JPS6311051B2 - - Google Patents

Info

Publication number
JPS6311051B2
JPS6311051B2 JP57004949A JP494982A JPS6311051B2 JP S6311051 B2 JPS6311051 B2 JP S6311051B2 JP 57004949 A JP57004949 A JP 57004949A JP 494982 A JP494982 A JP 494982A JP S6311051 B2 JPS6311051 B2 JP S6311051B2
Authority
JP
Japan
Prior art keywords
hca
added
inorganic
organic
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57004949A
Other languages
Japanese (ja)
Other versions
JPS58122031A (en
Inventor
Koichi Saruwatari
Takumi Hirayama
Shigenobu Uchida
Yasuya Jo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANKO KAGAKU KK
Original Assignee
SANKO KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANKO KAGAKU KK filed Critical SANKO KAGAKU KK
Priority to JP57004949A priority Critical patent/JPS58122031A/en
Publication of JPS58122031A publication Critical patent/JPS58122031A/en
Publication of JPS6311051B2 publication Critical patent/JPS6311051B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は無機粉粒体と有機化合物又はその混合
物(以下、単に有機化合物という)の混合方法に
関する。 従来、プラスチツクス、ゴム、塗料、インキ、
接着剤等の製造時に、その有機化合物に各種の無
機物質を添加配合することにより物理的、化学的
性質を改良したり、その有機化合物には本来無い
かあるいは乏しい特性を賦与する技術が開発さ
れ、各方面に応用されているが、近年さらにこれ
らの適用分野の拡大と共に、加工条件の向上や省
資源、省エネルギーの点からの改善が要求されて
いる。 無機物質の有機化合物への添加配合に際して
は、いわゆるカツプリング剤と称する化合物が使
用されており、その代表的例として、有機シラン
系、有機クロム酸系及び有機チタン系各化合物が
あるが、適用対象物質、取り扱い性、環境衛生、
価格等の点で一長一短があり、さらに改良が望ま
れている。 本発明の目的は無機粉粒体の有機化合物への添
加配合に当りその分散性が極めて良好であり配合
混合物の粘度を上昇させることなく添加量の増大
を可能ならしめる無機粉粒体の有機化合物への混
合方法を提供することにある。 本発明の無機粉粒体と有機化合物との混合方法
は式〔〕、 (式〔〕中、R1及びR2はそれぞれハロゲン
原子、アルキル基、シクロアルキル基、アラルキ
ル基又はアリール基を表わし、m及びnは0又は
1〜3の整数を表わす。) で示される有機りん化合物の共存下、無機粉粒体
と有機化合物とを混合することを特徴とするもの
である。 本発明方法によれば、無機粉粒体の有機化合物
への添加配合に当り、その分散性が極めて良好で
ある、配合混合物の粘度を上昇させることなく添
加量の増大が可能である、等の効果が得られるば
かりでなく、加工時間の短縮、加工温度の低下等
による省資源、省エネルギーの効果、製品品質の
向上安定化、環境衛生の改善等の効果も得られ
る。 本発明に使用される式〔〕の有機りん化合物
(以下HCAと略称する)は特公昭48−41009号、
同49−45397号、同50−17979号等の各公報に記載
されている化合物で、有機化合物の安定化に優れ
た効果を有する。従つて本発明方法により得られ
る配合組成物は、多種、多量の無機添加剤の配合
にも拘らず、極めて良好な安定性も併せ示す。又
通常の有機溶媒に容易に溶解し、各種樹脂との相
溶性が良好で耐熱性も高く、皮ふ刺激性、中毒性
もほとんど無く、引火性も無いので作業上、環境
衛生上も極めて有利である。 本発明の対象となる無機物質としては、プラス
チツクス、ゴム、塗料、インキ、接着剤等への添
加剤、例えば増量剤、充填剤、難燃剤、補強剤、
着色剤、研磨剤、摩擦抵抗剤、磁性化剤等が挙げ
られる。具体的には、亜鉛、アルミニウム、アン
チモン、クロム、ケイ素、ジルコニウム、タング
ステン、チタン、鉄、銅、鉛、マンガン等の酸化
物(スピネル型化合物、水和物等を含む)、アル
ミニウム、亜鉛、銅等の水酸化物、カルシウム、
バリウム、鉛等の炭酸塩、塩基性炭酸塩、硫酸
塩、カルシウム、バリウム、ストロンチウム、ジ
ルコニウム、鉛、銅、鉄等のクロム酸塩、バリウ
ム、カリウム等のマンガン酸塩、銅等の硼酸塩、
マンガン、鉄、ニツケル、コバルト、クロム、鉛
等のりん酸塩、コバルト、クロム等のアルミン酸
塩、コバルト、銅等の亜鉛酸塩、錫酸塩、カルシ
ウム、バリウム等のタングステン酸塩、マグネシ
ウム、鉛、亜鉛、コバルト等のチタン酸塩、カル
シウム、亜鉛、カドミウム、水銀、アンチモン等
の硫化物、珪石、珪藻土、マイカ、クレー、タル
ク、アスベスト、岩綿、ガラス等が例として挙げ
られる。 これらの無機物質の形状は、粉粒状であれば特
に制限はなく、通常の粉状、粒状は勿論、ホイス
カー状、繊維状、フレーク状であつてもよい。 また対象有機化合物としては、合成高分子、例
えばポリオレフイン類、ポリ塩化ビニル類、ポリ
スチレン類、AS樹脂類、ABS樹脂類、ポリアミ
ド類、ポリウレタン類、ポリエステル類、ポリエ
ーテル類、ポリカーボネート類、ポリ酢酸ビニル
類、ポリビニルアルコール類、エポキシ樹脂類、
フエノール樹脂類、シリコン樹脂類等、天然樹
脂、ゴム、セルローズ誘導体、天然及び合成乾性
油、合成高分子のオリゴマーやプレポリマー、可
塑剤、有機低分子化合物例えば脂肪族系、芳香族
系、エステル系有機溶剤等が挙げられる。 本発明ではあらかじめ無機物質をHCAで表面
処理しておくことが混合を効果的にする。これは
無機物質の配合割合が大きい場合やその粒度が小
さい場合、或いはその吸油量が大きい場合にとく
に効果的である。 無機物質のHCAによる表面処理方法は通常採
用される方法により行ない得る。例えば無機物質
とHCAとを粉状で、或いは適当な媒体を加えて
泥状で、ボールミル等の混和機で混合し、必要な
らば媒体を除去する方法、HCAの溶液を無機物
質表面に噴霧吸着させ必要ならば溶媒を除去する
方法、HCAを溶解した溶液に無機物質を投入し、
スラリー状で十分撹拌した後溶媒を除去する方法
等が採用される。 HCAの添加量は、配合する無機物質の量の0.1
〜5%(重量、以下同じ)、好適には0.2〜1%で
ある。 次に本発明の実施例について説明する。 実施例 1〜10 各種無機物質(粉状品)を塩化メチレンにスラ
リー状に懸濁し、これに無機物質の0.5%相当量
の9,10―ジヒドロ―9ホスフア―10―オキサフ
エナンスレン―9―オキシド(以下、H―HCA
と称する)を添加して1時間撹拌したのち、ロー
タリーエバポレータ中で減圧加熱下脱溶媒し表面
処理品を得た。 一方比較のためH―HCAを添加しないこと以
外は上記と同様に処理し、比較処理品を得た。 このようにして得られた各無機物質を、それぞ
れ各種割合で流動パラフイン(22c.p.s.、25℃)
に添加し10分間撹拌したのち、B型粘度計(ロー
タNo.4、60r.p.m.)で粘度(c.p.s./25℃)を測定
した。その結果を第1表に示す。第1表中の配合
