JPS63109267A - Piston of internal combustion engine - Google Patents

Piston of internal combustion engine

Info

Publication number
JPS63109267A
JPS63109267A JP61253948A JP25394886A JPS63109267A JP S63109267 A JPS63109267 A JP S63109267A JP 61253948 A JP61253948 A JP 61253948A JP 25394886 A JP25394886 A JP 25394886A JP S63109267 A JPS63109267 A JP S63109267A
Authority
JP
Japan
Prior art keywords
ceramic
piston
cavity member
molded body
piston body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61253948A
Other languages
Japanese (ja)
Inventor
Masahiko Shigetsu
雅彦 重津
Yoji Tsukawaki
塚脇 洋二
Kaneyoshi Shimono
下野 兼嘉
Tatsuto Fukushima
立人 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP61253948A priority Critical patent/JPS63109267A/en
Publication of JPS63109267A publication Critical patent/JPS63109267A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0015Multi-part pistons
    • F02F3/003Multi-part pistons the parts being connected by casting, brazing, welding or clamping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0603Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston at least part of the interior volume or the wall of the combustion space being made of material different from the surrounding piston part, e.g. combustion space formed within a ceramic part fixed to a metal piston head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0675Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston the combustion space being substantially spherical, hemispherical, ellipsoid or parabolic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0603Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston at least part of the interior volume or the wall of the combustion space being made of material different from the surrounding piston part, e.g. combustion space formed within a ceramic part fixed to a metal piston head
    • F02B2023/0612Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston at least part of the interior volume or the wall of the combustion space being made of material different from the surrounding piston part, e.g. combustion space formed within a ceramic part fixed to a metal piston head the material having a high temperature and pressure resistance, e.g. ceramic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To simplify manufacturing processes by inserting the exterior surface of a cavity member of ceramic in the piston body in the condition that the exterior surface is covered with a heat insulation layer, and thereby decreasing cracks in the cavity member. CONSTITUTION:A cup-shaped cavity member 4 of ceramic having a ring-shaped flange 3 is concentrically inserted within the upper part of a piston body 1 made of aluminum alloy. That portion of the cavity member exterior wall situated lower than the ring-shaped flange 3 is covered with a heat insulation layer 5 consisting of a ceramic fiber molding coated with an inorganic material, and even said heat insulation layer 5 is incast within the piston body 1. This will suppress the temp. difference between the interior and exterior surfaces of cavity member to lead to decrease crack generation, which should simplify the manufacturing processes for pistons.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ピストン上部にセラミック製キャビティ部材
を設け、このセラミック製キャビティ部材の内部に燃焼
室を形成した内燃機関のピストンに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a piston for an internal combustion engine in which a ceramic cavity member is provided in the upper part of the piston, and a combustion chamber is formed inside the ceramic cavity member.

〔従来技術〕[Prior art]

従来、ディーゼルエンジンのピストンにおいて、その上
部にセラミック製キャビティ部材を鋳ぐるんだ構造のも
のが既に提案されている。ところで、燃焼室に燃料を直
接吹き込む直接噴射式ディーゼルエンジンは、間接噴射
式ディーゼルエンジンに比して燃費は優れているものの
、排ガス特性、騒音、始動性等の諸特性では間接噴射式
ディーゼルエンジンより劣っている。この場合、直接噴
射式ディーゼルエンジンのピストンにおける上記キャビ
ティ部材として、断熱性に優れたセラミック、例えば部
分安定化ジルコニアセラミックを使用すれば、上記の諸
特性を改善することができる。
BACKGROUND ART Conventionally, a structure in which a ceramic cavity member is cast in the upper part of a piston of a diesel engine has already been proposed. By the way, direct injection diesel engines, which inject fuel directly into the combustion chamber, have better fuel efficiency than indirect injection diesel engines, but they are inferior to indirect injection diesel engines in various characteristics such as exhaust gas characteristics, noise, and startability. Inferior. In this case, the above characteristics can be improved by using a ceramic with excellent heat insulation properties, such as a partially stabilized zirconia ceramic, as the cavity member in the piston of the direct injection diesel engine.

