JPS63111121A - Production of slag for cold forging - Google Patents

Production of slag for cold forging

Info

Publication number
JPS63111121A
JPS63111121A JP25941786A JP25941786A JPS63111121A JP S63111121 A JPS63111121 A JP S63111121A JP 25941786 A JP25941786 A JP 25941786A JP 25941786 A JP25941786 A JP 25941786A JP S63111121 A JPS63111121 A JP S63111121A
Authority
JP
Japan
Prior art keywords
cooling
slag
hollow
upsetting
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25941786A
Other languages
Japanese (ja)
Inventor
Wataru Takahashi
渉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25941786A priority Critical patent/JPS63111121A/en
Publication of JPS63111121A publication Critical patent/JPS63111121A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To permit production of hollow and solid slug having uniform structure by using circular conical or circular truncated cone-shaped dies to upset the hollow slug having the spheroidized structure of a high-C hard-to-work steel at the time of producing said hollow slug by upsetting. CONSTITUTION:After a carbon steel bar or low alloy steel bar for machine structural purposes is cut to a prescribed length, the material is upset at >=40% in the axial direction by a pair of the upper and lower circular conical or circular truncated cone-shaped dies having 120-176 deg. tip angle in the (Ac1-60 deg.C)-(Ac3-40 deg.C) temp. region of said material. The material is further held for 1-3hr in the (Ac1-60 deg.C)-(Ac3-40 deg.C) temp. region in succession thereof after or without boring and is then subjected to air cooling or slow cooling or cooling at <=50 deg.C/h cooling rate from the above-mentioned holding temp. down to 650 deg.C to form the spheroidized structure. The material is thereafter subjected to a descaling and lubricating treatment. The respective parts of the upset product are nonuniformly strained and the spheroidization is dispersed if the tip angle of the above-mentioned dies is off the above-mentioned range.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は自動車、産業機械等の歯車等の部品の素材に
用いられる冷間塑性加工用素材(スラグ)     −
の製造技術に係り、低コストかつ能率的な球状化組織を
有する中空スラグまたは中実スラグの製造方法に関する
[Detailed description of the invention] Industrial field of application This invention is a material for cold plastic working (slag) used as a material for parts such as gears of automobiles, industrial machines, etc.
The present invention relates to a low-cost and efficient manufacturing method of hollow slag or solid slag having a spheroidized structure.

背景技術 冷間鍛造用スラグとしては、NK高精度中空スラグ(日
本鋼管株式会社製)が知られている。これは、棒鋼→切
断→冷間プレス成形→穴あけ→球状化焼鈍→脱スケール
→ボンデ・ホンダリューベ潤滑処理→中空スラグという
工程で製造されている。しかしながら、機械MA造造次
炭素鋼340Cまで、低合金鋼は20C程度までしか製
造されていない。
Background Art As a slag for cold forging, NK high-precision hollow slag (manufactured by Nippon Kokan Co., Ltd.) is known. This is manufactured through the following process: steel bar → cutting → cold press forming → drilling → spheroidizing annealing → descaling → Bonde-Honda Lube lubrication treatment → hollow slag. However, mechanically manufactured carbon steel up to 340C and low alloy steel up to about 20C are only manufactured.

その理由は、545C,5CH435等の難加工材料で
は圧延のままでの冷間プレス成形が難しく、成形時に球
状化焼鈍が必要であり、コスト高となるためでおると考
えられている。冷間プレス成形前に行なう球状化処理は
、材料の変形能を向上させ鍛造荷重を軽減するのに難加
工材$31では必須の工程であるが、この灰皿には16
時間にもおよ7S″X艮時間と多大なエネルギーを要す
る。また、プレス成形後の球状化処理も同様に多大な時
間とエネルギーを要する。このような理由により、難加
工材の中空スラグは従来製造されていない。また、冷間
プレス成形であるため変形抵抗が大きく、直径の大きな
中空スラグを製造するためには大きな容量のプレスが必
要となり、設備費が高くなる。
The reason for this is thought to be that difficult-to-process materials such as 545C and 5CH435 are difficult to cold press form as they are rolled, and require spheroidizing annealing during forming, resulting in high costs. The spheroidizing process performed before cold press forming is an essential process for difficult-to-work materials $31 to improve the deformability of the material and reduce the forging load, but this ashtray has 16
It takes a lot of time and a lot of energy. Also, the spheroidizing process after press forming also takes a lot of time and energy.For these reasons, hollow slag, which is a difficult-to-process material, It has not been previously manufactured.Also, since it is cold press formed, the deformation resistance is high, and in order to manufacture a hollow slug with a large diameter, a press with a large capacity is required, resulting in high equipment costs.

