JPS6311057B2 - - Google Patents

Info

Publication number
JPS6311057B2
JPS6311057B2 JP53132481A JP13248178A JPS6311057B2 JP S6311057 B2 JPS6311057 B2 JP S6311057B2 JP 53132481 A JP53132481 A JP 53132481A JP 13248178 A JP13248178 A JP 13248178A JP S6311057 B2 JPS6311057 B2 JP S6311057B2
Authority
JP
Japan
Prior art keywords
beneficiation method
beneficiation
method described
carried out
mineral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53132481A
Other languages
Japanese (ja)
Other versions
JPS5559853A (en
Inventor
Marushio Yarudeimu Paikusaano Jose
Magaruhaesu Gusutabo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BARE DO RIO DOSE CO
Original Assignee
BARE DO RIO DOSE CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BARE DO RIO DOSE CO filed Critical BARE DO RIO DOSE CO
Priority to JP13248178A priority Critical patent/JPS5559853A/en
Publication of JPS5559853A publication Critical patent/JPS5559853A/en
Publication of JPS6311057B2 publication Critical patent/JPS6311057B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は一連の機械的操作をとおしてチタン鉱
石から不純物を除去し直接の商品化またはより複
雑な濃縮工程向けの原料の製造のために要求され
る水準にかなう水準にまで2酸化チタンの含有量
を上昇させて、より高い2酸化チタン(TiO2
含有量の製品を目標とすることから本質的に成る
チタン鉱石の選鉱法に関している。 高品位チタン鉱石の世界的欠乏が貧鉱から富精
鉱を得るための集中的な研究をもたらした。 数多くの消費者による貧鉱の使用が、汚染に対
して次第にいつそう厳しくなつてきた法規に逆行
する高度に汚染性の流出物の生成をもたらした。
このことは消費者に対して、参照された不都合を
最小に減少させる高品位精鉱の探索の増大する必
要性を生じた。 チタン鉱石の選鉱に関連する数多くの現存特許
は一般に45乃至58%で変動するTiO2の級の、豊
富な鉱石であるイルメナイトを使用している。一
方イルメナイトの濃縮工程は汚染問題を単に消費
者から生産者へ移転する汚染流出物質を生じる。 高いTiO2含有量を有する精鉱を得るようにチ
タン鉱石を選鉱するための新規発明の方法の重要
さは、その鉱石中でチタンが酸化物(TiO2)と
して見出だされかつその濃縮のために化学的工程
を必要とするチタン酸塩としてではない鉱石の使
用に基礎が置かれている。新規な本発明の工程に
おいては、機械的な操作が要求されかつ排出物質
の生成が実質的に除かれる。 ここに提出された本発明は高いTiO2含有量を
有する生成物を得るための消費者の要求を満足さ
せ、このことがさらにその操作中、次第に厳しく
なる汚染防止法に逆行することがないようにす
る。 本発明にしたがえば、新規方法に使用される原
料はその中でチタンが主としてではあるがそれに
は限らず、シリカおよび鉄、カルシウム、マグネ
シウム、燐、アルミニウム、ナトリウムおよびカ
リウムの化合物の存在によつて、不純な酸化物と
して出現する鉱石である。 鉱石は最初に洗浄(scrubbing)をとおして分
解(disaggregation)段階にもたらされ、次にス
ライム除去にかけられ0.105mmより上の分割部が
回収される。 その分割部は18mmの最大寸法で回収され、低い
強度の磁力選別にかけられ、この間に磁鉄鉱が除
去される。非磁性分割部は密閉回路中で0.841mm
に達するように粉砕される。微細物は平坦で傾斜
しかつ固定されたスクリーンで、或は回路を閉じ
る同等の機器で選別される。 次にその均一に粉砕された物質は陰イオン性浮
選剤で熟成されかつあらい浮選槽へ送られ精鉱を
生成し、これが清浄化浮選槽中で少なくとも1回
操作させて精鉱を生じるが、この精鉱からは燐酸
塩から成る不純物の大部分が除去されている。 その精鉱は乾燥ののちに最大温度900℃にある
回転炉での〓焼へ送られる。〓焼されたその精鉱
は400乃至600℃の温度で還元性ガス状混合物での
還元にもたらされ、かつまだ熱いうちに低い強度
の磁力選別にかけられる。 次にその熱い非―磁性分割部は少なくとも2段
階から構成される静電選別系統へ送られる。第一
の系統は尾鉱を生じるがその尾鉱からはシリカお
よび予備―精鉱(pre―concentrate)が主要不純
物として除去される。第二段階において最終精鉱
および中間精鉱が得られるがこの後者は再循環さ
れる。 実施例 TiO2含有量20.66%の鉱石1000Kgが洗浄機へ送
られ次いで分級器へ送られたが、その中で約
0.105mmより上の粒子寸法の分割部が選別された。
この分割部は供給物の56.9%を表わしているが、
このものが900ガウス磁場で磁力選別にかけられ
た。 供給物の28.6%を示す非磁気性分割部が密閉粉
砕回路へ供給されその粒子寸法が0.841mmへ減少
された。この段階においてその分割部はすでに
TiO2含有量41.09%を示した。 こうして得られたパルプが燐酸塩除去のために
熟成および浮選された。 その浮選精鉱が700℃での乾燥および〓焼のの
ちに500℃へ冷却されかつCO24%を含有する還元
雰囲気中で還元された。 まだ熱いその還元された物質が900ガウス磁場
で磁力選別にもたらされ、こうしてTiO2 55.25
%の非磁気性精鉱が得られた。 なおもまた熱い間に、その分割部は15kv電場
の第一の静電選別へ送られ、こうして珪素質尾鉱
の選別が行なわれた。 25kv電場での第二の静電選別において、TiO2
84.70%の最終製品および尾鉱が得られたが、こ
の後者は静電選別の第一段階へ再循環された。 得られた結果を以下の表に示す。
The present invention removes impurities from titanium ore through a series of mechanical operations, reducing the titanium dioxide content to levels that meet those required for direct commercialization or production of raw materials for more complex enrichment processes. Increasing the amount of titanium dioxide (TiO 2 )
It concerns a beneficiation method for titanium ore, which essentially consists of targeting products with high content. The worldwide shortage of high-grade titanium ore has led to intensive research to obtain rich concentrate from poor ore. The use of poor ore by many consumers has resulted in the production of highly polluting effluents that run counter to increasingly strict regulations against pollution.
