JPS63110422A - Transmissive liquid crystal display device - Google Patents

Transmissive liquid crystal display device

Info

Publication number
JPS63110422A
JPS63110422A JP61255626A JP25562686A JPS63110422A JP S63110422 A JPS63110422 A JP S63110422A JP 61255626 A JP61255626 A JP 61255626A JP 25562686 A JP25562686 A JP 25562686A JP S63110422 A JPS63110422 A JP S63110422A
Authority
JP
Japan
Prior art keywords
light source
light
liquid crystal
crystal display
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61255626A
Other languages
Japanese (ja)
Inventor
Kozo Sato
剛三 佐藤
Nobuaki Kabuto
展明 甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61255626A priority Critical patent/JPS63110422A/en
Publication of JPS63110422A publication Critical patent/JPS63110422A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To eliminate a reflection loss so as to utilize the luminous flux of a light source more effectively, by providing a lenticular lens in such a way that stripes of the lens are made almost parallel to the longitudinal direction of a tubular or linear light source. CONSTITUTION:A tubular light source 1 is put in a box body 5, whose inner surfaces are formed of light reflecting surfaces, and a lenticular lens 2 is provided above the light source 1. A milky white plate 3 is provided above the lens 2 and a transmissive liquid crystal panel 4 is provided above the plate 3. The milky white plate 3 is a light diffusing plate which is formed by uniformly impregnating a transparent plate with a light diffusing agent. When such constitution is used, rays of light 6 projected upward from the top of the tubular light source 1 are diffused as rays of light 6-1, 6-2, and 6-3 after they are made incident to the lenticular lens 2. The diffused rays of light are made incident on the milky white plate 3 and form a high-luminance planar light source which is less in luminance unevenness. When the liquid crystal panel 4 is provided above the high-luminance planar light source, a high-luminance liquid crystal displaying picture can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、主に透過形液晶ディスプレイ、透過形液晶テ
レビなどの高輝度化に好適な薄形の透過形液晶表示装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention mainly relates to a thin transmissive liquid crystal display device suitable for increasing the brightness of transmissive liquid crystal displays, transmissive liquid crystal televisions, and the like.

〔従来の技術〕[Conventional technology]

透過形液晶表示装置を薄形にし、かつ、表示画像の高輝
度化をはかるためにはその照明装置の薄形化、高輝度化
をはかる必要があシ、その−手段がテレビ学技報Vo1
.9 、 NIL 47(1986年2月)第5頁から
第8頁において論じられている。この方法は光源である
螢光管と光拡散板である乳白板との間に、透明プラスチ
ック板に金属At膜をドツト状に散在させた光スクリー
ンを配置するものであシ(前記文献の図2)、この方法
により、照明装置を薄形に形成しても、輝度むらの発生
を実使用可能な範囲にすることができる。
In order to make the transmissive liquid crystal display device thinner and to increase the brightness of the displayed image, it is necessary to make the lighting device thinner and brighter.
.. 9, NIL 47 (February 1986), pp. 5-8. In this method, a light screen made of a transparent plastic plate with metallic At films scattered in dots is placed between a fluorescent tube as a light source and an opalescent plate as a light diffusion plate (see the figure in the above-mentioned document). 2) With this method, even if the lighting device is made thin, the occurrence of uneven brightness can be kept within a practical range.

光スクリーン方式による輝度むら防止原理は螢光管の直
上の光束の一部をドツト状配置の金属アルミで反射させ
、残)の一部の光束を透過させることにより、面光源周
辺と中央部との輝度の均一化をはかるものであシ、この
場合、金属アルミ膜で反射した光は他の部分で再反射し
た後、乳白板に到達する光もあるが、反射を繰シ返すこ
とによシ、光の損失も発生するため、光スクリーンがな
い場合に比べ若干、面光源の平均輝度が低下すると考え
られる。
The principle of preventing brightness unevenness using the optical screen method is to reflect a part of the luminous flux directly above the fluorescent tube on the metal aluminum arranged in a dot shape, and to transmit the remaining luminous flux, which can be applied to the area around the surface light source and the central area. In this case, some of the light reflected by the metal aluminum film reaches the opalescent plate after being reflected again by other parts, but by repeating the reflection, Since light loss also occurs, the average brightness of the surface light source is thought to be slightly lower than in the case without a light screen.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では光スクリーンで反射した光は反射ロス
のため、その分、有効利用できず、そのため、面光源を
よシー層高輝度化するためには前記反射ロス発生を防止
する必要がある。
In the above-mentioned conventional technology, the light reflected by the optical screen cannot be used effectively because of reflection loss.Therefore, in order to increase the brightness of a surface light source with a high sheath layer, it is necessary to prevent the reflection loss from occurring.