発明が解決しようとする問題点 このような現状に鑑み、出願人は、高Cの難加工鋼の球
状化組織を有する中空スラグを製造する方法を先に提案
した(特願昭56−189941 )。この方法は、温
I25鍛造のもつ高変形能・低変形応力、ミクロ組織改
善能力を生かし、加工度の高い中空成形品を成形前の球
状化処理なしで温間鍛造成形し、そのまま保熱して球状
化組織となし、引続いて脱スケール、潤滑処理を施こし
て中空スラグとする方法である。しかしながら、この方
法の場合単純に据込加工したのでは、成形品の加工度に
ばらつきが生じ、均一な組織を持つ中空スラグを得るの
が難しいという難点があった。
Problems to be Solved by the Invention In view of the current situation, the applicant previously proposed a method for manufacturing a hollow slag having a spheroidized structure of high C, difficult-to-work steel (Japanese Patent Application No. 56-189941). . This method takes advantage of the high deformability, low deformation stress, and microstructure improvement ability of warm I25 forging, and warmly forges highly processed hollow molded products without spheroidization treatment before forming, and then heat-retains them as is. This is a method to form a spheroidal structure, followed by descaling and lubrication treatment to form a hollow slag. However, in the case of this method, there is a problem in that simply upsetting the molded product results in variations in the degree of processing of the molded product, making it difficult to obtain a hollow slag with a uniform structure.

発明の目的 この発明は従来の前記問題点を解決するためになされた
もので、金型による据込加工方法を工夫することにより
、均一なの球状化組、讃を有する中空スラグ、中実スラ
グを低コストで製造し得る方法を提案せんとするもので
必る。
Purpose of the Invention The present invention was made to solve the above-mentioned conventional problems, and by devising the upsetting method using a mold, it is possible to produce hollow slag and solid slag having uniform spheroidization and spheroidization. It is necessary to propose a method that can be manufactured at low cost.

問題点を解決するための手段 この発明は前記特願昭56−189941の方法の問題
点を解決する手段として、円錐または円錐台状の金型を
用い据込加工することにより、均一な球状化組織を有す
る中空スラグ、中実スラグを製造し得る方法を提案する
ものである。
Means for Solving the Problems The present invention solves the problems of the method of the above-mentioned Japanese Patent Application No. 189941/1982 by using a conical or truncated conical mold for upsetting, thereby achieving uniform spherical formation. This paper proposes a method for producing hollow slag and solid slag with texture.

すなわちこの発明は、機械11R造用炭素鋼俸または低
合金鋼棒を所定の長さに切断後、該材料の(AC+−6
0℃)〜(AC3−40℃)の温度域で先端角120〜
176°の円錐または円錐台状の上下1対の金型にて軸
方向に40%以上据込加工を施こした1*、引続いて(
AC,〜60℃)〜(AC3−40℃)の温度に1〜3
時間保持した後空冷または徐冷するか、または前記保持
温度より650℃までを50’0.4以下の冷却速度で
冷却して球状化組織となし、しかる後脱スケール、潤滑
処理を施こすことを特徴とし、また前記方法において穴
おけ加工を省略することにより、球状化組織を有する中
実スラグを製造することを特徴とするものである。
In other words, the present invention provides for cutting a carbon steel bar or a low alloy steel bar for machine 11R production into a predetermined length, and then cutting the material (AC+-6
Point angle 120~ in the temperature range from 0℃ to (AC3-40℃)
1*, in which upsetting of 40% or more in the axial direction was performed using a pair of upper and lower molds in the shape of a 176° cone or truncated cone, followed by (
AC, ~60℃) ~ (AC3-40℃) 1~3
After holding for a period of time, air cooling or slow cooling, or cooling from the holding temperature to 650°C at a cooling rate of 50'0.4 or less to form a spheroidized structure, followed by descaling and lubrication treatment. The present invention is characterized by producing a solid slag having a spheroidized structure by omitting the drilling process in the method.