割合は流動パラフイン100部(重量、以下同じ)
当りの添加無機物質の部である。
The present invention relates to a method of mixing an inorganic powder and an organic compound or a mixture thereof (hereinafter simply referred to as an organic compound). Traditionally, plastics, rubber, paints, inks,
During the production of adhesives, etc., technology has been developed to improve the physical and chemical properties of organic compounds by adding various inorganic substances to them, or to impart properties that are not originally present or are poor in the organic compounds. , has been applied in a variety of fields, but in recent years, as the fields of application have further expanded, improvements have been required in terms of improved processing conditions, resource conservation, and energy conservation. When adding inorganic substances to organic compounds, compounds called so-called coupling agents are used. Typical examples include organic silane-based, organic chromic acid-based, and organic titanium-based compounds. materials, handling, environmental hygiene,
There are advantages and disadvantages in terms of price, etc., and further improvements are desired. The purpose of the present invention is to provide an organic compound of inorganic powder or granule that has extremely good dispersibility and allows the addition amount to be increased without increasing the viscosity of the blended mixture. The objective is to provide a method for mixing. The method of mixing the inorganic powder and the organic compound of the present invention is expressed by the formula [], (In formula [], R 1 and R 2 each represent a halogen atom, an alkyl group, a cycloalkyl group, an aralkyl group, or an aryl group, and m and n represent 0 or an integer of 1 to 3.) This method is characterized by mixing an inorganic powder and an organic compound in the presence of a phosphorus compound. According to the method of the present invention, when adding inorganic powder to an organic compound, the dispersibility is extremely good, and the amount added can be increased without increasing the viscosity of the blended mixture. Not only the effects can be obtained, but also the effects such as resource saving and energy saving by shortening the processing time and lowering the processing temperature, improving and stabilizing product quality, and improving environmental hygiene can be obtained. The organic phosphorus compound of the formula [] (hereinafter abbreviated as HCA) used in the present invention is disclosed in Japanese Patent Publication No. 48-41009,
This compound is described in publications such as No. 49-45397 and No. 50-17979, and has an excellent effect on stabilizing organic compounds. Therefore, the blended composition obtained by the method of the present invention also exhibits extremely good stability despite the blending of various kinds and large amounts of inorganic additives. In addition, it dissolves easily in ordinary organic solvents, has good compatibility with various resins, has high heat resistance, has almost no skin irritation or toxicity, and is not flammable, making it extremely advantageous in terms of work and environmental hygiene. be. Inorganic substances targeted by the present invention include additives for plastics, rubber, paints, inks, adhesives, etc., such as extenders, fillers, flame retardants, reinforcing agents,
Examples include coloring agents, abrasives, friction resistance agents, magnetizing agents, and the like. Specifically, oxides (including spinel compounds, hydrates, etc.) of zinc, aluminum, antimony, chromium, silicon, zirconium, tungsten, titanium, iron, copper, lead, manganese, etc., aluminum, zinc, copper hydroxide, calcium, etc.
