JPS6311027A - Power system controller - Google Patents

Power system controller

Info

Publication number
JPS6311027A
JPS6311027A JP61094674A JP9467486A JPS6311027A JP S6311027 A JPS6311027 A JP S6311027A JP 61094674 A JP61094674 A JP 61094674A JP 9467486 A JP9467486 A JP 9467486A JP S6311027 A JPS6311027 A JP S6311027A
Authority
JP
Japan
Prior art keywords
power
demand
private
accident
private generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61094674A
Other languages
Japanese (ja)
Inventor
杉田 明
啓一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JPS6311027A publication Critical patent/JPS6311027A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、電力会社から受電する受電母線と、自家発電
機用の自家発母線とを有し、これらを並列運転する電力
系統の制御装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention has a power reception bus that receives power from an electric power company and a private generation bus for a private generator, and operates these in parallel. The present invention relates to a power system control device.

(従来の技術) 従来の系統分離装置の一例を第6図により説明する。P
は電力会社の大容量電源である。
(Prior Art) An example of a conventional system separation device will be explained with reference to FIG. P
is a large-capacity power source for an electric power company.

需要家の受電設備は受電用しゃ断器R1、変圧器TR1
,変圧器二次しゃ断器S1、母線しゃ断器B1、自家発
連絡しゃ断器G1、自家発電機G等により構成されてお
り、定常運用は電力会社の電源Pと自家用発電機Gとの
並列運転により、配電線しゃ断器LL、L2.L3.L
4を介して負荷A、B、C,Dに電力を供給する。
The power receiving equipment of the consumer is the power receiving breaker R1 and the transformer TR1.
, a transformer secondary breaker S1, a bus breaker B1, a private communication breaker G1, a private generator G, etc., and steady operation is performed by parallel operation of the electric power company's power supply P and the private generator G. , distribution line breaker LL, L2. L3. L
Power is supplied to loads A, B, C, and D via 4.

この様な電力系統において、並列運転時に電力会社の電
源Pや需要家の受電系統の事故により、電源Pからの送
電が停止した場合は、需要家の全負荷を自家用発電機G
が負担することになる。その際、発電機Gの出力よりも
全運転負荷量が多いと自家用発電機Gが過負荷状態とな
り、しゃ断器G1が過電流保護機能によりしゃ断され、
設備全体が停止する。
In such a power system, if power transmission from the power supply P stops due to an accident in the power supply P of the electric power company or the power receiving system of the consumer during parallel operation, the entire load of the consumer will be transferred to the private generator G.
will bear the burden. At that time, if the total operating load is greater than the output of the generator G, the private generator G will be overloaded, and the breaker G1 will be cut off by the overcurrent protection function.
The entire equipment stops.

そこで、この様な全停電を防止する為に次のように構成
していた。需要家の受電電源引込み点に計器用変圧器P
 T ]−1変流器CTIを介して設けた保護装置PR
Iにより電源Pの停止、および需要家受電系統の事故を
検出する。また、自家発電機Gと電力系統の電源Pの母
線連絡点に計器用変圧器PT2、変流器CT2を介して
設けた保護装置PR2により受電母線BUSR側又は自
家発母線BUSG側に発生する事故を検出する。これら
保護装置PR1,PR2により事故により検出された場
合、母線しゃ断器B1をしゃ断して少なくとも自家用発
電機Gの出力容量とバランスする負荷C,Dあるいは受
電電源前!jAB U S Rに接続された負荷A、B
のいずれかが継続して運転できるようにして需要家設備
の全停電を防止していた。
Therefore, in order to prevent such a total power outage, the following configuration was adopted. Potential transformer P is installed at the incoming power supply point of the customer.
T ]-1 Protective device PR installed via current transformer CTI
I detects a stoppage of the power supply P and an accident in the consumer's power receiving system. In addition, an accident that occurs on the receiving bus BUSR side or on the private power generation bus BUSG side is caused by a protection device PR2 provided at the bus connection point between the private generator G and the power supply P of the power system via a voltage transformer PT2 and a current transformer CT2. Detect. If an accident is detected by these protection devices PR1 and PR2, the bus breaker B1 is cut off and at least the loads C and D balanced with the output capacity of the private generator G or in front of the receiving power supply! Loads A and B connected to jAB U S R
A total power outage of customer equipment was prevented by allowing one of the following to continue operating.

また、配電線しゃ断器L1〜L4の負荷側、例えばF1
点で事故が発生した場合、配電線に変流器CTLIを介
して接続されている保護装置PRL1、及び母線連絡点
の保護装置PR2は、同時に事故を検出するが、配電線
しゃ断器L1の引外し信号よりも母線連絡しゃ断器B1
の引外し信号が遅れて出力されるようにタイムディレー
回路が構成されている。このタイムディレー回路により
、配電線しゃ断器L1を先に引外して、母線連絡しゃ断
器B1が引外されないようにしている。事故発生点が自
家発母線BUSGに接続された配電線しゃ断器L3の負
荷側F2点の場合も同様に、配電線しゃ断器L3が引外
される。このように事故発生時の配電線しゃ断器による
保護しゃ断は、保護しゃ断協調の原則により負荷側の末
端から順序づけられる。したがって、配電線しゃ断器L
1〜L4の下位にしゃ断器があると、保護しゃ断協調に
より、配電線しゃ断器L1〜L4は一般的に事故発生か
らしゃ断器に数100mm S E C以上を要する場
合が多い。これは配線用しゃ断器L1〜L4近くの下位
、例えばF1点に事、故が発生した場合も同じであり1
次のような問題が発生する。
In addition, the load side of the distribution line breakers L1 to L4, for example, F1
When a fault occurs at a point, the protection device PRL1 connected to the distribution line via the current transformer CTLI and the protection device PR2 at the busbar contact point simultaneously detect the fault, but the fault is detected at the same time when the distribution line breaker L1 is Busbar connection breaker B1 than disconnection signal
A time delay circuit is configured so that the trip signal is output with a delay. This time delay circuit allows the distribution line breaker L1 to be tripped first to prevent the busbar connection breaker B1 from being tripped. Similarly, when the accident occurrence point is point F2 on the load side of the distribution line breaker L3 connected to the private bus BUSG, the distribution line breaker L3 is tripped. In this way, when an accident occurs, protective disconnection by the distribution line circuit breaker is ordered from the end on the load side based on the principle of protective disconnection coordination. Therefore, distribution line breaker L
If there is a circuit breaker below L1 to L4, the distribution line circuit breakers L1 to L4 generally require several hundred mm S E C or more from the occurrence of an accident due to protective shutoff coordination. This also applies when an accident occurs at the lower level near the circuit breaker L1 to L4, for example at the F1 point.
The following problems occur:

すなわち、配電線しゃ断器L1〜L4の負荷側で三相短
絡事故が発生すると、母線BUSR,BUSGの電圧が
急激に低下し、自家発電機Gは急激な出力低下を生じる
と共に周波数も徐々に変化する。このため、電力会社の
電源特性、自家発電機の特性、系統のインピーダンス等
にもよるが、事故継続時間との比例関係で電力会社側の
電源Pと自家発電機Gどの位相差が増加する。従って前
述の如く事故発生から数100mm S E C後に配
電線しゃ断器が保護しゃ断されても、電力会社の電源P
と自家発電機Gが税調状態となっている場合が多く、も
はや並列運転不可能となり、最悪状態においては系統の
主要しゃ断器(受電系統、母線、自家用発電機用)が引
外され、全停止に至る危険性があった。
In other words, when a three-phase short circuit occurs on the load side of the distribution line breakers L1 to L4, the voltage of the buses BUSR and BUSG suddenly drops, causing a sudden drop in the output of the private generator G and a gradual change in frequency. do. Therefore, although it depends on the power supply characteristics of the electric power company, the characteristics of the private generator, the impedance of the system, etc., the phase difference between the electric power company's power supply P and the private generator G increases in proportion to the accident duration time. Therefore, as mentioned above, even if the distribution line breaker is cut off several hundred millimeters after the accident occurs, the electric power company's power supply P
In many cases, private generator G is in a state of tax control, and parallel operation is no longer possible, and in the worst case, the main circuit breaker of the grid (power receiving system, bus bar, private generator) is tripped, resulting in a complete shutdown. There was a risk of this happening.

そこで、並列運転時に事故が生じた場合、そのときの系
統の状態に応じて母線連絡しゃ断器B1を開いたり、或
いは発電機連絡しゃ断器G1を直ちに開いて自家発電機
Gを解列するなどして並列運転を中止することが行われ
ている。
Therefore, if an accident occurs during parallel operation, depending on the system status at that time, open the busbar connection breaker B1 or immediately open the generator connection breaker G1 to disconnect the private generator G. Parallel operation is now discontinued.

(発明が解決しようとする問題1県) ここで1発電機連絡しゃ断器G1を開いて自家発電機G
を解列した場合、自家発電機Gが負担していた負荷を電
力会社からの電力にて負担しなければならず、その電力
量が大幅に増大する。
(Problem 1 to be solved by the invention) Here, one generator connection breaker G1 is opened and the private generator G
, the load borne by the private generator G must be borne by the power from the electric power company, and the amount of power will increase significantly.

一般に、電力需要家は電力会社との間で、ある一定時間
の需要電力が目標値を超過しないように契約を結んでい
るが、上記のような事態が発生すると、需要電力が目標
値を越えてしまうことが発生する。
Generally, electricity consumers enter into contracts with power companies to ensure that the power demand does not exceed the target value during a certain period of time, but when the above situation occurs, the power demand exceeds the target value. This may happen.

本発明の目的は、並列運転状態からの自家発電機の解列
による需要電力の変化を予測し、解列後に電力会社から
供給される需要電力が、契約電力値を越えないように制
御を行う電力系統制御装置を提供することにある。
The purpose of the present invention is to predict changes in power demand due to disconnection of private generators from a parallel operation state, and control so that the power demand supplied from the electric power company after disconnection does not exceed the contracted power value. An object of the present invention is to provide a power system control device.

(問題点を解決するための手段) 本発明は第2図で示すように、電力会社の電源Pから計
器用変成器PCTを介して受電する受電母線BUSRと
、自家発電機Gに対し自家発連絡しゃ断器G1を介して
接続する自家発母線BUSGとの間に、母線連絡しゃ断
器B1を設け、上記各母線BUSR,BUSGから負荷
A、B、C。
(Means for Solving the Problems) As shown in FIG. A busbar communication breaker B1 is provided between the private power generation bus BUSG connected via the communication breaker G1, and loads A, B, and C are connected from the respective buses BUSR and BUSG.

Dに電力を供給する電力系統の制御装置1に関するもの
で、第1図に示す如く、前記電力会社の電源と自家発電
機とが並列運転されることを検出する並列状態検出手段
6と、上記並列運転が行われていることを条件に電力会
社による需要電力および自家発電機の出力電力の合計値
を求めこの合計値を基に需要電力監視時限終了時の需要
電力値を予測し、この予測値が予定の目標電力を超過す
るか否かを判定する需要電力監視手段8と、この需要電
力監視手段8の超過判定出力81と前記自家発電機Gの
自家発母線BUSGからの解列とを条件に前記負荷の選
択しゃ断を行う負荷選択しゃ断制御手段8とを備えたも
のである。
This relates to a control device 1 for an electric power system that supplies electric power to a power source D, and as shown in FIG. Under the condition that parallel operation is being performed, the total value of the power demand by the electric power company and the output power of the private generator is calculated, and based on this total value, the power demand value at the end of the power demand monitoring time period is predicted, and this prediction is made. A power demand monitoring means 8 that determines whether the value exceeds a scheduled target power, an excess determination output 81 of this power demand monitoring means 8, and disconnection of the private generator G from the private power generation bus BUSG. The load selective cutoff control means 8 selectively cuts off the load according to the conditions.

