned element part 'vi13 is removed in terms of the circuit, and the high-temperature side heat receiving plate 14 located on the inner peripheral part of this element member 13 is placed in the cool atmosphere of the combustion chamber 6. The engine is heated, and the low-temperature side heat sink 16 located on the outer periphery is cooled with engine cooling IJ1 water in the water jacket 11.

このように上)ホの素子部材13を暖機運転終了後にお
いてゼーベック効果態様に設定づると、高温度勾配によ
り上述の〕装子部材13には熱起電力が発生するので、
この熱起電力を取出すことで、エンジン補償を作用させ
ることができる効果がある。 また、他の制御として例
えば、減速燃料カッ1〜中、ベルチェ効果態様に設定し
て所定方向に電流を流すことにより、燃焼室を加熱する
ことができるので、減速燃料カット中にJ3いて、燃焼
室が冷n1されることによる減速燃料カットからの復帰
時、着火性が悪く復帰が困難になるのを防止できる。 
さらに、比較的燃焼温度が低いアイドル運転時、上記減
速燃料カットと同様ベルチェ効果態様に設定することに
より、燃焼室を加熱することができる。
If the element member 13 (e) above is set to the Seebeck effect mode after the warm-up operation, a thermoelectromotive force will be generated in the above-mentioned armature member 13 due to the high temperature gradient.
By extracting this thermal electromotive force, engine compensation can be effected. In addition, as another control, for example, the combustion chamber can be heated by setting the Beltier effect mode to flow current in a predetermined direction during deceleration fuel cut 1 to 1, so that during deceleration fuel cut, J3 When returning from deceleration fuel cut due to the room being cooled n1, it is possible to prevent poor ignitability and difficulty in returning.
Furthermore, during idling operation when the combustion temperature is relatively low, the combustion chamber can be heated by setting the Beltier effect mode similar to the deceleration fuel cut described above.

加えて、素子部材をエンジンの排気系、例えば触媒の外
周に配設し、触!1.度が低い時、ベルチェ効果態様に
設定して所定の方向に電流を流すことにより、触媒温度
の早期の上品を図ることができ、逆に触媒温1文が高温
の時、触媒温度が低い時と逆の方向に電流を流すことに
より、触媒の温度を低下でき、熱劣化を防11:できる
In addition, element members can be placed around the engine exhaust system, for example around the catalyst, and touched! 1. When the catalyst temperature is low, by setting the Beltier effect mode and passing current in a predetermined direction, it is possible to quickly improve the catalyst temperature.Conversely, when the catalyst temperature is high, when the catalyst temperature is low By passing a current in the opposite direction, the temperature of the catalyst can be lowered and thermal deterioration can be prevented.

ざらには、素子部材をオイルパンに配設し、オイルの温
度が低い時、ベルブ−r効果態様に設定して所定の方向
に電流を流すことにJ、す、オイルの温度を上界できる
ので、粘性を小ざくでき、冷間時等におけるオイルの粘
性大による摺動抵抗を低減でき、逆にオイルの温度が高
温になった時は、オイルの温度が低い時とは逆の方向の
電流を流りことにより、オイルの冷却を行なうことがで
きる。
In general, the temperature of the oil can be set to an upper limit by arranging the element member in the oil pan, and when the oil temperature is low, by setting it to the bellboot effect mode and flowing a current in a predetermined direction. Therefore, the viscosity can be reduced, and the sliding resistance due to the high viscosity of the oil can be reduced when the oil is cold. Conversely, when the oil temperature is high, it is possible to reduce the viscosity in the opposite direction from when the oil temperature is low. The oil can be cooled by passing an electric current through it.

この発明の構成と、上述の実施例との対応において、 この発明の運転状態検出手段は、実施例の水温センリ1
8に対応し、以下同様に、 制御手段は、CF’tJ20に対応するも、この発明は
、上述の実施例の構成のみに限定されるものではない。
In the correspondence between the structure of this invention and the above-mentioned embodiment, the operating state detection means of this invention is the water temperature sensor 1 of the embodiment.
Similarly, the control means corresponds to CF'tJ20, but the present invention is not limited to the configuration of the above-described embodiment.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の一実施例を示し、 第1図はエンジンの排熱利用装置を示す系統図、第2図
は第1図の■−■線矢視断面図、第3図はフローチャー
トである。 13・・・素子部材    18・・・水温センサ20
・・・CPU 第1図 13・・・木握
The drawings show one embodiment of the present invention; Fig. 1 is a system diagram showing an engine exhaust heat utilization device, Fig. 2 is a sectional view taken along the line ■-■ in Fig. 1, and Fig. 3 is a flow chart. . 13... Element member 18... Water temperature sensor 20
...CPU Figure 1 13...Kijiri

Claims (1)