This has created an increased need for consumers to search for high grade concentrates that reduce the mentioned disadvantages to a minimum. A number of existing patents relating to the beneficiation of titanium ores use ilmenite, an abundant ore, generally in the TiO 2 grade varying from 45 to 58%. On the other hand, the ilmenite concentration process produces polluting effluents that simply transfer the pollution problem from the consumer to the producer. The significance of the novel method for beneficiation of titanium ore to obtain a concentrate with high TiO 2 content lies in the fact that in the ore titanium is found as an oxide (TiO 2 ) and its concentration is The basis for this is the use of ores that are not titanates, which require chemical processes. In the novel process of the present invention, mechanical manipulation is required and the production of emissions is substantially eliminated. The invention presented herein satisfies the consumer demand for obtaining products with high TiO 2 content, and this further ensures that during its operation it does not run counter to increasingly stringent pollution control laws. Make it. According to the invention, the raw materials used in the new process are mainly, but not exclusively, titanium, due to the presence of silica and compounds of iron, calcium, magnesium, phosphorus, aluminum, sodium and potassium. It is an ore that appears as an impure oxide. The ore is first brought to a disaggregation stage through scrubbing and then subjected to sliming and the fractions above 0.105 mm are recovered. The sections are collected with a maximum dimension of 18 mm and subjected to low-intensity magnetic sorting, during which magnetite is removed. Non-magnetic split part is 0.841mm in sealed circuit
crushed to reach . Fines are screened out with flat, inclined and fixed screens or equivalent equipment that closes the circuit. The uniformly ground material is then aged with an anionic flotation agent and sent to a coarse flotation tank to produce a concentrate, which is operated at least once in a cleaning flotation tank to form a concentrate. However, most of the phosphate impurities have been removed from this concentrate. After drying, the concentrate is sent for calcination in a rotary kiln at a maximum temperature of 900°C. The calcined concentrate is subjected to reduction with a reducing gaseous mixture at a temperature of 400 to 600°C and, while still hot, subjected to low-intensity magnetic separation. The hot non-magnetic fraction is then sent to an electrostatic separation system consisting of at least two stages. The first system produces tailings from which silica and pre-concentrate are removed as major impurities. In the second stage, a final concentrate and an intermediate concentrate are obtained, the latter being recycled. Example 1000 kg of ore with a TiO 2 content of 20.66% was sent to a washer and then to a classifier, in which approximately
Parts with particle sizes above 0.105 mm were screened out.
This division represents 56.9% of the supply,
This material was subjected to magnetic selection in a 900 Gauss magnetic field. A non-magnetic fraction representing 28.6% of the feed was fed into a closed grinding circuit to reduce its particle size to 0.841 mm. At this stage, the division is already
It showed a TiO2 content of 41.09%. The pulp thus obtained was aged and flotated for phosphate removal. After drying and calcination at 700°C, the flotated concentrate was cooled to 500°C and reduced in a reducing atmosphere containing 4% CO2. The reduced material, still hot, is brought to magnetic separation in a 900 Gauss magnetic field, thus TiO 2 55.25
% non-magnetic concentrate was obtained. While still hot, the section was sent to a first electrostatic separation in a 15 kV electric field, thus separating the siliceous tailings. In a second electrostatic sorting in a 25kv electric field, TiO2
84.70% of the final product and tailings were obtained, the latter being recycled to the first stage of electrostatic separation. The results obtained are shown in the table below.