ここで、使用鋼材としては通常冷間鍛造用として使用さ
れるものを対象とするが、特にその中で難加工材とされ
る545C−355C,5C)1435等を対象するこ
とから、使用鋼材としては機械構造用炭素鋼または低合
金鋼とした。
Here, the steel materials used are those normally used for cold forging, but since we are specifically targeting 545C-355C, 5C) 1435, etc., which are difficult-to-work materials, the steel materials used are was carbon steel or low alloy steel for mechanical structures.

所定の長さに切断した材料の加熱温度を該材料の(Ac
1−60℃)〜(AC3−40℃)としたのは、この温
度範囲を外れる温度域においては鍛造、保熱または徐冷
後のスラグの球状化率が悪く、さらに硬度も高く、冷間
鍛造用に適さないからである。
The heating temperature of the material cut into a predetermined length is determined by the (Ac
1-60°C) to (AC3-40°C) is because in the temperature range outside this range, the spheroidization rate of the slag after forging, heat retention, or slow cooling is poor, and the hardness is also high, making it difficult to This is because it is not suitable for forging.

据込加工において、先端角120〜176°の円錐また
は円錐台状の金型を用いるのは、176°を超えると据
込量の各部の歪みが不均一となり、金型と接触する部位
の球状化が不完全となる。他方120℃未満でも据込量
各部の歪みが不均一となり球状化がばらつくが、特に上
下端面のばらつきが問題となる。この歪みのばらつきは
鍛造品と金型の摩擦の影響と考えられる。この金型によ
る据込加工度を軸方向に40%以上としたのは、40%
未満では加工歪みはが小さく、鍛造後の保熱または徐冷
による球状化か不十分で、冷間鍛造用に適ざないからで
おる。
In the upsetting process, a conical or truncated conical mold with a tip angle of 120 to 176° is used. The process becomes incomplete. On the other hand, if the upsetting amount is less than 120° C., the strain at each part will be non-uniform and the spheroidization will vary, but variations in the upper and lower end surfaces are particularly problematic. This variation in distortion is thought to be caused by the friction between the forged product and the die. The upsetting rate using this mold was 40% or more in the axial direction.
If it is less than this, the processing strain will be small and the spheroidization due to heat retention or slow cooling after forging will be insufficient, making it unsuitable for cold forging.

鍛造後の保熱温度を(八C+ −60℃) 〜(AC3
−40℃)としたのは、この温度範囲で鍛造品の球状化
および軟化が進むからである。またこの温度での保持時
間を1〜3時間としたのは、1時間未満の保熱でも球状
化はある程度進むが、十分球状化させるためには1時間
以上必要でおり、他方3時間を超える長時間の保熱は経
済的でなくコスト高を招くため好ましくない。
The heat retention temperature after forging is (8C+ -60℃) ~ (AC3
-40°C) because the forged product becomes spherical and softens in this temperature range. In addition, the holding time at this temperature was set at 1 to 3 hours because, although spheroidization progresses to some extent even if the heat is held for less than 1 hour, more than 1 hour is required to achieve sufficient spheroidization, and on the other hand, it exceeds 3 hours. Heat retention for a long time is not economical and increases costs, so it is not preferable.

冷却方法として、くべC1−60℃)〜(AC3−40
℃)の温度域より空冷または徐冷するか、または前記温
度より650℃まてを50℃/Flの冷却速度で徐冷す
ることとしたのは、十分な球状化組織を1′:′i−る
ためには空冷または徐冷するのが望ましいためで必る。
As a cooling method, Kube C1-60℃) ~ (AC3-40
The reason why we decided to perform air cooling or slow cooling from a temperature range of This is necessary because air cooling or gradual cooling is desirable for cooling.

また、50℃/hを超える冷却速度では十分な球状化組
織が得られないため、徐冷する場合の冷却速度としては
50℃/h以下と限定した。また、650″Cまで徐冷
すれば、十分球状化組織が得られるため、経済的な観点
からも可及的に高い温度から空冷とするほうが好ましい
ため、650℃まで徐冷することとした。
Further, since a sufficient spheroidized structure cannot be obtained at a cooling rate exceeding 50°C/h, the cooling rate in slow cooling was limited to 50°C/h or less. Further, since a sufficiently spheroidized structure can be obtained by slowly cooling to 650''C, it is preferable from an economic point of view to air-cool from a temperature as high as possible, so it was decided to slowly cool to 650''C.