本発明の目的は、上記反射ロスをなくシ、光源からでる
光束をよシー層有効に利用し高輝度化した薄形面光源装
置適用の透過形液晶表示装置を得ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a transmissive liquid crystal display device for use with a thin surface light source device that eliminates the above-mentioned reflection loss and effectively utilizes the luminous flux emitted from the light source to increase brightness.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は前記光スクリーンの代シに、レンチキュラー
レンズを該レンズのストライプが発光源である管状また
は線状光源の長手方向に略平行になるよう配置すること
によシ達成される。
The above object is achieved by arranging a lenticular lens in place of the light screen so that the stripes of the lens are substantially parallel to the longitudinal direction of the tubular or linear light source.

〔作用〕[Effect]

管状または線状光源から出射した光のうち、該光源の上
部付近からの光はレンチキュラーレンズに入射し、該光
源の長手方向に対し直角な方向に拡散される。その後、
該拡散光は光拡散剤を均一に含有した光拡散板に入射し
、あらゆる方向に拡散されて出射する。この場合、該光
源から出射し、レンチキュラーレンズに入射した光は該
レンズに不純物等の光吸収物質が含有していなく、かつ
、該レンズの表面を無反射コーティング処理している場
合、約98%程度の光透過率が得られるから、該レンズ
による光損失をほとんど発生せずに、該光源の長手方向
に対して直角な方向に光を拡散することができる。上記
作用によシ、該光源の真上1、3 。
Of the light emitted from the tubular or linear light source, light from near the top of the light source enters the lenticular lens and is diffused in a direction perpendicular to the longitudinal direction of the light source. after that,
The diffused light enters a light diffusing plate uniformly containing a light diffusing agent, is diffused in all directions, and is emitted. In this case, the light emitted from the light source and incident on the lenticular lens is about 98% if the lens does not contain light-absorbing substances such as impurities and the surface of the lens is treated with anti-reflection coating. Since a certain degree of light transmittance can be obtained, light can be diffused in a direction perpendicular to the longitudinal direction of the light source with almost no light loss due to the lens. Due to the above action, the light source 1, 3 is directly above the light source.

長手方向に生ずる高輝度部分を光損失をほとんど発生せ
ずに周辺部分に振p向け、面光源輝度の均一化をはかる
ことができる。以上によシ構成した面光源に液晶パネル
を組合わせることによシ、高輝度で輝度均一な表示画像
を得ることができる。
By directing the high brightness portions that occur in the longitudinal direction toward the peripheral portions with almost no optical loss, it is possible to equalize the brightness of the surface light source. By combining the surface light source configured as described above with a liquid crystal panel, a display image with high brightness and uniform brightness can be obtained.