Carbonates such as barium and lead, basic carbonates, sulfates, calcium, barium, strontium, zirconium, chromates such as lead, copper and iron, manganates such as barium and potassium, borates such as copper,
Phosphates such as manganese, iron, nickel, cobalt, chromium, and lead, aluminates such as cobalt and chromium, zincates such as cobalt and copper, stannate, tungstates such as calcium and barium, magnesium, Examples include titanates such as lead, zinc, and cobalt, sulfides such as calcium, zinc, cadmium, mercury, and antimony, silica, diatomaceous earth, mica, clay, talc, asbestos, rock wool, and glass. The shape of these inorganic substances is not particularly limited as long as it is in the form of powder or granules, and may be in the form of whiskers, fibers, or flakes as well as normal powder and granule shapes. Target organic compounds include synthetic polymers such as polyolefins, polyvinyl chloride, polystyrenes, AS resins, ABS resins, polyamides, polyurethanes, polyesters, polyethers, polycarbonates, and polyvinyl acetate. classes, polyvinyl alcohols, epoxy resins,
Phenol resins, silicone resins, natural resins, rubber, cellulose derivatives, natural and synthetic drying oils, synthetic polymer oligomers and prepolymers, plasticizers, organic low-molecular compounds such as aliphatic, aromatic, and ester-based Examples include organic solvents. In the present invention, surface-treating the inorganic substance with HCA in advance makes mixing effective. This is particularly effective when the blending ratio of the inorganic substance is large, its particle size is small, or its oil absorption is large. Surface treatment of inorganic substances with HCA can be carried out by commonly employed methods. For example, an inorganic substance and HCA may be mixed in powder form or in a slurry form with an appropriate medium added in a mixer such as a ball mill, and the medium may be removed if necessary, or a solution of HCA may be sprayed and adsorbed onto the surface of an inorganic substance. If necessary, remove the solvent, add the inorganic substance to the solution containing HCA,
A method is adopted in which the slurry is thoroughly stirred and then the solvent is removed. The amount of HCA added is 0.1 of the amount of inorganic substances to be blended.
~5% (by weight, same hereinafter), preferably 0.2~1%. Next, examples of the present invention will be described. Examples 1 to 10 Various inorganic substances (powder) are suspended in methylene chloride in the form of a slurry, and 9,10-dihydro-9 phosphor-10-oxaphenanthrene-9 is added to this in an amount equivalent to 0.5% of the inorganic substance. - oxide (hereinafter referred to as H-HCA)
After stirring for 1 hour, the solvent was removed under reduced pressure and heating in a rotary evaporator to obtain a surface-treated product. On the other hand, for comparison, a comparative product was obtained by processing in the same manner as above except that H-HCA was not added. Each inorganic substance obtained in this way was added to liquid paraffin (22c.ps, 25℃) in various proportions.
After stirring for 10 minutes, the viscosity (cps/25°C) was measured using a B-type viscometer (rotor No. 4, 60 rpm). The results are shown in Table 1. The blending ratio in Table 1 is 100 parts of liquid paraffin (weight, same below)
This is the part of added inorganic material per unit.