発明の図面に基づく開示 第1図はこの発明の製造工程例を示すブロック図、第2
図は同上にあける据込ダイス金型を示す概略縦断面図、
第3図は同上における穴あけ工程を示す概略、@l r
JfT面図である。
Disclosure Based on Drawings of the Invention FIG. 1 is a block diagram showing an example of the manufacturing process of the invention, and FIG.
The figure is a schematic vertical cross-sectional view showing the upsetting die mold to be drilled in the same manner as above.
Figure 3 is a schematic diagram showing the drilling process in the same as above, @l r
It is a JfT surface view.

すなわちこの発明は、別械構造用炭素鋼、低合金鋼の棒
鋼を所定の長さに切断し、その切断した材料を脱スケー
ルした後、温間鍛造時の潤滑のためのカーボン潤滑剤を
塗布する。しかる後、高周波加熱炉にて(Acl−60
℃)〜(AC3−40℃)の温度に加熱し、直ちに第2
図に示す据込ダイス金型で軸方向に40%以上の据込加
工を施こす。第2図において(1)はダイス、(2)は
受圧板、(3)はセンター合せ用リング、 (4X5)
はそれぞれ先端角θが120〜176°の上金型、下金
型、(6)は据込品を示す。
In other words, this invention involves cutting a steel bar made of carbon steel for structural use or low alloy steel into a predetermined length, descaling the cut material, and then applying a carbon lubricant for lubrication during warm forging. do. After that, in a high frequency heating furnace (Acl-60
℃) to (AC3-40℃) and immediately
Perform upsetting of 40% or more in the axial direction using the upsetting die shown in the figure. In Figure 2, (1) is the die, (2) is the pressure receiving plate, (3) is the centering ring, (4X5)
(6) indicates an upper mold and a lower mold, each having a tip angle θ of 120 to 176°, and (6) an upholstered product.

なお、(7)はセンターリングのためにセンター合せ用
リング(3)を上昇させておくためのバネである。
Note that (7) is a spring for raising the centering ring (3) for centering.

すなわち、据込加工を施こす際は、センター合せ用リン
グ(3)をバネ(7)で上昇させておき、上下一対の金
型(4X5)にて棒鋼切断品を加工度40%以上で据込
む。据込が進むにつれてセンター合せ用リング(3)が
降下し、完全な据込品(6)となる。続いて、第3図に
示す穴あけ工程にて打法ポンチ(8)により中央を打法
いて中空スラグ(9)となす。この時、打法きポンチ(
8)により端面矯正を行なうと効率がよい。なお中実ス
ラグを製造する場合は、据込後端面矯正のみを行なう。
In other words, when performing upsetting, the centering ring (3) is raised by the spring (7), and the cut steel bar is installed in a pair of upper and lower molds (4 x 5) with a processing degree of 40% or more. It's crowded. As the upsetting progresses, the centering ring (3) descends, resulting in a complete upsetting product (6). Subsequently, in the drilling process shown in FIG. 3, the center is punched using a punch (8) to form a hollow slug (9). At this time, hit the punch (
8) is more efficient if the end face is straightened. In addition, when producing solid slag, only the end face correction is performed after upsetting.

上記加工後は、直ちに保熱炉または徐冷炉に据込品を装
入し、(Acl−60℃)〜(AC3−40℃)の温度
に1〜3時間保持した債、空冷または徐冷するか、もし
くは上記温度より650℃までを50℃4の冷却速度で
冷却して球状化組織となす。その後、冷却して脱スケー
ル、潤滑工程を経て中空または中実スラグとする。
After the above processing, the product is immediately charged into a heat retention furnace or slow cooling furnace, and kept at a temperature of (Acl-60℃) to (AC3-40℃) for 1 to 3 hours, then air cooled or slowly cooled. Alternatively, a spheroidized structure is formed by cooling from the above temperature to 650°C at a cooling rate of 50°C4. Thereafter, it is cooled, descaled, and subjected to a lubrication process to form hollow or solid slag.