【特許請求の範囲】 1、エンジンの高温部に設けられ、電流の通電方向に対
応して吸熱、発熱する素子部材と、エンジンの運転状態
を検出する運転状態検出手段と、 上記運転状態検出手段の出力に基づいて上記素子部材の
効果態様を変更制御する制御手段とを備えたエンジンの
排熱利用装置。
[Scope of Claims] 1. An element member that is provided in a high-temperature part of the engine and absorbs heat and generates heat in accordance with the direction of current flow; an operating state detection means for detecting the operating state of the engine; and the above operating state detection means. An exhaust heat utilization device for an engine, comprising: control means for changing and controlling the effect mode of the element member based on the output of the engine.
JP61259053A 1986-10-29 1986-10-29 Exhaust heat utilizing device for engine Pending JPS63111269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61259053A JPS63111269A (en) 1986-10-29 1986-10-29 Exhaust heat utilizing device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61259053A JPS63111269A (en) 1986-10-29 1986-10-29 Exhaust heat utilizing device for engine

Publications (1)

Publication Number Publication Date
JPS63111269A true JPS63111269A (en) 1988-05-16

Family

ID=17328669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61259053A Pending JPS63111269A (en) 1986-10-29 1986-10-29 Exhaust heat utilizing device for engine

Country Status (1)

Country Link
JP (1) JPS63111269A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030050453A (en) * 2001-12-18 2003-06-25 현대자동차주식회사 Knocking controlling device of engine and method thereof
EP2098713A1 (en) * 2008-03-06 2009-09-09 Iveco Motorenforschung AG Thermoelectric heat recuperation system
DE102009017311A1 (en) * 2009-04-11 2010-10-14 Mag Europe Gmbh Thermoelectric device for producing electrical energy from heat produced by internal combustion engine of motor vehicle, has generator arranged such that electrical energy is generated from heat guided from inner wall towards outer wall
DE102009002596A1 (en) * 2009-04-23 2010-11-04 Ford Global Technologies, LLC, Dearborn Internal combustion engine with thermoelectric generator
JP2013231411A (en) * 2012-05-01 2013-11-14 Hino Motors Ltd Heat recovery system
DE102012215348A1 (en) * 2012-08-29 2014-05-28 Bayerische Motoren Werke Aktiengesellschaft Liquid-cooled lifting cylinder combustion engine for motor car, has tubular thermo-electric module that is arranged between cylinder and coolant channel which is set to surround the aluminum crankcase
ES2555667A1 (en) * 2014-07-01 2016-01-07 Fº JAVIER PORRAS VILA Engine with cylinders that have a rotor with notches in lever radius, improved (Machine-translation by Google Translate, not legally binding)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030050453A (en) * 2001-12-18 2003-06-25 현대자동차주식회사 Knocking controlling device of engine and method thereof
EP2098713A1 (en) * 2008-03-06 2009-09-09 Iveco Motorenforschung AG Thermoelectric heat recuperation system
DE102009017311A1 (en) * 2009-04-11 2010-10-14 Mag Europe Gmbh Thermoelectric device for producing electrical energy from heat produced by internal combustion engine of motor vehicle, has generator arranged such that electrical energy is generated from heat guided from inner wall towards outer wall
DE102009002596A1 (en) * 2009-04-23 2010-11-04 Ford Global Technologies, LLC, Dearborn Internal combustion engine with thermoelectric generator
DE102009002596B4 (en) * 2009-04-23 2012-11-08 Ford Global Technologies, Llc Internal combustion engine with thermoelectric generator
JP2013231411A (en) * 2012-05-01 2013-11-14 Hino Motors Ltd Heat recovery system
DE102012215348A1 (en) * 2012-08-29 2014-05-28 Bayerische Motoren Werke Aktiengesellschaft Liquid-cooled lifting cylinder combustion engine for motor car, has tubular thermo-electric module that is arranged between cylinder and coolant channel which is set to surround the aluminum crankcase
ES2555667A1 (en) * 2014-07-01 2016-01-07 Fº JAVIER PORRAS VILA Engine with cylinders that have a rotor with notches in lever radius, improved (Machine-translation by Google Translate, not legally binding)

Similar Documents

Publication Publication Date Title
JP6064591B2 (en) Thermoelectric generator
JP2003328753A (en) Electronically controlled thermostat
KR100191838B1 (en) Thermostat valve for the coolant circulation of an internal combustion engine
JPS63111269A (en) Exhaust heat utilizing device for engine
JPS60195327A (en) Cooling device for accesory apparatus of internal-combustion engine
JP2002174106A (en) Oil circulation device for engine
JPH036848Y2 (en)
JP3607524B2 (en) Cylinder block water cooling controller
KR200160054Y1 (en) Structure of installation for bypass channel between cylinder head and thermostat
KR100254542B1 (en) Apparatus for cooling cylinder block of automobile
JPH05245394A (en) Device for heating, cooling and testing element
JPH05172425A (en) Cold/hot water feed device
JPS5842613Y2 (en) Diesel engine fuel injection nozzle
CA1197542A (en) Engine block heater with integrated thermostatic control
KR970044507A (en) Chiller of water-cooled engine
JPS6233105Y2 (en)
JPH03117617A (en) Cooling structure of internal combustion engine
KR19980046232A (en) Warming-up accelerator of engine
JPH03295512A (en) Water heater combined with warming
JPS59160864U (en) Outboard motor
JPS585449A (en) Control device of engine
JPH0623733Y2 (en) Vaporizer with auto choke
KR930010856B1 (en) Warming-up apparatus for internal combustion engine
JPS5882468U (en) engine fuel heating device
JP2004232501A (en) Cooling system of compression self-ignition type internal combustion engine