JPS63110542A - Charged beam irradiating device - Google Patents

Charged beam irradiating device

Info

Publication number
JPS63110542A
JPS63110542A JP25540486A JP25540486A JPS63110542A JP S63110542 A JPS63110542 A JP S63110542A JP 25540486 A JP25540486 A JP 25540486A JP 25540486 A JP25540486 A JP 25540486A JP S63110542 A JPS63110542 A JP S63110542A
Authority
JP
Japan
Prior art keywords
film
wall surface
voltage
metal
charged beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25540486A
Other languages
Japanese (ja)
Inventor
Tadao Suganuma
忠雄 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIIMU TEC KK
Original Assignee
BIIMU TEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIIMU TEC KK filed Critical BIIMU TEC KK
Priority to JP25540486A priority Critical patent/JPS63110542A/en
Publication of JPS63110542A publication Critical patent/JPS63110542A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain high precision with simple structure by composing this device of the following units: a wall surface with specific surface resistivity against a channel of charged beams, an earth part where the wall surface is partially earthed, a conductor electrode film formed on the wall surface, and a voltage introduction part where a voltage is applied to the electrode film. CONSTITUTION:A film 24 with surface resistivity of 10<4>OMEGA to 10<10>OMEGA can be formed for example by performing vacuum evaporation of metal on an inner surface of a container 21. This surface resistivity can be obtained by controlling film thickness while considering a volume intrinsic resistance value of the metal at the time of this evaporation. When the metal with a larger volume intrinsic resistance value is rather selected, the film thickness becomes larger, more controllable, and more stable. An end of the film 24 is earthed with a conductor vacuum container 2 at an earthing part 26, and a conductor electrode film 25 is connected with a voltage introduction terminal 22. Even if scattered electrons generated due to running charged beams are made incident to the film 24, they flow to the earth via the earthing part 26. Therefore, a rise in a potential of the film 24 is very small and so a phenomenon of so-called charge up does not occur.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は走査電子顕微鏡、電子描画装置、イオンマイク
ロプローブ装置等において荷電ビームを集束または偏向
する荷電ビーム照射装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a charged beam irradiation device for focusing or deflecting a charged beam in a scanning electron microscope, an electron lithography device, an ion microprobe device, or the like.

口、従来技術 走査電子顕微鏡、電子描画装置、イオンマイクロプロー
ブ装置等においては、荷電ビームを細く集束して標的に
照射し、かつ偏向する。その手段の一部として非点補正
装置および偏向g1置があり、これらの装置に於いては
応答速度を早めるために静電方式が採用されることがあ
る。第1図は静電方式の偏向V2置の断面図である。1
および2は真空容器でありOりング13により真空シー
ルされている。15は図示しない銃から射出された電子
ビームなとの荷電ビームであり、これを挟んで平行平板
型の偏向電極3が配置されている。4は電極3を支持す
る支持棒でありリード線6が接続されている。10は支
持棒4を容器1から電気的に絶縁するための絶縁板であ
り、11.12は0リングである。5は絶縁体の押さえ
板であり、ねじ7により容器1に固定される。リード線
6を介して2枚の電極3の間に電圧が印加されると荷電
ビーム15は偏向を受ける。R7y1ビーム15の走行
に伴って層重には散乱電子が発生するので、それによる
チャージアップを避けるために容器1は導電体である必
要が有り、一般には金属材料で構成されている。上記例
は偏向装置であるが、非点補正装置等の荷電ビームを集
束するためのgi置も静1方式の場合は、電極の数に差
異はあるが、同様の構造になっている。
In conventional scanning electron microscopes, electron lithography systems, ion microprobe systems, and the like, a charged beam is narrowly focused, irradiated onto a target, and deflected. As part of this means, there are an astigmatism correction device and a deflection g1 position, and in these devices, an electrostatic method is sometimes adopted in order to speed up the response speed. FIG. 1 is a sectional view of the electrostatic type deflection V2 position. 1
and 2 are vacuum containers, which are vacuum-sealed by an O-ring 13. Reference numeral 15 denotes a charged beam such as an electron beam emitted from a gun (not shown), and a parallel plate type deflection electrode 3 is arranged across the charged beam. 4 is a support rod that supports the electrode 3, and a lead wire 6 is connected thereto. 10 is an insulating plate for electrically insulating the support rod 4 from the container 1, and 11.12 is an O-ring. Reference numeral 5 denotes an insulating holding plate, which is fixed to the container 1 with screws 7. When a voltage is applied between the two electrodes 3 via the lead wire 6, the charged beam 15 is deflected. As the R7y1 beam 15 travels, scattered electrons are generated in the layers, so in order to avoid charge-up due to this, the container 1 needs to be a conductor, and is generally made of a metal material. The above example is a deflection device, but if the GI arrangement for focusing a charged beam in an astigmatism correction device is also of the static type, the structure is the same, although the number of electrodes is different.