このような方法をとることにより、難加工材の球状化組
織を有するスラグを低コストで得ることができる。すな
わち、温間鍛造により据込割れがなく、低荷重で行なう
ことができ、温間鍛造により導入された塑性歪みにより
その後の短時間保熱または徐冷により容易に球状化組織
化される。
By employing such a method, slag having a spheroidal structure, which is a difficult-to-process material, can be obtained at low cost. That is, warm forging does not cause upsetting cracks and can be carried out under low loads, and the plastic strain introduced by warm forging makes it easy to form a spheroidal structure by subsequent short-term heat retention or slow cooling.

以下に、この発明の実施例を示す。Examples of this invention are shown below.

実施例 第1表に示す成分の熱間圧延鋼材(サイズ40mmφX
60myn長)を素材として、第1図に示1製造工程に
従って中空スラグを製造し、第2表に示す加工温度、金
型先端形状、加工度、加工後の冷却方法の各項目につい
て調査した。
Example Hot-rolled steel material with the components shown in Table 1 (size 40 mmφ
A hollow slag was manufactured using a slag (60 myyn long) as a raw material according to the first manufacturing process shown in FIG. 1, and the processing temperature, mold tip shape, processing degree, and post-processing cooling method shown in Table 2 were investigated.

各試験において、切断はシャー切断、脱スケールはショ
ツトブラスト、カーボン潤滑斉口まデルタフォージ14
4(アチソン株式会社製)を用いた。
In each test, cutting was performed by shear cutting, descaling by shot blasting, carbon lubrication by Saiguchi, or Delta Forge 14.
4 (manufactured by Acheson Co., Ltd.) was used.

加熱方法は高周波加熱炉、据込には500TONプレス
を用いた。また、プレス機械に近接して電気炉を配置し
、鍛造後直ちに保熱または徐冷てぎるようにした。1凭
スケール後の潤滑はボンデ・ホンダリューベ処理を行な
った。
A high frequency heating furnace was used for heating, and a 500 TON press was used for upsetting. In addition, an electric furnace was placed close to the press machine so that heat retention or slow cooling could be carried out immediately after forging. Lubrication after one scale was performed using Bonde-Honda Lube treatment.

得られた中空スラグの各特性は第4図に示すように、中
空スラグ(10)より引張試験片(11)と圧縮試験片
(12)を採取し、それぞれ引張り強さ、絞り、限界圧
縮率を求めた。限界圧縮率は日本塑性加工学会の鋼材の
限界圧縮率測定方法によった。
The properties of the obtained hollow slag are as shown in Figure 4. A tensile test piece (11) and a compression test piece (12) were taken from the hollow slag (10), and the tensile strength, area of area, and critical compressibility were determined respectively. I asked for The critical compressibility was determined by the method of measuring the critical compressibility of steel by the Japan Society for Plasticity.

平均球状化率は中空スラグより5ケ所のミクロ試験片を
切出し、ミクロ検鏡により球状化率標準写真と比較し球
状化率を求めて平均球状化率とした。
The average spheroidization rate was determined by cutting micro test pieces at five locations from the hollow slag and comparing them with a standard photograph of the spheroidization rate using a microscopic microscope.

本実施例において、試験No、1では、加工度60%。In this example, in test No. 1, the processing degree was 60%.

先端角170”の円錐金型を用い、鍛造後試験林Aにつ
いては700℃1試験林Bについては720℃に  ・
それぞれ2時間保熱の条件で、加工温度を種々変更して
行なった。その結果を第3表に示す。
Using a conical mold with a tip angle of 170", after forging, test forest A was heated to 700°C; test forest B was heated to 720°C.
The processing was carried out under various conditions of heat retention for 2 hours and at various processing temperatures. The results are shown in Table 3.

第3表に示す結果より、(Act−60℃)〜(AC3
−40℃)の範囲の加工温度でセメンタイ1へ球状化が
よく進み、限界圧縮率が高く、引張強度が低くなってい
る。
From the results shown in Table 3, (Act-60℃) ~ (AC3
At a processing temperature in the range of -40°C), cementite 1 undergoes good spheroidization, has a high critical compressibility, and has a low tensile strength.

試AANc、 2 でハ、加工度60%、鍛造後700
℃x 2時間の保熱条件で、加工温度を700℃とした
時の金型先端角と各特性の関係を調べた。その結果を第
4表に示す。
Trial AANc, 2, machining degree 60%, 700 after forging
The relationship between the mold tip angle and each characteristic when the processing temperature was 700°C was investigated under heat retention conditions of 2 hours at ℃. The results are shown in Table 4.