〔実施例〕〔Example〕

以下、本発明を実施例によシ説明する。第1図は本発明
の一実施例としての透過形液晶表示装置の模式断面図で
ある。内面を光反射面で形成した箱体5の内側に管状光
源1を配置し、該光源1の上部にレンチキュラーレンズ
2を、さらに該レンチキュラーレンズ2の上部に乳白板
3を、さらに該乳白板3の上部に透過形液晶パネル4を
配置している。該乳白板3は透明板に光拡散剤を均一に
含有させた光拡散板である。上記の構成によシ、管状光
源1の上部から真上方向に出射した光線6はレンチキュ
ラーレンズ2に入射後、光線6−1゜6−2.6−3の
如く拡散され、乳白板3に入射する。乳白板3に入射し
た光線6−1は該乳白板3でさらに拡散され、出射光線
9を得る。また、該・ 4 ・ 光源1の上部から斜め方向に出射した光線7はレンチキ
ュラーレンズ2に入射後、光線7−1.7−2.7−3
の如く拡散され乳白板3に入射する。管状光源1の側方
から出射した光線8は箱体5の内面で反射し乳白板3に
直接入射する。なお、光線8が上記光路となるよう、レ
ンチキュラーレンズ2の幅を乳白板3の幅よシ狭くしで
ある。この幅の設定に際しては箱体5の形状、レンチキ
ュラーレンズ2の光拡散角等の値を考慮して最適値を定
める。乳白板3に入射した光線はそこでさらにあらゆる
方向に拡散され、乳白板3の上面よシはぼ均一に拡散し
た出射光線9を得る。これよシ輝度むらの少ない高輝度
平面光源となし得る。前記高輝度平面光源上に液晶パネ
ル4を配置すれば、高輝度の液晶表示画像を嫉視するこ
とができる。本発明の液晶表示装置の平面光源の一例と
して、例えば面光源部対角寸法を約5インチ、乳白板3
とレンチキュラーレンズ2との間隔1燗、レンチキュラ
ーレンズ2の厚みを約1閣、光拡散角17°、レンチキ
ュラーレンズ2と管状光源1の間隔1■、管状光源1の
直径15.5−φ、管状光源1と箱体の間隔5mとし、
管状光源1として4W螢光管を用いた場合を設定する。
The present invention will be explained below using examples. FIG. 1 is a schematic cross-sectional view of a transmission type liquid crystal display device as an embodiment of the present invention. A tubular light source 1 is arranged inside a box 5 whose inner surface is formed of a light reflecting surface, a lenticular lens 2 is placed above the light source 1, a milky white plate 3 is placed above the lenticular lens 2, and furthermore, the milky white plate 3 is placed above the lenticular lens 2. A transmissive liquid crystal panel 4 is placed above the screen. The opalescent plate 3 is a light diffusing plate in which a light diffusing agent is uniformly contained in a transparent plate. With the above configuration, the light ray 6 emitted directly upward from the top of the tubular light source 1 enters the lenticular lens 2 and is diffused as shown in the rays 6-1, 6-2, and 6-3, and hits the opalescent plate 3. incident. The light ray 6-1 incident on the opalescent plate 3 is further diffused by the opalescent plate 3 to obtain an output beam 9. In addition, after the light ray 7 emitted from the upper part of the light source 1 in an oblique direction enters the lenticular lens 2, the light ray 7-1.7-2.7-3
It is diffused as follows and enters the opalescent plate 3. A light ray 8 emitted from the side of the tubular light source 1 is reflected by the inner surface of the box 5 and directly enters the opalescent plate 3. Note that the width of the lenticular lens 2 is made narrower than the width of the opalescent plate 3 so that the light ray 8 follows the above-mentioned optical path. When setting this width, the optimum value is determined by considering the shape of the box 5, the light diffusion angle of the lenticular lens 2, and other values. The light beam incident on the opalescent plate 3 is further diffused in all directions, and an output beam 9 is obtained which is almost uniformly diffused across the upper surface of the opalescent plate 3. This allows a high-brightness flat light source with less uneven brightness. By arranging the liquid crystal panel 4 on the high-brightness flat light source, it is possible to view a high-brightness liquid crystal display image. As an example of the flat light source of the liquid crystal display device of the present invention, for example, the diagonal dimension of the flat light source part is about 5 inches, and the milky white plate 3
The distance between the lenticular lens 2 and the lenticular lens 2 is 1 mm, the thickness of the lenticular lens 2 is approximately 1 mm, the light diffusion angle is 17°, the distance between the lenticular lens 2 and the tubular light source 1 is 1 cm, the diameter of the tubular light source 1 is 15.5-φ, and the tubular shape is The distance between light source 1 and the box is 5 m,
A case is set in which a 4W fluorescent tube is used as the tubular light source 1.

これと光スクリーンを使用した従来の液晶表示装置の輝
度を比較した場合を第2図に示す。この場合、前記2つ
の液晶表示装置の大きさく特に厚み)を一定にしである
。本発明による面光源装置を適用した液晶表示装置輝度
は従来の光スクリーン適用面光源装置を使用した液晶表
示装置輝度の約1.2倍であシ、輝度むらはほぼ同等で
ある。
FIG. 2 shows a comparison of the brightness of this and a conventional liquid crystal display device using an optical screen. In this case, the size (particularly the thickness) of the two liquid crystal display devices is kept constant. The brightness of a liquid crystal display using the surface light source device according to the present invention is about 1.2 times that of a liquid crystal display using a conventional surface light source device using an optical screen, and the brightness unevenness is almost the same.