【表】【table】

【表】【table】

【表】 上記実施例はこの面の技術の専門家のために本
発明をより明白にするために提供されたものであ
るが、本発明を何等限定するものではない。
The above examples are provided to make the invention more clear to those skilled in the art, but are not intended to limit the invention in any way.

Claims (1)

【特許請求の範囲】 1 アナターゼが酸化物として出現するチタン鉱
石の選鉱法において、鉱石を洗浄(scrubbing)
およびスライム除去し続いて磁力選別する段階;
非磁気性分割部を粉砕しかつ微細分を分離し続い
てその精鉱を浮選、〓焼および還元して次に低強
度の磁力選別にかける段階;およびその非磁気性
分割部を静電選別にかける段階を包含することを
特徴とするチタン鉱石の選鉱法。 2 特許請求の範囲1に記載の選鉱法において、
分解(disintegration)とスライム除去が18乃至
0.105mmの分割部が得られるまで行なわれること
を特徴とするチタン鉱石の選鉱法。 3 特許請求の範囲1に記載の選鉱法において、
その磁力選別が300乃至3000ガウスの磁場で行な
われることを特徴とするチタン鉱石の選鉱法。 4 特許請求の範囲1に記載の選鉱法において、
その非―磁気性分割部の粉砕が0.841mmの寸法に
まで密閉回路内で行なわれ、かつその寸法定めが
平坦で傾斜しかつ固定されたスクリーンで行なわ
れることを特徴とするチタン鉱石の選鉱法。 5 特許請求の範囲1に記載の選鉱法において、
その陰イオン性浮選がP2O5 3%未満の精鉱を得
ることを可能にする条件下に行なわれることを特
徴とするチタン鉱石の選鉱法。 6 特許請求の範囲1に記載の選鉱法において、
その〓焼が900℃より低い温度で行なわれること
を特徴とするチタン鉱石の選鉱法。 7 特許請求の範囲1に記載の選鉱法において、
その還元が400℃および600℃の温度で、還元のた
めのガスが少なくとも10%の還元ガスを含有する
還元雰囲気中で行なわれることを特徴とするチタ
ン鉱石の選鉱法。 8 特許請求の範囲1に記載の選鉱法において、
還元された非―磁気性分割部のその静電選別が
5KV乃至50KVの電場で行なわれることを特徴と
するチタン鉱石の選鉱法。
[Claims] 1. In a beneficiation method for titanium ore in which anatase appears as an oxide, the ore is scrubbed.
and slime removal followed by magnetic separation;
crushing the non-magnetic part and separating the fines, followed by flotation, calcination and reduction of the concentrate and then subjecting it to low intensity magnetic separation; A method for beneficiation of titanium ore, characterized by including a step of screening. 2 In the mineral beneficiation method described in claim 1,
Disintegration and slime removal from 18
A titanium ore beneficiation method that is carried out until a 0.105 mm split is obtained. 3 In the mineral beneficiation method described in claim 1,
A titanium ore beneficiation method characterized in that the magnetic separation is performed in a magnetic field of 300 to 3000 Gauss. 4 In the mineral beneficiation method described in claim 1,
A process for beneficiation of titanium ore, characterized in that the crushing of the non-magnetic split portions is carried out in a closed circuit to a size of 0.841 mm, and the sizing is carried out on a flat, inclined and fixed screen. . 5 In the mineral beneficiation method described in claim 1,
A process for beneficiation of titanium ores, characterized in that the anionic flotation is carried out under conditions making it possible to obtain a concentrate with less than 3% P 2 O 5 . 6 In the mineral beneficiation method described in claim 1,
A titanium ore beneficiation method characterized in that the calcination is performed at a temperature lower than 900℃. 7 In the mineral beneficiation method described in claim 1,
A process for beneficiation of titanium ores, characterized in that the reduction is carried out at temperatures of 400°C and 600°C in a reducing atmosphere in which the gas for reduction contains at least 10% reducing gas. 8 In the mineral beneficiation method described in claim 1,
The electrostatic selection of the reduced non-magnetic part
A titanium ore beneficiation method characterized by being carried out in an electric field of 5KV to 50KV.
JP13248178A 1978-10-27 1978-10-27 Mineral dressing method of titanium ore Granted JPS5559853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13248178A JPS5559853A (en) 1978-10-27 1978-10-27 Mineral dressing method of titanium ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13248178A JPS5559853A (en) 1978-10-27 1978-10-27 Mineral dressing method of titanium ore