第4表より、先端角180°の平滑パンチで据込むより
も、本発明範囲の160’ 、  170’のパンチで
据込む方が各特性がすぐれることがわかる。
From Table 4, it can be seen that each characteristic is better when upsetting with a punch with a tip angle of 160' or 170', which is within the range of the present invention, than with a smooth punch with a tip angle of 180°.

試験N0.3では、鍛造温度700℃,鍛造後700℃
X2時間の保熱条件で先端角170°の円堆ダイスを用
い、加工度を変化させた時の各特性の変化を調べた。そ
の結果を第5表に示す。
In test N0.3, the forging temperature was 700°C, and the temperature was 700°C after forging.
Using a cylindrical die with a tip angle of 170° under heat retention conditions of X2 hours, changes in each characteristic were investigated when the degree of processing was changed. The results are shown in Table 5.

第5表より、40%以上の加工度で球状化率が良好とな
り、冷間鍛造用として使用可能となることがわかる。
From Table 5, it can be seen that when the working degree is 40% or more, the spheroidization rate becomes good and it can be used for cold forging.

試験NO,4では、鍛造温度700℃,先端角170゜
の日進ダイスを用い、ハU工度60%の条件で加工後の
冷却条件を変化させたときの各特性の変化を調べた。そ
の結果を第6表に示す。保熱温度、冷却開始温度はそれ
ぞれ700℃とした。
In test No. 4, a Nissin die with a forging temperature of 700° C. and a tip angle of 170° was used, and the changes in each characteristic were investigated when the cooling conditions after processing were changed under the conditions of a tool depth of 60%. The results are shown in Table 6. The heat retention temperature and cooling start temperature were each 700°C.

なお第6表には比較のため、従来法として球状化焼鈍→
冷間据込、穴あけ→焼鈍の工程で製造したNK式式中ス
スラグ特性を合せて示した。
For comparison, Table 6 shows spheroidizing annealing as a conventional method →
The characteristics of the NK type medium slag produced through the process of cold upsetting, drilling and annealing are also shown.

第6表より、本発明の冷却、保持条件によれば、従来例
とほぼ同等の特性を示すことが判明した。
From Table 6, it was found that according to the cooling and holding conditions of the present invention, almost the same characteristics as the conventional example were exhibited.

発明の詳細 な説明したごとく、この発明方法は温間鍛造のもつ高度
形能、低変形応力、ミクロ組織改善能力を生かし、加工
度の高い中空スラグを事前球状化処理なしで鍛造成形し
、そのまま保熱して球状化組織とするに際し、円錐型金
型を用い据込加工することにより、加工度のばらつきが
なく均一な球状化組織を有する中空スラグを低コストで
製造することが可能であり、品質良好な鉄鋼スラグの製
造に大なる効果を奏するものである。
As explained in detail, the method of this invention makes use of the high formability, low deformation stress, and ability to improve the microstructure of warm forging to form highly processed hollow slag by forging without prior spheroidization treatment. When retaining heat to form a spheroidal structure, it is possible to produce hollow slag with a uniform spheroidal structure at low cost without any variation in the degree of processing by upsetting the slag using a conical mold. This is highly effective in producing high-quality steel slag.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の製造工程例を示すブロック図、第2
図は同上における据込ダイス金型を示す概略縦断面図、
第3図は同じく孔あけ工程を示す概略縦断面図、第4図
はこの発明の実施例にあける引張試験片、圧縮試験片の
採取方法を示す説明図である。 1・・・ダイス、2・・・受圧板、3・・・センター合
せ用リング、4・・・上金型、5・・・下金型、6・・
・据込品、8・・・打法ポンチ、9,10・・・中空ス
ラグ。
Figure 1 is a block diagram showing an example of the manufacturing process of this invention, Figure 2 is a block diagram showing an example of the manufacturing process of this invention.
The figure is a schematic vertical cross-sectional view showing the upsetting die mold in the same as above.
FIG. 3 is a schematic longitudinal cross-sectional view showing the drilling process, and FIG. 4 is an explanatory diagram showing a method for collecting tensile test pieces and compression test pieces in an example of the present invention. 1...Die, 2...Pressure plate, 3...Center alignment ring, 4...Upper mold, 5...Lower mold, 6...
・Upgraded product, 8...Dashing method punch, 9,10...Hollow slug.