(作  用) 本発明では並列運転時に、需要電力監視手段8にて、電
力会社による需要電力値と自家発電機による出力電力と
の合計値を求め、これにより需要電力監視時限終了時の
需要電力値を予」すし、事故等により自家発電機が解列
されたことにより、前記予測電力値が目標値を超過する
場合は負荷選択しゃ断を行わせ、実際に需要電力の超過
が生じないようにしている。
(Function) In the present invention, during parallel operation, the power demand monitoring means 8 calculates the total value of the power demand value from the electric power company and the output power from the private generator, and thereby determines the power demand at the end of the power demand monitoring time period. If the predicted power value exceeds the target value due to the disconnection of the private generator due to an accident, etc., the load selection is cut off to prevent the actual demand power from exceeding the target value. ing.

(実 施 例) 以下本発明の一実施例を図面を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

尚、各図において同一の符号は同様な対象を示す。第2
図はこの発明の実施例を適用する電力系統を示すもので
あり、第4図の母線連絡点における従来の保護装置PR
2に代って本発明の電力系統制御装置1を設ける。これ
には、計器用変圧器PT2の二次出力V、変流器CT2
及びCTaの二次出力]−1+ 12、電力会社から供
給される需要電力量を計測する需要電力量計測装置PC
Tからの需要積算電力量パルス出力DEMP及び需要電
力監視時限パルス出力D E M tをそれぞれ入力さ
せる。
Note that the same reference numerals in each figure indicate similar objects. Second
The figure shows a power system to which an embodiment of the present invention is applied, and the conventional protection device PR at the busbar connection point in Figure 4 is shown.
2, the power system control device 1 of the present invention is provided. This includes the secondary output V of potential transformer PT2, current transformer CT2
and secondary output of CTa] -1+ 12, Demand power amount measuring device PC that measures the power demand amount supplied from the electric power company
The demand integrated power amount pulse output DEMP and the demand power monitoring time pulse output DEMt from T are respectively input.

第1図は上記電力系統制御装置1の構成を示したもので
、これはマイクロコンピュータのような演算処理装置に
よって実現する。同図には、3つの変換回路2.2a、
3、潮流(電力)方向判定手段4、発電機電力検出手段
4a、事故方向検出手段5、系統解列点選択手段7、並
列状態検出手段6゜需要電力監視手段8、負荷選択しゃ
断制御手段9並びに第2図で示した変圧器二次しゃ断器
S1、母線連絡しゃ断器B1、自家用発電機連絡しゃ断
器G1の接点信号Sla、Bla、Gla、電力会社よ
り供給される需要電力量計測装置PCTからの需要積算
電力量パルス信号DEMP、需要電力監視時限パルス信
号DEMtのそれぞれが示されている。
FIG. 1 shows the configuration of the power system control device 1, which is realized by an arithmetic processing device such as a microcomputer. The figure shows three conversion circuits 2.2a,
3. Power flow (power) direction determining means 4, Generator power detecting means 4a, Fault direction detecting means 5, Grid disconnection point selecting means 7, Parallel state detecting means 6゜ Demand power monitoring means 8, Load selection cutoff control means 9 In addition, the contact signals Sla, Bla, and Gla of the transformer secondary breaker S1, busbar connection breaker B1, and private generator connection breaker G1 shown in FIG. 2, from the power demand measuring device PCT supplied by the power company. A demand integrated power amount pulse signal DEMP and a demand power monitoring time pulse signal DEMt are shown, respectively.

変換回路2,2aは変流器CT2、CTaの二次電流i
工l 12を入力し、これをディジタル信号21に変換
するA/D変換回路である。変換回路3は計器用変圧器
PT2の二次電力Vを入力し、これをディジタル信号3
1に変換するA/D変換回路である。潮流(電力)方向
判定手4は前記変換回路2,3からのディジタル信号2
1(i、に対応)。
Conversion circuits 2 and 2a are configured to convert secondary currents i of current transformers CT2 and CTa.
This is an A/D conversion circuit that inputs the signal 12 and converts it into a digital signal 21. The conversion circuit 3 inputs the secondary power V of the potential transformer PT2 and converts it into a digital signal 3.
This is an A/D conversion circuit that converts the data into 1. The power flow (power) direction determining means 4 uses the digital signal 2 from the conversion circuits 2 and 3.
1 (corresponds to i).

31(vに対応)により、第2図の母線連絡しゃ断器B
1を流れる電力の方向を一定周期でサンプリングし、そ
の検出方向信号41を出力する。すなわち、電力が自家
発母線BUSGから受電母線BUSRの方向に流れてい
る場合に信号41に出力する。
31 (corresponding to v), the busbar connection breaker B in Fig. 2
The direction of electric power flowing through the sensor 1 is sampled at regular intervals, and a detected direction signal 41 is output. That is, the signal 41 is output when power is flowing in the direction from the private power generating bus BUSG to the power receiving bus BUSR.

発電機(G)電力検出手段4aは、前記変換回路2a。The generator (G) power detection means 4a is the conversion circuit 2a.

3からのディジタル信号21a(i 、に対応) 、 
31(vに対応)により第2図の自家発連絡しゃ断器G
1を流れ、る自家用発電機Gの出力電力値を一定周期で
サンプリングし、その検出電力値データ41aを出力す
る。尚、この潮流(電力)方向判定手段4及び電力検出
手段4aは並列状態検出手段6の出力信号61によって
起動される。この並列状態検出手段6は第2図の変圧器
二次しゃ断器S1、母線連絡しゃ断器B1、自家用発電
機連絡しゃ断器G1の閉状態で閉じる接点Sla、Bl
a、Glaからの各入力に基づき、電力会社の電源Pと
自家発電機Gどが並列運転状態であることを検出し、検
出信号61を出力する。
Digital signal 21a (corresponding to i) from 3,
31 (corresponding to v), self-generated communication breaker G in Figure 2
1, the output power value of the private generator G is sampled at regular intervals, and the detected power value data 41a is output. The power flow (power) direction determining means 4 and the power detecting means 4a are activated by the output signal 61 of the parallel state detecting means 6. This parallel state detection means 6 is connected to contacts Sla and Bl that are closed when the transformer secondary breaker S1, busbar connection breaker B1, and private generator connection breaker G1 shown in FIG. 2 are closed.
Based on each input from a and Gla, it is detected that the electric power company's power supply P and the private generator G are in a parallel operation state, and a detection signal 61 is output.