なお、ここでは、輝度むらを面光源の輝度最小点(面光
源コーナ一部)の輝度に対する輝度最大点(面光源中央
部)の輝度の割合で評価したが、この値は前記2つの面
光源装置とも約1.8であシ、ブラウン管を用いたカラ
ーテレビの上記定義にもとすく輝度むら実測値が約2で
あることから、上記輝度むら1,8は十分許容できる値
である。
Here, the brightness unevenness was evaluated by the ratio of the brightness of the maximum brightness point (center part of the surface light source) to the brightness of the minimum brightness point (part of the corner of the surface light source) of the surface light source. The brightness unevenness of 1.8 is approximately 1.8 for both devices, and the actual measured value of the brightness unevenness is approximately 2 based on the above definition of a color television using a cathode ray tube, so the brightness unevenness 1 and 8 are sufficiently acceptable values.

また、本発明装置において、レンチキュラーレンズ2を
削除した場合、前記輝度むらの値は2.3程度になるか
らレンチキュラーレンズ2の設置効果は十分認められる
。また、第1図において、レンチキュラーレンズ2の端
部2−1を光拡散面としたが、この理由は前記手段を適
用しないとレンチキュラーレンズ2の端部2−1付近の
乳白板3上に影が発生するためである。なお、この影は
レンチキュラーレンズ2の厚みを薄くすれば(約0.5
−以下)目視上量販ないレベルにすることができる。
Furthermore, in the device of the present invention, when the lenticular lens 2 is removed, the value of the luminance unevenness becomes about 2.3, so the effect of installing the lenticular lens 2 is sufficiently recognized. In addition, in FIG. 1, the end 2-1 of the lenticular lens 2 is used as a light diffusing surface. This is because Note that this shadow can be reduced by reducing the thickness of the lenticular lens 2 (approximately 0.5
(below) can be made to a level that cannot be visually seen in mass sales.

第3図は本発明の他の実施例である。照射する面光源面
積が広い場合、管状光源1からの光をよシ広範囲に拡散
する必要があシ、このような場合、第3図に示す如く、
2枚のレンチキュラーレンズ2′、2“を使用する必要
が生ずる場合もある。
FIG. 3 shows another embodiment of the invention. When the area of the surface light source to be irradiated is large, it is necessary to diffuse the light from the tubular light source 1 over a wider area.In such a case, as shown in FIG.
In some cases, it may be necessary to use two lenticular lenses 2', 2''.

第4図も本発明の他の実施例であシ、第1図において乳
白板3を収束レンズとしたものである。
FIG. 4 also shows another embodiment of the present invention, in which the opalescent plate 3 in FIG. 1 is used as a converging lens.

実際にはレンズ厚みを低減するためフレネルレンズ形状
としている。一般に液晶パネル4は視角特性が狭く、あ
らゆる角度からの画像嫉視は不可能である。そこで、液
晶パネル4を照射する面光源からの出射光も全方向に出
射する必要はない。前記観点から、第4図の実施例では
光束が主に上部方向に向くようにしたもので、本実施例
を液晶表示装置に適用することによシ、広い角度に発散
する光束を有効視角に見合った狭い範囲に集中させるこ
とができ、面光源輝度を向上させることができる。
In reality, a Fresnel lens shape is used to reduce the lens thickness. Generally, the liquid crystal panel 4 has narrow viewing angle characteristics, and it is impossible to view images from all angles. Therefore, the light emitted from the surface light source that illuminates the liquid crystal panel 4 does not need to be emitted in all directions. From the above point of view, in the embodiment shown in FIG. 4, the luminous flux is directed mainly upward, but by applying this embodiment to a liquid crystal display device, the luminous flux diverging over a wide angle can be made into an effective viewing angle. The light can be concentrated in a suitable narrow range, and the brightness of the surface light source can be improved.

第5図も本発明の他の実施例であシ、第4図において収
束レンズ10を偏心させたものである。
FIG. 5 also shows another embodiment of the present invention, in which the converging lens 10 in FIG. 4 is decentered.