ところが、キャビティ部材として断熱性の良いセラミッ
クを使用すれば、燃焼室に面したキャビティ部材の内表
面と、外表面との間の温度差が大きくなるので、上記外
表面近傍で大きな熱応力が生じてキャビティ部材にクラ
ンクを発生する虞れがある。特に、キャビティ部材にピ
ストン本体からの抜止め用フランジ部が設けられている
場合、抜止め用フランジ部では、その外周面とキャビテ
ィ部材の内表面との間の距離が大きくなるので、温度差
が極めて大きくなって、外周部でクランクが生じやすく
なる。
However, if ceramic with good heat insulation properties is used as the cavity member, the temperature difference between the inner surface of the cavity member facing the combustion chamber and the outer surface will increase, resulting in large thermal stress near the outer surface. There is a risk that the cavity member will develop a crank. In particular, when the cavity member is provided with a flange to prevent it from coming off from the piston body, the distance between the outer peripheral surface of the flange and the inner surface of the cavity member is large, so the temperature difference is It becomes extremely large and tends to cause cranking at the outer periphery.

その対策として、キャビティ部材とピストン本体との間
に断熱用の空気層を設けたものが提案されている(実開
昭57−107937号公報)。ところが、この場合、
空気層を介在させねばならないので、キャビティ部材を
ピストン本体に鋳ぐるむことができず、従って、ピスト
ン本体の鋳造後にピストン本体にキャビティ部材をねじ
等で組み付ける必要が生じて、工程が複雑になるという
問題を有していた。
As a countermeasure against this, it has been proposed to provide a heat insulating air layer between the cavity member and the piston body (Japanese Utility Model Publication No. 57-107937). However, in this case,
Since an air layer must be provided, the cavity member cannot be cast into the piston body. Therefore, it becomes necessary to assemble the cavity member to the piston body with screws, etc. after the piston body is cast, which complicates the process. There was a problem.

〔発明の目的〕 本発明は、上記従来の問題点を考慮してなされたもので
あって、セラミック製キャビティ部材のクランクを減少
させることができるとともに、製造工程の単純化を図る
ことができる内燃機関のピストンの提供を目的とするも
のである。
[Object of the Invention] The present invention has been made in consideration of the above-mentioned conventional problems, and is an internal combustion engine which can reduce the number of cranks of ceramic cavity members and can simplify the manufacturing process. The purpose is to provide pistons for engines.

〔発明の構成〕[Structure of the invention]

本発明は上記の目的を達成するために、ピストン上部に
セラミック製キャビティ部材を有する内燃機関のピスト
ンにおいて、ピストン本体と、ピストン本体の上部に鋳
ぐるまれる上記セラミック製キャビティ部材と、セラミ
ックファイバーの成形体に無機材を塗布または含侵させ
てなり、上記セラミック製キャビティ部材の外表面を被
覆した状態でピストン本体に鋳ぐるまれる断熱層とを備
える。これにより、セラミック製キャビティ部材の外側
に配した断熱層によって、セラミック製キャビティ部材
の内表面と外表面との間の温度差を小さくして、セラミ
ック製キャビティ部材のクランクを減少させ、また、断
熱層を空気層ではなく、セラミックファイバー成形体に
より形成して、セラミック製キャビティ部材の外壁に断
熱層を装着した後に、これらをピストン本体に鋳ぐるむ
ことによりピストンを製造できるようにして、製造工程
の単純化を図るものである。また、セラミックファイバ
ー成形体に無機材を塗布または含侵させることにより、
セラミックファイバー成形体の少なくとも外表面近傍を
硬化させて、鋳ぐるみ時に、セラミックファイバー成形
体内に、ピストン本体を形成する溶湯が侵入するのを防
止して、セラミックファイバー成形体からなる断熱層の
断熱性の低下を阻止し、かつ上記無機材によりセラミッ
クファイバー成形体の少なくとも外表面近傍を硬化させ
ることにより、振動によるセラミックファイバー成形体
の崩れや、加熱に伴うセラミックファイバー成形体の収
縮を低減させることができるように構成したことを特徴
とするものである。
In order to achieve the above object, the present invention provides a piston for an internal combustion engine having a ceramic cavity member in the upper part of the piston. The molded body is coated with or impregnated with an inorganic material, and includes a heat insulating layer that is cast into the piston body while covering the outer surface of the ceramic cavity member. As a result, the thermal insulation layer placed on the outside of the ceramic cavity member reduces the temperature difference between the inner and outer surfaces of the ceramic cavity member, reducing cranking of the ceramic cavity member, and also provides insulation. The layer is formed from a ceramic fiber molded body instead of an air layer, and after the insulation layer is attached to the outer wall of the ceramic cavity member, the piston can be manufactured by casting these layers into the piston body, and the manufacturing process is improved. The aim is to simplify the process. In addition, by coating or impregnating the ceramic fiber molded body with an inorganic material,
At least the vicinity of the outer surface of the ceramic fiber molded body is hardened to prevent the molten metal forming the piston body from penetrating into the ceramic fiber molded body during casting, thereby improving the heat insulation properties of the heat insulating layer made of the ceramic fiber molded body. By preventing the decrease in the temperature and hardening at least the vicinity of the outer surface of the ceramic fiber molded body using the above-mentioned inorganic material, it is possible to reduce the collapse of the ceramic fiber molded body due to vibration and the shrinkage of the ceramic fiber molded body due to heating. It is characterized by being configured so that it can be used.