事故方向検出手段5は前記変換回路2,3から出力され
るディジタル信号21(i工に対応)、 31(vに対
応)により、事故の発生した方向を検出するもので、一
定値以上の無効電力が検出された時に動作し、事故方向
検出信号51.52を出力する。ここで、信号51は無
効電力が自家発母@BUSGに向って流れる場合に出力
される。又信号52は無効電力が受電毒腺BUSHに向
って流れる場合に出力される。
The accident direction detection means 5 detects the direction in which the accident occurred based on the digital signals 21 (corresponding to I) and 31 (corresponding to V) output from the conversion circuits 2 and 3, and detects the direction in which the accident occurred. It operates when electric power is detected and outputs accident direction detection signals 51 and 52. Here, the signal 51 is output when reactive power flows toward the private generator @BUSG. Further, a signal 52 is output when reactive power flows toward the receiving poison gland BUSH.

前記潮流方向判定手段4及び発電機電力検出手段4aは
、並列状態検出手段6からの並列状態検出信号61によ
って起動され、事故方向検出手段5から事故方向信号5
1、又は52が入力された時点で、以後のサンプリング
を中止し、潮流(電力)方向の検出信号41及び自家用
発電機Gの出力電力値の検出データ41aの更新をロッ
クする。すなわち、事故発生後は、事故発生以前の潮流
(電力)方向検出信号41及び自家用発電機Gの出力電
力値の検出データ41aが継続して出力される。需要電
力監視手段8は、並列状態検出手段6からの並列状態検
出信号61によって起動され、電力会社の需要電力量P
CTからの需要電力監視時限パルス信号DEMtの入力
時点から次の時限パルスDENi入力までの需要電力監
視時限範囲における需要電力の監視が行われる。需要積
算電力量パルスDEMPと自家用発電機出力電力データ
41aは、一定時間毎にサンプリングされ、その周期毎
に需要積算電力量パルスDEMPに基づく需要電力の現
在値が計算される。また、このサンプリング周期毎に。
The power flow direction determining means 4 and the generator power detecting means 4a are activated by the parallel state detection signal 61 from the parallel state detecting means 6, and are activated by the parallel state detection signal 61 from the fault direction detecting means 5.
1 or 52 is input, subsequent sampling is stopped and updates of the detection signal 41 of the power flow (power) direction and the detection data 41a of the output power value of the private generator G are locked. That is, after the accident occurs, the power flow (power) direction detection signal 41 and the detected data 41a of the output power value of the private generator G before the accident occur are continuously output. The power demand monitoring means 8 is activated by the parallel state detection signal 61 from the parallel state detection means 6, and monitors the power demand P of the electric power company.
The power demand is monitored in the power demand monitoring time range from the input time of the power demand monitoring time pulse signal DEMt from the CT to the input of the next time pulse DENi. The demand integrated power pulse DEMP and the private generator output power data 41a are sampled at regular intervals, and the current value of the demanded power based on the demand integrated power pulse DEMP is calculated for each period. Also, for each sampling period.

その時点以降の需要電力監視残り時間の間、自家用発電
機Gの停止を想定し、自家用発電機Gの出力電力データ
41aを加えた需要電力監視時限終了点での需要電力値
を予測する。そして、この予測値が需要電力監視時間に
於ける目標電力を超過するか否かの判定を行い、前記需
要電力の予測値が目標値を超過した場合に判定信号81
を出力する。
During the remaining power demand monitoring time after that point, assuming that the private generator G is stopped, the demand power value at the end of the demand power monitoring time period is predicted by adding the output power data 41a of the private generator G. Then, it is determined whether or not this predicted value exceeds the target power during the power demand monitoring time, and if the predicted value of the power demand exceeds the target value, a determination signal 81 is sent.
Output.

判定信号81は自家用発電機Gの停止にて電力会社から
の需要電力が超過することを事前に予測した警報信号で
あり、オペレータが事前に自家用発電機停止前の負荷量
の調整(負荷しゃ断対象の設定)を行うためのデータと
して有効となる。系統解列点選択手段7は、前記潮流(
電力)方向利手段4の事故発生以前の電力方向信号41
と、前記事故方向検出手段5の事故発生方向信号51.
52、前記並列状態検出手段6の出力信号61に基づき
系統の解列点を選択し、しゃ断信号71.72を出力す
る。
The judgment signal 81 is a warning signal that predicts in advance that the power demand from the electric power company will exceed when the private generator G is stopped. It is valid as data for performing the following settings. The system disassembly point selection means 7 selects the tidal flow (
Electric power) Direction signal 41 before the accident of direction utilization means 4
and the accident direction signal 51 of the accident direction detection means 5.
52, selects a disconnection point of the system based on the output signal 61 of the parallel state detection means 6, and outputs a cutoff signal 71,72.

すなわち、しゃ断信号71により自家発連絡しゃ断器G
1を引きはずし、しゃ断信号72により母線連絡しゃ断
器B1を引き外す。系統解列負荷選択しゃ断制御手段9
は、需要電力監視手段8からの需要電力超過判定出力8
1と、自家発電機Gの自家発母線BUSGからの解列、
すなわち自家発連絡しゃ断器G1のしゃ断信号71の入
力とを条件に負荷選択しゃ断信号91を生じる。この負
荷選択しゃ断は予め優先順位を設定する等、告知の手法
によって行えばよい。
That is, the self-generated communication breaker G is activated by the cutoff signal 71.
1 is tripped, and the busbar connection breaker B1 is tripped by the disconnection signal 72. Grid disconnection load selection cutoff control means 9
is the power demand excess judgment output 8 from the power demand monitoring means 8
1, disconnection of private generator G from private generator bus line BUSG,
That is, the load selection cutoff signal 91 is generated on condition that the cutoff signal 71 of the self-generated communication breaker G1 is input. This load selective cutting may be performed by a notification method such as setting priorities in advance.