実際の液晶パネルにおいて、画像コントラストが最良に
なる方向が液晶パネルに垂直な方向でなく、若干、傾い
ている場合が多い。このような場合、その傾き角度と面
光源からの光線出射方向を一致させれば、コントラスト
最良方向、輝度最大方向が一致し、画像を嫉視する上で
好都合となる。第5図の実施例は、コントラスト最良方
向と輝度最大方向とを一致させ得る構造の一例で、面光
源の輝度最大方向は画面垂直方向でなく、若干、かたむ
いた方向である。
In an actual liquid crystal panel, the direction in which the image contrast is best is not perpendicular to the liquid crystal panel, but is often slightly inclined. In such a case, if the angle of inclination and the direction in which the light rays are emitted from the surface light source match, the best contrast direction and the maximum brightness direction will match, which will be convenient for viewing the image. The embodiment shown in FIG. 5 is an example of a structure that can match the best contrast direction and the maximum brightness direction, and the maximum brightness direction of the surface light source is not in the vertical direction of the screen but in a slightly tilted direction.

第4図、第5図の実施例において、面光源から出射する
光線9′、9“の拡散程度が少ない場合、収束レンズ1
0.11に多少光拡散物質を混入させ、乳白化させても
よい。
In the embodiments shown in FIGS. 4 and 5, when the degree of diffusion of the light rays 9' and 9'' emitted from the surface light source is small, the converging lens 1
0.11 may be mixed with some light diffusing substance to make it opalescent.

第6図は管状光源として、2本の螢光管を使用した場合
の実施例で、各螢光管1−1.1−2の上にレンチキュ
ラーレンズ2−1.2−2を配置し、光束が均一に拡散
するようにしている。
FIG. 6 shows an example in which two fluorescent tubes are used as the tubular light source, and a lenticular lens 2-1.2-2 is placed above each fluorescent tube 1-1.1-2. This ensures that the light beam is evenly diffused.

2本の螢光管1−1.1−2の特殊な場合として第7図
に示すU形管光管1′がある。U形管光管り′上に設置
するレンチキュラーレンズの一例ヲ第8図に示す。
A special case of two fluorescent tubes 1-1, 1-2 is a U-shaped light tube 1' shown in FIG. An example of a lenticular lens installed on the U-shaped light tube is shown in FIG.

第8図(イ)は正面図、(ロ)はc 、 c’断面図で
ある。
FIG. 8(a) is a front view, and FIG. 8(b) is a sectional view along c and c'.

レンチキュラーレンズ2 はレンチキュラーレンズスト
ライプがU字状に形成されている。第8図のレンチキュ
ラーレンズ2 をU形管光管り′上に配置することによ
fiU形螢形管光管1′軸に直角な方向に光束を拡散さ
せることができる。
The lenticular lens 2 has lenticular lens stripes formed in a U-shape. By arranging the lenticular lens 2 shown in FIG. 8 on the U-shaped light tube 1', the light beam can be diffused in a direction perpendicular to the axis of the fiU-shaped light tube 1'.

第9図はU形管光管1′を使用した場合で、かつ、その
上に設置するレンチキュラーレンズとして通常の形状の
レンチキュラーレンズ2−3を使用した場合の一実施例
である。第10図は該レンチキュラーレンズ2−3の正
面図である。第9図に示す構造でも、乳白板3の濃度、
乳白板3とレンチキュラーレンズ2−3の間隔等を調整
することによシ、乳白板3からの出射光9 を十分均一
な高輝度光束吉−することができる。
FIG. 9 shows an embodiment in which a U-shaped light tube 1' is used, and a normal-shaped lenticular lens 2-3 is used as a lenticular lens installed thereon. FIG. 10 is a front view of the lenticular lens 2-3. Even in the structure shown in FIG. 9, the density of the opalescent plate 3,
By adjusting the distance between the opalescent plate 3 and the lenticular lens 2-3, the light 9 emitted from the opalescent plate 3 can be made into a sufficiently uniform, high-intensity light beam.

以上の実施例では、レンチキュラーレンズ!−1枚また
は2枚使用した場合について説明したが、出射光の均一
化において、それが3枚以上必要な場合は3枚以上の構
成でもよい。また、光源1の長手方向にも光線を拡散さ
せる必要がある場合、前記レンチキュラーレンズ2,2
.2.2.2  。
In the above example, a lenticular lens is used! - Although the case where one or two sheets are used has been described, if three or more sheets are required to make the emitted light uniform, a configuration using three or more sheets may be used. Furthermore, if it is necessary to diffuse the light rays also in the longitudinal direction of the light source 1, the lenticular lenses 2, 2
.. 2.2.2.