偏向電極3に電圧を印加するためには、導電体の容器l
から支持棒4を絶縁することが必要であり、複雑な構造
にならざるを得ない。また多数の部品を積み上げるので
、2枚の電極3の位置、平行度なとの精度も不十分なも
のとなる。また上記例では電極3は平行平板であるが、
より良い性能を得るために電極3の対向面を円筒面にし
たい場合が有り、この場合は形状が更に複雑になり、製
作が困難で、精度も得られ難い。以上の点で従来技術は
困難が多(、実用上支障があった。
In order to apply a voltage to the deflection electrode 3, a conductor container l is used.
It is necessary to insulate the support rod 4 from the air, which results in a complicated structure. Furthermore, since a large number of parts are piled up, the accuracy of the position and parallelism of the two electrodes 3 is insufficient. Further, in the above example, the electrode 3 is a parallel plate, but
In order to obtain better performance, there are cases where it is desired to make the facing surface of the electrode 3 a cylindrical surface, but in this case, the shape becomes more complicated, manufacturing is difficult, and accuracy is difficult to obtain. In the above points, the conventional technology had many difficulties (and had practical problems).

ハ1発明の目的 本発明は、上述の様な従来技術の持つ欠点を解消し、構
造が簡単で、精度が得られ易い荷電ビーム照射装置を提
供することを目的としている。
C.1 Purpose of the Invention The present invention aims to eliminate the drawbacks of the prior art as described above, and to provide a charged beam irradiation device that has a simple structure and is easy to obtain accuracy.

二0発明の構成 本発明は荷電ビームの通路に対向する、104乃至10
10Ωの表面抵抗率を持つ壁面と、前記壁面の一部を接
地するための接地部と、前記壁面上に形成された導体の
電極膜と、前記電極膜に電圧を印加するための電圧導入
部とを備えたことを特徴とする荷電ビーム照射装置に係
わる。
20 Configuration of the Invention The present invention is directed to 104 to 10 opposite to the path of the charged beam.
A wall surface having a surface resistivity of 10Ω, a grounding section for grounding a part of the wall surface, a conductive electrode film formed on the wall surface, and a voltage introducing section for applying a voltage to the electrode film. The present invention relates to a charged beam irradiation device characterized by comprising:

ホ、実施例 第2 (a) 、 2 (b)図は本発明の1実施例を
示す縦断面図、横断面図である。2.6.13.15は
第1図と同じく、それぞれ導電体の真空容器、リード線
、0りング、荷電ビームである。
E. Embodiment 2 Figures 2(a) and 2(b) are a longitudinal sectional view and a transverse sectional view showing one embodiment of the present invention. 2.6.13.15 are a conductive vacuum container, a lead wire, an O ring, and a charged beam, respectively, as in FIG.