前記系統解列点選択手段7は、例えば第3図のフローチ
ャートを実行するように構成する。
The system disassembly point selection means 7 is configured to execute, for example, the flowchart of FIG. 3.

第3図において、まず前記電力方向信号41(事故発生
以前に受電母線BUSR方向に電力が供給されていた事
の検出信号)、事故発生検出信号51(自家発母線BU
SG方向の事故検出信号)または事故発生検出信号52
(受電母線BUSR方向の事故検出信号)、並列運転検
出信号61(電力会社の電源Pと自家発電機Gとが並列
運転状態のときの検出信号)、需要電力超過判定出力8
1(自家用発電機Gの解列により需要電力が超過するか
否かの判定信号)を入力し、これら各入力信号の読み込
みを行う(ステップ■)。次に入力信号st、 szの
有無により事故発生か否かの評価を行う(ステップ■)
。事故発生信号51.52のいずれも入力無しの場合は
ステップ■に戻る。事故発生信号51.52のいずれか
の入力信号が有る場合は、並列運転信号61により電力
会社の電源Pと自家発電機Gとが並列運転状態か否か判
断する(ステップ■)。この結果、並列運転が行われて
いなければ(電力会社の電源P又は自家用発電機Gのい
ずれが一方で運転中)、上記電源Pと自家発電機Gどの
位相がずれることはない(どちらか一方の運転なので)
ので、下位しゃ断器との保護協調を取るべく所定のタイ
ムディレーを行う(ステップ■)。その後。
In FIG. 3, first, the power direction signal 41 (a detection signal indicating that power was being supplied in the direction of the receiving bus BUSR before the occurrence of the accident), the accident occurrence detection signal 51 (the signal indicating that power was being supplied to the receiving bus BUSR before the occurrence of the accident),
SG direction accident detection signal) or accident occurrence detection signal 52
(fault detection signal in the direction of power receiving bus BUSR), parallel operation detection signal 61 (detection signal when power company power supply P and private generator G are in parallel operation state), demand power excess judgment output 8
1 (determination signal for determining whether or not the demand power exceeds due to disconnection of the private generator G), and reads each of these input signals (step 2). Next, it is evaluated whether an accident has occurred based on the presence or absence of input signals st and sz (step ■).
. If neither of the accident occurrence signals 51 and 52 is input, the process returns to step (2). If either of the accident occurrence signals 51 and 52 is input, it is determined based on the parallel operation signal 61 whether or not the electric power company's power supply P and the private generator G are in parallel operation (step 2). As a result, if parallel operation is not performed (either the electric power company's power supply P or the private generator G is in operation), there will be no phase shift between the power supply P and the private generator G (either one (because it's driving)
Therefore, a predetermined time delay is performed in order to coordinate protection with the lower-order circuit breaker (step ■). after that.

事故が解消していればステップ■に戻るが、継続中で有
れば母線連絡しゃ断器B1に引外し信号72を出力し、
(ステップ■■)、ステップ■に戻る。
If the accident has been resolved, the process returns to step ■, but if it continues, a trip signal 72 is output to the busbar communication breaker B1,
(Step ■■), return to step ■.

又、ステップ■の評価において並列運転中であれば潮流
方向判定手段4の出力信号41の有無により事故発生以
前に電力が受電母線BUSR方向に供給されていたか否
かの評価を行う(ステップ■)。
In addition, in the evaluation of step (2), if parallel operation is being performed, it is evaluated whether or not power was being supplied in the direction of the power receiving bus BUSR before the occurrence of the accident based on the presence or absence of the output signal 41 of the power flow direction determining means 4 (step (2)). .

このステップ■で事故発生以前の電力方向が受電母線B
USRに向う方向(YESの判定)であれば直ちに母線
連絡しゃ断器B1に引外し信号72を出力(ステップ■
)して系統を解列した後に、ステップ■に戻る。
In this step ■, the power direction before the accident is set to power receiving bus B.
If the direction is toward USR (determination of YES), a trip signal 72 is immediately output to the busbar communication breaker B1 (step ■
) to disassemble the system, then return to step ■.

すなわち、事故発生以前に潮流が受電母線BUSR側に
向っているということは、自家発電機Gの発電量が大き
く、かつ負荷C,Dによる電力消費が少ないことを意味
する。この状態では、負荷C,Dの電力消費は自家発電
機Gのみで充分にまかなえ、母線連絡しゃ断器B1を開
いても、自家発電機Gが過負荷状態になることはない。
That is, the fact that the power flow is heading toward the receiving bus BUSR before the accident occurs means that the amount of power generated by the private generator G is large and the power consumption by the loads C and D is small. In this state, the power consumption of loads C and D can be sufficiently covered by the private generator G alone, and even if the busbar connection breaker B1 is opened, the private generator G will not be overloaded.

そこでこの状態の場合は、ただちに母線連絡しゃ断器B
1を開き、事故前の並列運転状態が長く続くことによる
前述した位相差に増大による脱強の発生を防止する。な
お事故自体は、事故発生地点近くの(上位の)しゃ断器
が所定の保護協調時間後にしゃ断動作し、系統から除去
する。
Therefore, in this situation, immediately connect the busbar connection breaker B.
1 is opened to prevent the occurrence of weakening due to an increase in the phase difference described above due to the parallel operation state before the accident continuing for a long time. In the event of an accident itself, a (superior) breaker near the accident point will shut off the accident after a predetermined protection coordination time, and the accident will be removed from the system.

一方、ステップ■の評価において、事故発生以前に電力
が受電母線BUSR方向に供給されていなかった場合(
Noの判定)は、事故方向検出5から事故発生信号51
.52のいずれかが出力されているかにより、事故発生
方向が自家発母線BUSG方向か否かの評価を行う(ス
テップ■)。
On the other hand, in the evaluation of step ■, if power was not being supplied to the receiving bus BUSR before the accident occurred (
No judgment), the accident occurrence signal 51 is detected from the accident direction detection 5.
.. 52 is output, it is evaluated whether or not the direction in which the accident occurred is in the direction of the privately generated bus line BUSG (step (2)).