2−3の光拡散方向に対し、光拡散方向が直角になるよ
うな他のレンチキュラーレンズを配置してもよい。また
、以上の説明では光源1.1 として管状光源を仮定し
たが、それは線状の光源でもよい。また、必要に応じて
、レンチキュラーレンズ2.2’、2“、2III 、
 21111 、2−3光拡散角を中央部と周辺部で異
ならせてもよい。例えば、中央部を光拡散向火、周辺部
を光拡散率にすれば、均一輝度の面光源を得る上で効果
がある。
Other lenticular lenses may be arranged such that the light diffusion direction is perpendicular to the light diffusion direction of 2-3. Further, in the above description, a tubular light source is assumed as the light source 1.1, but it may be a linear light source. In addition, if necessary, lenticular lenses 2.2', 2", 2III,
21111, 2-3 The light diffusion angle may be made different between the central part and the peripheral part. For example, it is effective to provide a surface light source with uniform brightness by setting the center part to have a light diffusion effect and the peripheral part to have a light diffusion rate.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明の透過形液晶表示装置によれば、
装置厚み、輝度むらを一定とした場合、液晶パネルの照
射面光源輝度を従来の面光源輝度よシ約20チアツブす
ることが可能となシ、したがって、液晶パネル画像輝度
も従来の画像輝度よシ約20チアツブした透過形液晶表
示装置とすることができる。
As described above, according to the transmission type liquid crystal display device of the present invention,
If the device thickness and brightness unevenness are kept constant, it is possible to reduce the illumination surface light source brightness of the liquid crystal panel by approximately 20 times compared to the conventional surface light source brightness. A transmissive liquid crystal display device with a thickness of approximately 20% can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例としての透過形液晶表示装置
の模式断面図、第2図は本発明による透過形液晶表示装
置と従来の透過形液晶表示装置の中央部輝度分布比較図
、第3図、第4図、第5図。 第6図はそれぞれ本発明による透過形液晶表示装置の他
の実施例の模式断面図、第7図は本発明装置に適用する
管状光源の一例としてのU形管光管の一例を示す説明図
、第8図は第7図に示すU形管光管を使用したときに適
用するレンチキュラーレンズの一例を示す説明図、第9
図は本発明の更に他の実施例の模式断面図、第10図は
本発明に、11 。 適用するレンチキュラーレンズの他の例を示ta明図で
ある。 1.1′・・・管状光源 2.2−1.2−2.2−4.2.2.2 .2・・・
レンチキュラーレンズ 3・・・乳白板 4・・・液晶パネル 5・・・箱体 6.6−1.+5−2.6−3.7.7−1.7−2.
7−3゜8.9.9’、9“ 、III 、 9′11
1・・・光線10・・・収束レンズ 11・・・偏心収束レンズ A・・・本発明液晶表示装置輝度分布 B・・・従来液晶表示装置輝度分布。
FIG. 1 is a schematic cross-sectional view of a transmissive liquid crystal display device as an embodiment of the present invention, and FIG. 2 is a comparison diagram of the central part luminance distribution of the transmissive liquid crystal display device according to the present invention and a conventional transmissive liquid crystal display device. Figures 3, 4, and 5. FIG. 6 is a schematic sectional view of another embodiment of the transmission type liquid crystal display device according to the present invention, and FIG. 7 is an explanatory diagram showing an example of a U-shaped light tube as an example of a tubular light source applied to the device of the present invention. , FIG. 8 is an explanatory diagram showing an example of a lenticular lens applied when the U-shaped light tube shown in FIG. 7 is used, and FIG.
The figure is a schematic sectional view of still another embodiment of the present invention, and FIG. FIG. 6 is a clear view showing another example of the applied lenticular lens. 1.1'...Tubular light source 2.2-1.2-2.2-4.2.2.2. 2...
Lenticular lens 3...Opalescent plate 4...Liquid crystal panel 5...Box body 6.6-1. +5-2.6-3.7.7-1.7-2.
7-3゜8.9.9', 9", III, 9'11
1...Light ray 10...Converging lens 11...Eccentric converging lens A...Brightness distribution of the liquid crystal display device of the present invention B...Brightness distribution of the conventional liquid crystal display device.