Claims (2)

【特許請求の範囲】[Claims] (1)機械構造用炭素鋼棒または低合金鋼棒を所定の長
さに切断後、該材料の(AC_1−60℃)〜(AC_
3−40℃)の温度域で先端角120〜176°の円錐
または円錐台状の上下1対の金型にて軸方向に40%以
上据込加工を施こし、さらに穴あけ加工を施した後、引
続いて(AC_1−60℃)〜(AC_3−40℃)の
温度に1〜3時間保持した後空冷または徐冷するか、ま
たは前記保持温度より650℃までを50℃/Hr以下
の冷却速度で冷却して球状化組織となし、しかる後脱ス
ケール、潤滑処理を施こすことを特徴とする冷間鍛造用
スラグの製造方法。
(1) After cutting carbon steel rods or low alloy steel rods for machine structures into specified lengths, cut the material into (AC_1-60°C)
After performing upsetting of 40% or more in the axial direction using a pair of upper and lower conical or truncated conical molds with a tip angle of 120 to 176 degrees in the temperature range of 3-40℃, and then drilling. , Subsequently, after holding at a temperature of (AC_1-60℃) to (AC_3-40℃) for 1 to 3 hours, air cooling or gradual cooling, or cooling from the holding temperature to 650℃ at a rate of 50℃/Hr or less A method for producing slag for cold forging, characterized by cooling it at a high speed to form a spheroidal structure, followed by descaling and lubrication treatment.
(2)据込加工後の穴あけ加工を省略することを特徴と
する特許請求の範囲第1項記載の冷間鍛造用スラグの製
造方法。
(2) The method for producing a cold forging slag according to claim 1, characterized in that the drilling process after the upsetting process is omitted.
JP25941786A 1986-10-30 1986-10-30 Production of slag for cold forging Pending JPS63111121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25941786A JPS63111121A (en) 1986-10-30 1986-10-30 Production of slag for cold forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25941786A JPS63111121A (en) 1986-10-30 1986-10-30 Production of slag for cold forging

Publications (1)

Publication Number Publication Date
JPS63111121A true JPS63111121A (en) 1988-05-16

Family

ID=17333816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25941786A Pending JPS63111121A (en) 1986-10-30 1986-10-30 Production of slag for cold forging

Country Status (1)

Country Link
JP (1) JPS63111121A (en)

Similar Documents

Publication Publication Date Title
CN101422861B (en) Accurate forming method of special-shape deep-hole type parts
US3066408A (en) Method of producing steel forging and articles produced thereby
KR100191696B1 (en) High strength steel parts and method of making
JPS61195725A (en) Manufacture of high strength spur gear
KR100502219B1 (en) Method of forming by cold worked powdered metal forged parts
JPH07108340A (en) Manufacture of coarse shape material for rolling bearing race
JP4884803B2 (en) Heat treatment method for steel
JP3437404B2 (en) Manufacturing method of bifurcated forgings
JPS63111121A (en) Production of slag for cold forging
US7093526B2 (en) Forming die apparatus
CN107504156A (en) Farm tractor main clutch and its manufacturing process
US4246844A (en) Method of forming high fragmentation mortar shells
CN105773078B (en) Machining and forming process of automobile half shaft
RU2203968C2 (en) Method of manufacture of bandages from hypereutectoid steels
JP3480568B2 (en) High speed tool steel material for cold forging, hollow product made of high speed tool steel, and method of manufacturing the same
JPS58163541A (en) Forging method of part having long fin
JPH05123808A (en) Plastic working method for stainless steel
JPH11254077A (en) Manufacture of die of high strength and high toughness
JPS6410567B2 (en)
RU2000161C1 (en) Ring-type forged pieces production method
JPH1099930A (en) High speed hot forging method for high speed steel
RU2285736C1 (en) Method of production of articles from high-temperature nickel alloy
JP2000265211A (en) Heat treatment of high c-containing stainless steel slab and production of stainless steel-made parts utilizing this treatment
SU648318A1 (en) Method of making forgings from low-plasticity metals and alloys
SU819194A1 (en) Method of strengthening stamp steels