すなわち、並列運転状態において潮流が受電電源母1B
UsRに向っていないということは、食間C,Dの消費
電力が自家発電機Gの発電量以上であり、前述の如く母
線連絡しゃ断器B1を開き、受電母線BUSR側からの
電力供給を断つと自家発電機Gが過負荷状態になる可能
性が強い。しかし、並列運転状態は直ちに解列する必要
があるため、前述の如く、ステップ■にて事故発生場所
を判断し、この判断結果に応じて解列点を次のように定
める。
In other words, in the parallel operation state, the power flow is
The fact that it is not suitable for UsR means that the power consumption between meals C and D is greater than the power generated by the private generator G, and as mentioned above, if you open the busbar connection breaker B1 and cut off the power supply from the receiving bus BUSR side. There is a strong possibility that private generator G will be overloaded. However, since it is necessary to immediately disconnect the parallel operating state, the location of the accident is determined in step (2) as described above, and the disconnection point is determined as follows according to the result of this determination.

このステップ■の判定に於いて、事故発生方向が自家発
母線BUSR方向(YESの判定)ならば解列点を自家
発連絡しゃ断器G1とし、直ちにしゃ断器G1に引外し
信号を出力(ステップQ)して系統を解列する。この解
列後に需要電力が契約電力を越えるか否かの判定(ステ
ップ■)を行い、越えない場合(YESの判定)はステ
ップ■に戻る。解列後、需要電力が契約電力値を越える
場合(Noの判定)は負荷選択しゃ断信号91を出力(
ステップ[相])し、負荷選択しゃ断を行い、ステップ
■に戻る。
In the judgment of this step ①, if the accident occurrence direction is towards the privately generated bus BUSR (determination of YES), the disconnection point is set as the privately generated communication breaker G1, and a trip signal is immediately output to the breaker G1 (step Q ) to disassemble the lineage. After this disconnection, it is determined whether the demand power exceeds the contract power (step 2), and if it does not exceed the contract power (YES determination), the process returns to step 2. After disconnection, if the demand power exceeds the contract power value (determination of No), the load selection cutoff signal 91 is output (
step [phase]), perform load selection cutoff, and return to step (■).

このように、自家発連絡しゃ断器G1を開くことにより
、並列運転状態は解列され、両電源間の位相差の増大を
防止できる。また、自家発電機Gは無負荷状態の事故が
除去されるまで待機する。
In this way, by opening the private communication breaker G1, the parallel operation state is disconnected, and an increase in the phase difference between the two power supplies can be prevented. In addition, the private generator G stands by until the no-load accident is removed.

また自家発電機Gの解列による契約電力の超過を監視す
る。事故自体は、発生地点近く(上位)のしゃ断器が、
所定の保護協調時間後しゃ断動作し、系統から除去され
る。
It also monitors the excess of contract power due to disconnection of private generator G. The accident itself was caused by a breaker near the point of occurrence (upper level).
After a predetermined protection coordination time, it is shut off and removed from the system.

一方ステップ■にて事故発生信号52が入力されていれ
ば(Noの判定)、受電母線BUSR側に事故発生と判
定し、直ちに母線連絡しゃ断器B1に引外し信号72を
出力(ステップ■)して、系統を解列しステップ■に戻
る。
On the other hand, if the accident occurrence signal 52 is input in step ■ (determination of No), it is determined that an accident has occurred on the power receiving bus BUSR side, and a trip signal 72 is immediately output to the busbar connection breaker B1 (step ■). Then, disconnect the system and return to step ■.

すなわち、事故方向が受電母線BUSR側であることは
、自家発器fiBUsG側の系統が健全であることを意
味し、健全系統を事故系統から分離する意味も含め、母
線連絡しゃ断器B1を開き、並列運転状態を直ちに解列
する。この場合、自家発電機Gは過負荷状態になる可能
性が強いので。
In other words, the fact that the direction of the fault is toward the power receiving bus BUSR means that the system on the private generator fiBUsG side is healthy, and in order to separate the healthy system from the faulty system, open the bus breaker B1. Immediately disconnect the parallel operation state. In this case, there is a strong possibility that the private generator G will be overloaded.

図示しない負荷調整手段等により、負荷C,Dを選択し
ゃ断する等して、自家発電機Gの過負荷状態を防止する
必要がある。事故自体は、前述の場合と同様に発生湯所
近くのしゃ断器が所定の保護協調時間後にしゃ断動作し
、系統から除去する。
It is necessary to prevent the private generator G from being overloaded by selectively cutting off the loads C and D using a load adjusting means (not shown) or the like. In the case of an accident itself, as in the case described above, a circuit breaker near the hot water area where the accident occurred will shut off the accident after a predetermined protection coordination time, and the accident will be removed from the system.

なお、上述したいずれの場合においても、事故が系統か
ら除去された後は、解列点のしゃ断器を投入して元どお
りの並列運転が可能なことは、もちろんである。
In any of the above cases, after the accident has been removed from the system, it is of course possible to turn on the breaker at the disconnection point and resume parallel operation as before.

ここで、前記ステップOにて自家用発電機連絡しゃ断器
G1を例外した後、需要電力が契約電力を超えるかの判
定(ステップ■)を行う場合の詳細を説明する。
Here, the details of the case where, after excluding the private generator connection breaker G1 in step O, it is determined whether the demand power exceeds the contract power (step 2) will be explained.