Publications (2)

Publication Number Publication Date
JPS5559853A JPS5559853A (en) 1980-05-06
JPS6311057B2 true JPS6311057B2 (en) 1988-03-11

Family

ID=15082375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13248178A Granted JPS5559853A (en) 1978-10-27 1978-10-27 Mineral dressing method of titanium ore

Country Status (1)

Country Link
JP (1) JPS5559853A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105057095A (en) * 2015-09-01 2015-11-18 赣州金环磁选设备有限公司 Method for removing strongly magnetic minerals in non-metal ores
CN108816497B (en) * 2018-06-15 2020-05-19 魏建民 Magnetite beneficiation process
CN111036388B (en) * 2018-10-11 2022-03-22 中蓝连海设计研究院有限公司 Washing and grading flotation method for weathered phosphate ore
CN111375484B (en) * 2018-12-29 2021-12-07 中蓝连海设计研究院有限公司 Phosphate ore washing, classifying, roasting and flotation method
CN109985720B (en) * 2019-03-29 2020-12-25 中冶北方(大连)工程技术有限公司 Mineral separation process for titanic iron ore containing mica
CN110038715B (en) * 2019-03-29 2020-10-16 中冶北方(大连)工程技术有限公司 Mineral separation process for apatite vanadium titano-magnetite
CN110935560A (en) * 2019-10-22 2020-03-31 中国地质科学院矿产综合利用研究所 Beneficiation method for recovering phosphorus from vanadium titano-magnetite tailings with extremely low phosphorus content
CN113369009B (en) * 2021-06-10 2022-03-29 中南大学 Efficient resource utilization method for rutile ore

Also Published As

Publication number Publication date
JPS5559853A (en) 1980-05-06

Similar Documents

Publication Publication Date Title
CA2309611C (en) Method for upgrading iron ore utilizing multiple magnetic separators
US4295881A (en) Process for extraction of platinum group metals from chromite-bearing ore
JP4814796B2 (en) Method for producing titanium concentrate with high TiO2 content and low radionuclide element content from anatase mechanical concentrate
US20210147959A1 (en) Process for dry beneficiation of bauxite minerals by electrostatic segregation
JPS6311057B2 (en)
US1931921A (en) Manufacture of cement
US2388471A (en) Beneficiation of magnetite concentrates by flotation
CN113909154A (en) Beneficiation method for copper oxide ore containing malachite and peacock stone
US2500154A (en) Recovery of asbestos from asbestos tailings
US5736113A (en) Method for beneficiation of trona
US3936372A (en) Method for beneficiation of magnesite ore
CA1117766A (en) Process for beneficiation of titanium ores
CN115055277B (en) Process for recovering kaolin, sulfur concentrate and titanium concentrate from pyrite tailings
RU2142348C1 (en) Method of dry concentration of wollastonite ore
CN112474036B (en) Method and equipment for removing phosphorus from rutile concentrate
Yehia et al. Recovery and utilization of iron and carbon values from blast furnace flue dust
JPS63205164A (en) Production of high purity quartz concentrate
US2257808A (en) Purification of sand
CN114405659A (en) Process method for producing ceramic material based on granite machine-made sand tailings
US3806046A (en) Dry extraction and purification of phosphate pebbles from run-of-mine rock
AU667437B2 (en) Primary beneficiation of ilmenite
Bartnik et al. On the production of iron ore superconcentrates by high-intensity wet magnetic separation
Yassin et al. Removing iron impurities from feldspar ore using dry magnetic separation (part one)
US4256267A (en) Recovery of minerals from ultra-basic rocks
US2765988A (en) Reduction of iron ores