Claims (1)

【特許請求の範囲】 1、透過形液晶パネルと管状または線状の光源との間に
光拡散板を配置することにより構成した透過形液晶表示
装置において、 前記光拡散板として、レンズストライプが前記光源の長
手方向に略並行になるように配置したレンチキュラーレ
ンズ光透過板を少なくも含む光拡散手段を用いたことを
特徴とする透過形液晶表示装置。 2、特許請求の範囲第1項記載の透過形液晶表示装置に
おいて、前記光拡散手段は、光拡散物質を均一に含有拡
散させて成る光透過板と、レンズストライプが前記光源
の長手方向に略並行になるように配置したレンチキュラ
ーレンズ光透過板と、の組合わせから成ることを特徴と
する透過形液晶表示装置。 3、特許請求の範囲第1項記載の透過形液晶表示装置に
おいて、前記光拡散手段は、フレネル収束レンズ板と、
レンズストライプが前記光源の長手方向に略並行になる
ように配置したレンチキュラーレンズ光透過板と、の組
合わせから成ることを特徴とする透過形液晶表示装置。
[Scope of Claims] 1. In a transmissive liquid crystal display device configured by disposing a light diffusing plate between a transmissive liquid crystal panel and a tubular or linear light source, as the light diffusing plate, the lens stripe is A transmissive liquid crystal display device characterized by using a light diffusing means including at least a lenticular lens light transmitting plate arranged substantially parallel to the longitudinal direction of a light source. 2. In the transmission type liquid crystal display device according to claim 1, the light diffusing means includes a light transmitting plate formed by uniformly containing and diffusing a light diffusing substance, and a lens stripe extending approximately in the longitudinal direction of the light source. A transmission type liquid crystal display device comprising a combination of lenticular lenses and light transmitting plates arranged in parallel. 3. In the transmission type liquid crystal display device according to claim 1, the light diffusing means comprises a Fresnel converging lens plate;
A transmissive liquid crystal display device comprising: a lenticular lens light transmitting plate arranged so that lens stripes are substantially parallel to the longitudinal direction of the light source;
JP61255626A 1986-10-29 1986-10-29 Transmissive liquid crystal display device Pending JPS63110422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61255626A JPS63110422A (en) 1986-10-29 1986-10-29 Transmissive liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61255626A JPS63110422A (en) 1986-10-29 1986-10-29 Transmissive liquid crystal display device

Publications (1)

Publication Number Publication Date
JPS63110422A true JPS63110422A (en) 1988-05-14

Family

ID=17281363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61255626A Pending JPS63110422A (en) 1986-10-29 1986-10-29 Transmissive liquid crystal display device

Country Status (1)

Country Link
JP (1) JPS63110422A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936659A (en) * 1989-01-26 1990-06-26 Rockwell International Corporation Liquid crystal display brightness enhancer
JPH03191328A (en) * 1989-12-20 1991-08-21 Kyocera Corp Surface liquid crystal display device
JPH03200929A (en) * 1989-10-03 1991-09-02 Mitsubishi Electric Corp Liquid crystal display device
US5066108A (en) * 1989-12-22 1991-11-19 Hughes Aircraft Company High throughput contrast enhancement for polarized displays
US5128783A (en) * 1990-01-31 1992-07-07 Ois Optical Imaging Systems, Inc. Diffusing/collimating lens array for a liquid crystal display
US5161041A (en) * 1990-04-26 1992-11-03 Ois Optical Imaging Systems, Inc. Lighting assembly for a backlit electronic display including an integral image splitting and collimating means
US5262880A (en) * 1990-04-26 1993-11-16 Ois Optical Imaging Systems, Inc. Night vision goggle compatible liquid crystal display device
US5479275A (en) * 1993-12-03 1995-12-26 Ois Optical Imaging Systems, Inc. Backlit liquid crystal display with integral collimating, refracting, and reflecting means which refracts and collimates light from a first light source and reflects light from a second light source
WO1996012208A1 (en) * 1994-10-18 1996-04-25 Hitachi, Ltd. Liquid crystal display
EP0864909A1 (en) * 1997-03-13 1998-09-16 THOMSON multimedia Illumination device
US6111622A (en) * 1993-03-12 2000-08-29 Ois Optical Imaging Systems, Inc. Day/night backlight for a liquid crystal display
JP2009098312A (en) * 2007-10-15 2009-05-07 Hitachi Displays Ltd Liquid crystal display device
US7832915B2 (en) 2007-11-14 2010-11-16 Sony Corporation Surface light source device and image display unit