第4図は、使用電力と経過時間により平均予測電力を計
算する一般的な予測手段を説明するためのグラフである
。平均予測電力は、単位時間Δt〔時間〕当りの使用電
力量ΔP (KWH)から計算する。ここで単位時間Δ
t〔時間〕は、使用電力及び受電電力量パルス発生の変
動による平均予測電力の影響を平均して、小さくする為
通常1分〜3分程度(監視周期の2倍〜5倍程度)に設
定する。第4図は、経過時間t2の時に自家発が解列さ
れた場合を示す。この時の単位時間Δt〔時間〕例えば
、監視周期の2倍、すなわち2tにおける平均予測電力
P2の値は、自家発解列前2tの平均使用電力にて計算
されるため、自家発解列後、急激に増加する需要電力を
予測が含まれない。
FIG. 4 is a graph for explaining a general prediction means that calculates average predicted power based on used power and elapsed time. The average predicted power is calculated from the amount of power used ΔP (KWH) per unit time Δt [hour]. Here, unit time Δ
t [time] is usually set to about 1 to 3 minutes (about 2 to 5 times the monitoring cycle) in order to reduce the influence on the average predicted power due to fluctuations in power usage and received power pulse generation. do. FIG. 4 shows a case where the private generator is disconnected at the elapsed time t2. At this time, the unit time Δt [time] For example, the value of the average predicted power P2 at twice the monitoring cycle, that is, 2t, is calculated based on the average power consumption for 2t before the self-ignition train, so after the self-ignition train , does not include predictions of rapidly increasing power demand.

次周期の平均予測電力P、においても、自家発生電力の
1/2が増加した値となり、自家発解列により増加した
需要電力P。よりも少なくなる。第5図は、第4図に対
応して、使用電力量と経過時間の関係を示すグラフであ
る。第5図においてt2におけるデマント予測電力量Q
2、t2の使用電力量とt2における平置予測電力P2
から計算し、t3におけるデマント予測電力量Q、は、
t、の使用電力量とt、における平均予測電力P3から
計算する。
The average predicted power P for the next cycle also becomes a value increased by 1/2 of the self-generated power, and the demand power P increases due to the self-ignition train. will be less than. FIG. 5 is a graph corresponding to FIG. 4 that shows the relationship between power consumption and elapsed time. In FIG. 5, demand predicted power amount Q at t2
2. Power consumption at t2 and predicted horizontal power P2 at t2
The demand predicted power amount Q at t3 is calculated from
It is calculated from the amount of power used at t and the average predicted power P3 at t.

このため自家発解列による本来予測すべき電力量Qaよ
り大幅に少なくなる。
Therefore, the amount of power Qa is significantly smaller than the amount of power Qa that should originally be predicted by the self-firing array.

このように、電力会社から需要電力のみを監視する一般
的な需要電力監視手法では、自家発解列時に急増する需
要電力を瞬時に予測できず、正しい予測が行われるまで
に数分程度の遅れが生じ、需要電力がオーバしてしまう
可能性が強い。
In this way, with the general power demand monitoring method that only monitors the power demand from the power company, it is not possible to instantly predict the sudden increase in power demand during a self-fired line, and there is a delay of several minutes before the correct prediction is made. There is a strong possibility that the power demand will exceed the demand.

そこで、本発明では、電力会社による需要電力と、自家
発電機の発生電力とを加え、これらの合計値が目標値を
超えるかを予測するようにした。
Therefore, in the present invention, the power demand by the electric power company and the power generated by the private generator are added, and it is predicted whether the total value of these exceeds the target value.

このようにすると、自家発電機が解列された時点にて、
瞬時に需要電力がデマンド終了時の目標値を超えるか否
かを判別でき、直ちに負荷選択しゃ断等の対策を取るこ
とができ、需要電力のオーバを未然に防止することがで
きる。         4なお、上記説明では、自家
発電設備の並列運転されている間から、電力会社の需要
電力と自家発電電力とを加えた値にて、各監視周期毎に
予測を行っていたが、並列運転時は電力会社の需要電力
のみで予測を行い、自家発電機が解列された時点にて、
その直前の自家発電電力を加えて予測を行うようにして
もよい。
In this way, when the private generator is disconnected,
It is possible to instantly determine whether or not the demanded power exceeds the target value at the end of the demand, and it is possible to immediately take measures such as selective load cutoff, thereby making it possible to prevent the demanded power from exceeding the target value. 4. In the above explanation, while the private power generation equipment is running in parallel, predictions are made for each monitoring cycle based on the sum of the electric power company's power demand and the privately generated power. Forecasts are made only based on the power company's power demand, and when the private generator is disconnected,
The prediction may be made by adding the privately generated power immediately before that.

また、上述した説明では、負荷側の系統に事故が生じた
ことにより自家発電機を解列するものとしたが、自家発
電機自体の不具合により、自家発電機を系統から解列す
る場合も同じである。
In addition, in the above explanation, it is assumed that the private generator is disconnected from the grid due to an accident on the load side, but the same applies if the private generator is disconnected from the grid due to a problem with the private generator itself. It is.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、電力会社の電源Pと自家
発電機Gとが並列運転を行っている際の事故により自家
発電機Gが解列された場合、この解列により需要電力が
契約電力を越えると予測される場合は、需要電力超過出
力を発し、負荷選択しゃ断を行うことにより需要電力超
過を未然に防止できる。
As described above, according to the present invention, when the private generator G is disconnected due to an accident while the electric power company's power supply P and the private generator G are operating in parallel, the demand power is reduced due to the disconnection. If it is predicted that the contracted power will be exceeded, the power demand excess can be prevented by issuing an output in excess of the demand power and performing load selective cutoff.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による電力系統制御装置の一実施例を示
すブロック図、第2図は第1図の装置を適用する電力系
統の構成図、第3図は第1図で示した系統状態検出手段
の機能を示すフローチャート、第4図および第5図は自
家発電機解列に伴う需要電力の変化を表わすグラフ、第
6図は従来装置を示す系統構成図である。 P・・・電力会社の電源設備 B1・・・母線連絡しゃ断器 G1・・・自家発連絡しゃ断器 BUSR・・・受電母線  13USG・・・自家発母
線4・・・潮流方向判定手段 4a・・・発電機電力検出手段 5・・・事故方向検出手段 6・・・系統状態検出手段 7・・・系統解列点選択手段 8・・・需要電力監視選択手段 9・・・負荷選択しゃ断制御手段 代理人 弁理士 則 近 憲 佑 同  王侯弘文 第1図 第2図 第3図 第4図 (ミ゛夕P ]″
FIG. 1 is a block diagram showing an embodiment of the power system control device according to the present invention, FIG. 2 is a configuration diagram of a power system to which the device in FIG. 1 is applied, and FIG. 3 is a system state shown in FIG. 1. FIG. 4 and FIG. 5 are graphs showing changes in power demand due to disconnection of private generators, and FIG. 6 is a system configuration diagram showing a conventional device. P...Electricity company's power supply equipment B1...Bus line connection breaker G1...Private generation connection breaker BUSR...Power receiving bus 13USG...Private generation bus 4...Power flow direction determination means 4a... - Generator power detection means 5... Accident direction detection means 6... Grid status detection means 7... Grid disconnection point selection means 8... Demand power monitoring selection means 9... Load selection and cutoff control means Agent Patent Attorney Noriyuki Chika Ken Yudo Wang Hou Hongbun Figure 1 Figure 2 Figure 3 Figure 4 (My evening page)