21は真空容器であり、プラスチック、セラミック等の
絶縁物で構成された円筒である。22は電圧導入のため
の端子であり、真空封着部23により容器21に対して
封着され、またリード線6が接続されている。24は1
04乃至10I0Ωの表面抵抗率を持つ膜であり、例え
ば金属を容器21の内壁に真空蒸着することにより得ら
れる。上記の表面抵抗率は、蒸着する際に金属の体積固
有抵抗値を考慮しなから膜厚を制御することにより得ら
れ、体積固有抵抗値の大きい金属を選択したほうが膜厚
が厚くなり、制御しやすく、かつ安定である。膜24の
一端は接地部26において導電体の真空容器2に接地さ
れている。25は膜24の上に形成された導体の電極膜
であり〜電圧導入端子22に接続している。電極膜25
は真空蒸着法で作成しても良く、またメッキ法なと他の
方法に依っても良(、材料は鋼など体積固有抵抗値の小
さい金属が1士しい。
21 is a vacuum container, which is a cylinder made of an insulating material such as plastic or ceramic. Reference numeral 22 denotes a terminal for introducing voltage, which is sealed to the container 21 by a vacuum sealing part 23, and to which the lead wire 6 is connected. 24 is 1
It is a film having a surface resistivity of 0.04 to 10I0Ω, and is obtained, for example, by vacuum-depositing metal on the inner wall of the container 21. The above surface resistivity can be obtained by controlling the film thickness without considering the volume resistivity of the metal during vapor deposition.The film thickness will be thicker if a metal with a larger volume resistivity is selected, and it can be controlled by controlling the film thickness. Easy to use and stable. One end of the membrane 24 is grounded to the conductive vacuum container 2 at a grounding portion 26 . A conductive electrode film 25 is formed on the film 24 and is connected to the voltage introduction terminal 22 . Electrode film 25
may be formed by vacuum evaporation, or by other methods such as plating (the material is preferably a metal with a small volume resistivity such as steel).

このように構成された装置に於いて、図示しない偏向電
源から、リード線6および電圧導入端子22を介して電
極g25に電圧を印加すると、電極膜25は円筒面をも
つ偏向電極として作用し、荷電ビーム15を偏向する。
In the device configured in this manner, when a voltage is applied to the electrode g25 from a deflection power source (not shown) via the lead wire 6 and the voltage introduction terminal 22, the electrode film 25 acts as a deflection electrode having a cylindrical surface. Deflect the charged beam 15.

また膜24は上述したような抵抗値を有しているので、
荷電ビームの走行に伴って発生する散乱電子が膜24に
入射しても接地部26を経由してアースに流れ、膜24
の電位上昇は僅かである。例丸ば膜24の表面抵抗率が
1010Ω、膜の接地部までの長さが2cm、幅が2c
 m s入射する散乱電子が10−”Aの場合、電位上
昇は0.1■であり、所謂チャージアップ現象は生じな
い。
Furthermore, since the film 24 has the resistance value as described above,
Even if scattered electrons generated as the charged beam travels enter the membrane 24, they flow to the ground via the grounding part 26, and the membrane 24
The potential increase is slight. For example, the surface resistivity of the round membrane 24 is 1010Ω, the length to the grounding part of the membrane is 2cm, and the width is 2cm.
When the scattered electrons incident for ms are 10-''A, the potential rise is 0.1 .mu., and the so-called charge-up phenomenon does not occur.

また電極膜25は膜24を介して接地されたかたちにな
っているが、膜24の上述した抵抗値のため電極膜25
は実質的にはアースから絶縁されている。例えば膜24
の表面抵抗率が104Ω、膜の接地部までの長さが2c
m5幅が2cm、偏向電圧がIOVの場合、流れる電流
は1mAであり、偏向電源にも偏向特性にも実質的に影
響を与えない。
Further, the electrode film 25 is grounded through the film 24, but due to the above-mentioned resistance value of the film 24, the electrode film 25
is substantially insulated from ground. For example, the membrane 24
The surface resistivity is 104Ω, and the length to the grounding part of the membrane is 2c.
When the m5 width is 2 cm and the deflection voltage is IOV, the flowing current is 1 mA, which does not substantially affect the deflection power supply or the deflection characteristics.

本発明の構成は上述したように極めて単純であり、従っ
て製作が容易であり、また部品の積み上げによる誤差が
無いので精度が高い。また円筒形の偏向電極が容易に製
作でき、偏向精度を高めることが出来る。
As described above, the configuration of the present invention is extremely simple, and therefore easy to manufacture, and has high accuracy because there is no error due to stacking of parts. Further, a cylindrical deflection electrode can be easily manufactured, and deflection accuracy can be improved.