【表】 実施例1〜10におけるH―HCAの代りに、H
―HCAの1位をシクロヘキシル基で置換したも
の、3―位をα―メチルベンジル基で置換したも
の、又は1,3―位を塩素原子でジ置換したもの
を、それぞれ使用して同様の結果が得られた。 実施例 11〜12 実施例1において、有機化合物として流動パラ
フインの代りに酢酸エチル又はキシレンを使用し
たほかは同様に操作して混合物の粘度を測定した
結果を第2表に示す。
[Table] Instead of H-HCA in Examples 1 to 10, H
-Similar results were obtained using HCA in which the 1-position was substituted with a cyclohexyl group, the 3-position was substituted with an α-methylbenzyl group, or the 1,3-position was di-substituted with a chlorine atom. was gotten. Examples 11-12 Table 2 shows the results of measuring the viscosity of the mixture in the same manner as in Example 1 except that ethyl acetate or xylene was used instead of liquid paraffin as the organic compound.

【表】 実施例 13 0.5%相当量のH―HCAで表面処理(実施例1
と同じ方法で処理)した炭酸カルシウム(重質)
を同部のジオクチルフタレートと混合したものの
粘度を測定したところ150c.p.s.(25℃)であつた。
一方H―HCAを添加しない以外は同様に処理し
た炭酸カルシウムの混合物は5500c.p.s.であつた。 実施例 14 無機物質として炭酸カルシウム(重質)100部
と、有機化合物としてビスフエノールA・ジグリ
シジルエーテル(油化シエルポキシ(株)商品名:エ
ピコート828)100部との混合物について同様に粘
度を測定(但し、ロータNo.4、10r.p.m.)した結
果、H―HCA0.5%処理の場合は105p.s.,比較例
の場合は140p.s.であつた。 実施例 15 タルクをその0.5%相当量のH―HCAで表面処
理(実施例1と同じ方法で処理)しポリプロピレ
ン100部に対し、67部(実施例15―1)又は82部
(実施例15―2)を添加混合して、それぞれMFI
(メルトフローインデクス)(g/10分、230℃)
を測定した。比較及び参考のためH―HCAを添
加しない以外は同様に処理したタルク67部を混合
したもの(比較例15)、タルクを混合せずH―
HCA0.25%(対ポリプロピレン)のみを添加し
たもの(参考例―1)、及びポリプロピレン自体
のみ(参考例2)についても測定した。その結果
を第3表に示す。
[Table] Example 13 Surface treatment with H-HCA equivalent to 0.5% (Example 1
Calcium carbonate (heavy) treated in the same way as
When mixed with the same amount of dioctyl phthalate, the viscosity was 150 c.ps (25°C).
On the other hand, a calcium carbonate mixture treated in the same manner except that H-HCA was not added had a yield of 5500 c.ps. Example 14 The viscosity was similarly measured for a mixture of 100 parts of calcium carbonate (heavy) as an inorganic substance and 100 parts of bisphenol A diglycidyl ether (trade name: Epicote 828, manufactured by Yuka Cielpoxy Co., Ltd.) as an organic compound. (However, rotor No. 4, 10 rpm) The result was 105 p.s. in the case of H-HCA 0.5% treatment and 140 p.s. in the case of the comparative example. Example 15 Talc was surface-treated with H-HCA in an amount equivalent to 0.5% (treated in the same manner as in Example 1), and 67 parts (Example 15-1) or 82 parts (Example 15) were added to 100 parts of polypropylene. -2) are added and mixed, each with MFI
(Melt flow index) (g/10 minutes, 230℃)
was measured. For comparison and reference, 67 parts of talc treated in the same manner except that H-HCA was not added (Comparative Example 15), and H- without talc mixed.
Measurements were also carried out for those to which only 0.25% HCA (based on polypropylene) was added (Reference Example-1) and only for polypropylene itself (Reference Example 2). The results are shown in Table 3.