Claims (1)

【特許請求の範囲】 電力会社の電源から受電する受電母線と、自家発電機に
対し自家発連絡しや断器を介して接続する自家発母線と
の間に、母線連絡しや断器を設け、上記各母線から負荷
に電力を供給する電力系統の制御装置において、 前記電力会社の電源と自家発電機とが並列運転されてい
ることを検出する並列状態検出手段と、上記並列運転が
行われていることを条件に電力会社による需要電力およ
び自家発電機の出力電力の合計値を求めこの合計値を基
に需要電力監視時限終了時の需要電力値を予測し、この
予測値が予定の目標電力を超過するか否かを判定する需
要電力監視手段と、 この需要電力監視手段の超過判定出力と前記自家発電機
の自家発母線からの解列とを条件に前記負荷の選択しや
断を行う負荷選択しや断制御手段と、 を備えた電力系統制御装置。
[Scope of Claims] A bus connection or disconnector is provided between the power receiving bus that receives power from the electric power company's power supply and the private generation bus that connects to the private generator via the private connection or disconnector. , in the control device for an electric power system that supplies power from each bus to a load, a parallel state detection means for detecting that the electric power company's power source and the private generator are operated in parallel; The total value of the power demand from the electric power company and the output power of the private generator is calculated based on the condition that the power demand is set at the end of the power demand monitoring time period. demand power monitoring means for determining whether or not the power exceeds the power demand; and selecting or disconnecting the load based on the excess judgment output of the power demand monitoring means and the disconnection of the private generator from the private generation bus. A power system control device comprising load selection and disconnection control means for performing load selection and disconnection control.
JP61094674A 1986-03-03 1986-04-25 Power system controller Pending JPS6311027A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4413286 1986-03-03
JP61-44132 1986-03-03

Publications (1)

Publication Number Publication Date
JPS6311027A true JPS6311027A (en) 1988-01-18

Family

ID=12683092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61094674A Pending JPS6311027A (en) 1986-03-03 1986-04-25 Power system controller

Country Status (1)

Country Link
JP (1) JPS6311027A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012524468A (en) * 2009-04-17 2012-10-11 ハワード ユニバーシティ System and method for monitoring and optimizing power quality in a network
JP2021027640A (en) * 2019-08-01 2021-02-22 住友電気工業株式会社 Power control device, power control method, and computer program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128830A (en) * 1983-12-15 1985-07-09 株式会社東芝 Load selection breaking unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128830A (en) * 1983-12-15 1985-07-09 株式会社東芝 Load selection breaking unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012524468A (en) * 2009-04-17 2012-10-11 ハワード ユニバーシティ System and method for monitoring and optimizing power quality in a network
JP2021027640A (en) * 2019-08-01 2021-02-22 住友電気工業株式会社 Power control device, power control method, and computer program

Similar Documents

Publication Publication Date Title
US7061139B2 (en) System for providing assured power to a critical load
JP2018064416A (en) Two parallel line transmission line protection system
EP1929602B1 (en) Method and system for fault detection in electrical power devices
US7579712B2 (en) Power system protection system
KR100665540B1 (en) All igbt ups system for input/output three phases
JP2007209151A (en) Loop operational system in electrical distribution system and method
JPH0993784A (en) Power saving and overload avoidance apparatus and power saving and overload avoidance method
KR100856715B1 (en) Islanding Detection Method for Microgrid and its Device
JP2005245136A (en) Reverse-tidal-current-preventing systematically interconnecting system
RU180919U1 (en) CONTROLLER OF PROTECTION AGAINST FAN SHUT-OFFS WITH THE POSSIBILITY OF HARMONIC COMPENSATION
JPS6311027A (en) Power system controller
JPH09285016A (en) Power equipment
KR101030193B1 (en) Distrtibuting board cabinet panel with neutral line replacement and method thereof
KR100653284B1 (en) Digital uninterruptible power supply system for three phases
WO2004042883A1 (en) Protective relay
Allen Effects of wide-area control on the protection and operation of distribution networks
KR100574695B1 (en) Digital uninterruptible power supply system
JP2002101562A (en) System interconnection protection device of power generating installation
JP2000156935A (en) Method and apparatus for controlling self power generation system
JPH04275029A (en) Load interrupting device at time of parallel off fault
JP7506240B1 (en) PROTECTIVE RELAY SYSTEM, PARALLEL-OFF DETECTION DEVICE, PARALLEL-OFF DETECTION METHOD, AND PROGRAM
WO2024105742A1 (en) Breaking device, power supply system, control device, setting value determination method, and program
WO2024105897A1 (en) Reverse electric power breaker/relay and method for cutting off reverse electric power in reverse electric power breaker/relay
JP2008278662A (en) Bus protective relaying device
RU192770U1 (en) CONTROLLER OF PROTECTION AGAINST CIRCUIT BREAKERS WITH THE POSSIBILITY OF COMPENSATION OF HARMONICS AND CORRECTION OF RELAY PROTECTION SETTINGS