第3図は他の実施例であり、30は104乃至1010
Ωの表面抵抗率を持つ材料で構成された真空容器である
。このような材料は、例えばプラスチックに炭素の粒子
を混入した導電性プラスチックなどにより得られる。容
器30以外の構成部分は第2図と同じである。ここでは
容器30の内壁部が上記の表面抵抗率をもっており、第
2図の膜24と同しlきをして散乱電子によるチャーシ
アツブを防ぎ、また容器30が電極膜25をアースから
実質的に絶縁している。この実施例に於いても構成は極
めて単純であり、製作が容易であり、精度が高い。また
円筒形の偏向電極が容易に製作でき、偏向精度を高める
ことが出来る。
FIG. 3 shows another embodiment, where 30 is 104 to 1010.
It is a vacuum container made of a material with a surface resistivity of Ω. Such a material can be obtained, for example, from a conductive plastic made by mixing carbon particles into plastic. Components other than the container 30 are the same as in FIG. 2. In this case, the inner wall of the container 30 has the above-mentioned surface resistivity, and is similar to the film 24 in FIG. 2 to prevent charging from being caused by scattered electrons. Insulated. This embodiment also has a very simple configuration, easy manufacture, and high precision. Further, a cylindrical deflection electrode can be easily manufactured, and deflection accuracy can be improved.

なお上記の実施例では円筒形の偏向電極の場合を示した
が、容器21または30の内壁を角柱形にすれば、電極
膜25を平行平板形にすることも可能である。また、電
極膜25を8個円周上に並べれば所謂8極静電型の非点
補正装置を構成することも可能であり、荷電ビームをを
効に集束することが出来る。
Although the above embodiment shows the case of a cylindrical deflection electrode, if the inner wall of the container 21 or 30 is made into a prismatic shape, the electrode film 25 can also be made into a parallel plate shape. Further, by arranging eight electrode films 25 on the circumference, it is possible to configure a so-called octapole electrostatic astigmatism correction device, and the charged beam can be focused effectively.

更には、第2 (a) 、 2 (b)図、第3図で示
された構成要素が全て真空中に置かれているような構造
の場合には、真空シールのための0リング13、真空封
着部23は不要である。
Furthermore, in the case of a structure in which all the components shown in FIGS. 2(a), 2(b), and 3 are placed in a vacuum, an O-ring 13 for vacuum sealing, The vacuum sealing part 23 is not necessary.

荷電ビームは実施例で示した電子ビームには限らずイオ
ンビーム等であっても良い。また膜24は真空蒸着によ
って形成されたものでなくとも良く、例えば容器21を
金属を含んだセラミックで製作し、熱処理により金属を
内壁面に析出させたものでも良く、要するに容器21ま
たは30の荷電ビームに対向する壁面が前述の表面抵抗
率を持つものであれば良い。
The charged beam is not limited to the electron beam shown in the embodiment, but may be an ion beam or the like. Further, the film 24 does not have to be formed by vacuum evaporation; for example, the container 21 may be made of ceramic containing metal, and the metal may be deposited on the inner wall surface by heat treatment. It is sufficient if the wall surface facing the beam has the above-mentioned surface resistivity.