【表】 実施例 16 炭酸カルシウム(重質)をその0.5%相当量の
H―HCAで表面処理し、HDPE(高密度ポリエチ
レン)100部に対し、43部(実施例16―1)、67部
(実施例16―2)及び100部(実施例16―3)を添
加混合して、それぞれMFI(g/10分、230℃)
を測定した。又実施例16におけると同様の比較及
び参考のための試験を行なつた。その結果を第4
表に示す。
[Table] Example 16 Calcium carbonate (heavy) was surface-treated with H-HCA in an amount equivalent to 0.5% of calcium carbonate, and 43 parts (Example 16-1) and 67 parts were prepared for 100 parts of HDPE (high-density polyethylene). (Example 16-2) and 100 parts (Example 16-3) were added and mixed, respectively at MFI (g/10 minutes, 230°C).
was measured. In addition, the same comparative and reference tests as in Example 16 were conducted. The result is the fourth
Shown in the table.

【表】【table】

Claims (1)

【特許請求の範囲】 1 無機粉粒体の表面を、あらかじめ式〔〕 (式〔〕中、R1及びR2はそれぞれハロゲン
原子、アルキル基、シクロアルキル基、アラルキ
ル基又はアリール基を表わし、m及びnは0又は
1〜3の整数を表わす。) で示される有機りん化合物で処理した後、有機化
合物又はその混合物と混合することを特徴とす
る、無機粉粒体と有機化合物との混合方法。
[Claims] 1. The surface of the inorganic powder or granular material is prepared in advance by the formula [] (In formula [], R 1 and R 2 each represent a halogen atom, an alkyl group, a cycloalkyl group, an aralkyl group, or an aryl group, and m and n represent 0 or an integer of 1 to 3.) A method for mixing inorganic powder and an organic compound, which comprises treating with a phosphorus compound and then mixing with an organic compound or a mixture thereof.
JP57004949A 1982-01-18 1982-01-18 Mixing method of inorganic powder and granule and organic substrate Granted JPS58122031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57004949A JPS58122031A (en) 1982-01-18 1982-01-18 Mixing method of inorganic powder and granule and organic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57004949A JPS58122031A (en) 1982-01-18 1982-01-18 Mixing method of inorganic powder and granule and organic substrate

Publications (2)

Publication Number Publication Date
JPS58122031A JPS58122031A (en) 1983-07-20
JPS6311051B2 true JPS6311051B2 (en) 1988-03-11

Family

ID=11597818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57004949A Granted JPS58122031A (en) 1982-01-18 1982-01-18 Mixing method of inorganic powder and granule and organic substrate

Country Status (1)

Country Link
JP (1) JPS58122031A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031259A (en) * 2005-06-22 2007-02-08 Nissan Motor Co Ltd Metal oxide particle composite, metal oxide composite sol, and method for producing metal oxide composite sol

Also Published As

Publication number Publication date
JPS58122031A (en) 1983-07-20

Similar Documents

Publication Publication Date Title
US4098758A (en) Inorganic-organic composites and methods of reacting the same with organo-titanium compounds
US4094853A (en) Alkoxy titanate salts useful as coupling agents
US4087402A (en) Organo-titanate chelates and their uses
US4069192A (en) Liquid thermosetting resins containing titanate salts
KR840001783B1 (en) Pyrophosphato titanate adducts
JPS62155B2 (en)
KR100351015B1 (en) Gel-resistant paint composition containing cuprous oxide and 2,2'-dithiobis (pyridine-1-oxide) compound and preparation method thereof
JP2002508422A (en) Polymer products containing modified carbon products and methods for their production and use
PT89638B (en) PROCESS FOR THE PREPARATION OF SCATTERING INKS, PAINT INKS AND MORTARS OF POOR PLASTIC DISPERSES IN VOLLEY EMISSIONS
JPS6025437B2 (en) Organic titanate-containing composition
JPS59170131A (en) Surface-modified inorganic powder
EP0282016B1 (en) Thixotropic additive, process for preparing same and use thereof
JPS6311051B2 (en)
US6323260B1 (en) Process for hydrophobicizing particles and their use in dispersions
JPH045071B2 (en)
JPS587463A (en) Paint composition
JPS58145758A (en) Composition containing isocyanate silane as additive for increasing storage stability of composition containing polyurethane prepolymer having free isocyanate group
US6537612B1 (en) Process for treating particles, and their use in dispersions
KR20010089476A (en) Process for Hydrophobicizing Particles and Their Use in Dispersions
JPH0778111B2 (en) One-component flexible epoxy resin composition
CA1124424A (en) Coupling of polymers and inorganic materials using organo-alkoxy titanate salt
KR800001653B1 (en) Process for producing a dispersion of inorganic in polymeric medium
KR810000205B1 (en) Process for preparing alpha-omega-alkylene titanate
JPH0158229B2 (en)
JPH10168229A (en) Surface-treated alkaline earth metal salt powder and its production