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936659A (en) * 1989-01-26 1990-06-26 Rockwell International Corporation Liquid crystal display brightness enhancer
JPH03200929A (en) * 1989-10-03 1991-09-02 Mitsubishi Electric Corp Liquid crystal display device
JPH03191328A (en) * 1989-12-20 1991-08-21 Kyocera Corp Surface liquid crystal display device
US5066108A (en) * 1989-12-22 1991-11-19 Hughes Aircraft Company High throughput contrast enhancement for polarized displays
US5128783A (en) * 1990-01-31 1992-07-07 Ois Optical Imaging Systems, Inc. Diffusing/collimating lens array for a liquid crystal display
US5161041A (en) * 1990-04-26 1992-11-03 Ois Optical Imaging Systems, Inc. Lighting assembly for a backlit electronic display including an integral image splitting and collimating means
US5262880A (en) * 1990-04-26 1993-11-16 Ois Optical Imaging Systems, Inc. Night vision goggle compatible liquid crystal display device
EP0585648A1 (en) * 1992-08-06 1994-03-09 OIS Optical Imaging Systems, Inc. Night vision goggle compatible liquid crystal display device
US6111622A (en) * 1993-03-12 2000-08-29 Ois Optical Imaging Systems, Inc. Day/night backlight for a liquid crystal display
US5479275A (en) * 1993-12-03 1995-12-26 Ois Optical Imaging Systems, Inc. Backlit liquid crystal display with integral collimating, refracting, and reflecting means which refracts and collimates light from a first light source and reflects light from a second light source
US6102545A (en) * 1994-10-18 2000-08-15 Hitachi, Ltd. Liquid crystal display unit
WO1996012208A1 (en) * 1994-10-18 1996-04-25 Hitachi, Ltd. Liquid crystal display
EP0864909A1 (en) * 1997-03-13 1998-09-16 THOMSON multimedia Illumination device
FR2760856A1 (en) * 1997-03-13 1998-09-18 Thomson Multimedia Sa LIGHTING DEVICE
JP2009098312A (en) * 2007-10-15 2009-05-07 Hitachi Displays Ltd Liquid crystal display device
US7832915B2 (en) 2007-11-14 2010-11-16 Sony Corporation Surface light source device and image display unit

Similar Documents

Publication Publication Date Title
US6046847A (en) Rear projection screen containing Fresnel lens sheet utilizing alternative focal lengths
US4165154A (en) Projection screen assembly
US6597417B1 (en) Optical panel having black material between apexes of serrations on the inlet face
JPS63110422A (en) Transmissive liquid crystal display device
JP4088516B2 (en) Projection television brightness improvement device
JP2005300907A (en) Screen and image projection system using the same
US8567977B2 (en) Illumination system and display device
EP0822443A1 (en) Rear projection screen
JP2000231814A (en) Planar lighting system
WO2021078289A1 (en) Projection screen
KR20050000595A (en) Screen for image display having wide view angle in vertical and horizontal and projection television comprising the same
JPH05196939A (en) Beam paralleling device and liquid crystal display device
JP3249896B2 (en) Backlight structure of liquid crystal display
JPH1138510A (en) Projector screen
JP3209956B2 (en) Backlight unit and liquid crystal display device
JP2998811B2 (en) Transmissive screen and rear projection type image display device using the same
JP3043485B2 (en) Transmissive screen and rear projection type image display device using the same
JP2617242B2 (en) Display with backlight
JPH09179113A (en) Liquid crystal display device
Kirkpatrick et al. Projection screens for high-definition television
JPH05203942A (en) Plane color display system
JPH0572631A (en) Front projection device
JPH0682781A (en) Liquid crystal display device
JPS6271919A (en) Liquid crystal projector
KR100361500B1 (en) Rear screen video projection system