へ9発明の詳細 な説明したように、本発明は荷電ビームの通路に対向す
る、104乃至10I0Ωの表面抵抗率を持つ壁面と、
前記壁面の一部を接地するための接地部と、前記壁面上
に形成された導体の電極膜と、前記電極膜に電圧を印加
するための電圧導入部とを備えることにより、構造が筒
弔で、精度がgIられ易く、円筒形の電極も容易に製作
可能な荷電ビーム照射装置を提供するものであり、産業
上極めて有位である。
As described in detail in Section 9, the present invention provides a wall surface having a surface resistivity of 104 to 10I0Ω, which faces the path of the charged beam;
By including a grounding part for grounding a part of the wall surface, a conductive electrode film formed on the wall surface, and a voltage introduction part for applying a voltage to the electrode film, the structure can be made into a pipe. The present invention provides a charged beam irradiation device that has high accuracy and can easily produce cylindrical electrodes, and is extremely advantageous in industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術を説明するための断面図、第2 (a
) 、 2 (b)図は本発明の一実施例を説明するた
めの縦断面図、横断面図、第3図は本発明の他の実施例
を説明するための縦断面図である。 なお、図面に示された符号に於いて、 1.2.21.30;真空容器、3;偏向電極、4;支
持棒、5;押さえ板、6:リード線、7:ねじ、10;
絶縁板、11.12.13、;Oリング、15;荷電ビ
ーム、22;電圧導入端子、23;真空封着部、24;
膜、25;電極膜、26;接地部、 である。 第1図
Figure 1 is a sectional view for explaining the prior art, Figure 2 (a
), 2(b) is a vertical cross-sectional view and a cross-sectional view for explaining one embodiment of the present invention, and FIG. 3 is a vertical cross-sectional view for explaining another embodiment of the present invention. In addition, in the symbols shown in the drawings, 1.2.21.30; vacuum container; 3; deflection electrode; 4; support rod; 5; presser plate; 6: lead wire; 7: screw; 10;
Insulating plate, 11.12.13; O-ring, 15; Charged beam, 22; Voltage introduction terminal, 23; Vacuum sealing part, 24;
Membrane, 25; electrode membrane, 26; grounding part. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 荷電ビームの通路に対向する、10^4乃至10^1^
0Ωの表面抵抗率を持つ壁面と、前記壁面の一部を接地
するための接地部と、前記壁面上に形成された導体の電
極膜と、前記電極膜に電圧を印加するための電圧導入部
とを備えたことを特徴とする荷電ビーム照射装置。
10^4 to 10^1^ facing the path of the charged beam
A wall surface having a surface resistivity of 0Ω, a grounding section for grounding a part of the wall surface, a conductive electrode film formed on the wall surface, and a voltage introducing section for applying a voltage to the electrode film. A charged beam irradiation device comprising:
JP25540486A 1986-10-27 1986-10-27 Charged beam irradiating device Pending JPS63110542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25540486A JPS63110542A (en) 1986-10-27 1986-10-27 Charged beam irradiating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25540486A JPS63110542A (en) 1986-10-27 1986-10-27 Charged beam irradiating device

Publications (1)

Publication Number Publication Date
JPS63110542A true JPS63110542A (en) 1988-05-16

Family

ID=17278294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25540486A Pending JPS63110542A (en) 1986-10-27 1986-10-27 Charged beam irradiating device

Country Status (1)

Country Link
JP (1) JPS63110542A (en)

Similar Documents

Publication Publication Date Title
EP0704102B1 (en) Electron beam array for surface treatment
JP5363736B2 (en) Generation of a combination of an RF electric field and an axial DC electric field in an RF single multipole
KR100250801B1 (en) A charged particle beam exposure apparatus, and a charged particle beam exposure method, and a manufacturing method for the apparatus
US20170247789A1 (en) Virtual cathode deposition (vcd) for thin film manufacturing
JPS61131331A (en) Electron beam apparatus
JPS636977B2 (en)
DE3414539C2 (en)
US4994711A (en) High brightness solid electrolyte ion source
CA1107234A (en) Method and apparatus for rejuvenating ion sources
JPH06235063A (en) Sputtering cathode
KR970005756B1 (en) Method for producing an electro-static lens
US5031200A (en) Cathode for an X-ray tube and a tube including such a cathode
US3878424A (en) Electron beam generating source
JP6445867B2 (en) Small high voltage electron gun
JPS63110542A (en) Charged beam irradiating device
US3808498A (en) Electron beam generating source
JP3110777B2 (en) Image display device
CN114008536B (en) Drawing device and deflector
JPS63176458A (en) Vapor depositing method by electron beam
JP2988764B2 (en) Accelerator tube of DC voltage accelerator
JPS6329230Y2 (en)
US2806956A (en) Mass spectrometry
JPH0517797Y2 (en)
US2913617A (en) Electron beam discharge device
JP2550033B2 (en) Charged particle attraction mechanism