[実施例〕 本発明の一実施例を第1図ないし第3図に基づいて説明
すれば、以下の通りである。第1図に示すように、直接
噴射式ディーゼルエンジンのピストンは、アルミニウム
合金または鋳鉄等からなるピストン本体1を備えている
。ピストン本体1の上部には、例えば部分安定化ジルコ
ニアセラミック等の断熱性の高いセラミックからなり、
その内表面が燃焼室としてのキャビティ2(穴)を形成
するとともに、その外表面にピストン本体1からの抜止
め用の環状フランジ部3を有するほぼカップ状のセラミ
ック製キャビティ部材4が同心に鋳ぐるまれでいる。こ
のセラミック製キャビティ部材4の外壁における抜止め
用の環状フランジ部3より下方の部位は、セラミックフ
ァイバーをほぼカップ状に成形したセラミックファイバ
ー成形体に、無機材を塗布してなる断熱層5で被覆され
、この断熱層5もピストン本体1内に鋳ぐるまれている
。尚、第1図では便宜上、セラミックファイバー成形体
と無機材とを一層で表している。
[Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. As shown in FIG. 1, the piston of a direct injection diesel engine includes a piston body 1 made of aluminum alloy, cast iron, or the like. The upper part of the piston body 1 is made of a highly insulating ceramic such as partially stabilized zirconia ceramic,
A substantially cup-shaped ceramic cavity member 4, whose inner surface forms a cavity 2 (hole) serving as a combustion chamber, and whose outer surface has an annular flange portion 3 for preventing removal from the piston body 1, is cast concentrically. Stay together. The portion of the outer wall of the ceramic cavity member 4 below the annular flange portion 3 for preventing removal is covered with a heat insulating layer 5 made of a ceramic fiber molded body formed from ceramic fiber into a substantially cup shape and coated with an inorganic material. This heat insulating layer 5 is also cast inside the piston body 1. In addition, in FIG. 1, the ceramic fiber molded body and the inorganic material are shown as one layer for convenience.

ピストン本体1には、3つの環状ピストンリング溝6・
7・8が形成され、上側の2つのピストンリング溝6・
7には図示しないコンプレッションリングが嵌合される
一方、最下方のピストンリング溝8には図示しないオイ
ルリングが嵌合される。また、ピストン本体1の下部に
は、図示しないピストンピンが嵌合するピストンボス9
が形成される。
The piston body 1 has three annular piston ring grooves 6.
7 and 8 are formed, and the upper two piston ring grooves 6 and
A compression ring (not shown) is fitted into the piston ring 7, while an oil ring (not shown) is fitted into the lowermost piston ring groove 8. Further, a piston boss 9 into which a piston pin (not shown) fits is provided at the lower part of the piston body 1.
is formed.

なお、ピストン本体1によるセラミック製キャビティ部
材4および断熱層5の鋳ぐるみに際し、ピストン本体1
を形成するアルミニウム合金等の溶湯からセラミック製
キャビティ部材4に加わる熱衝撃を緩和させるためには
、セラミック製キャビティ部材4を上記溶湯との温度差
が300℃以下となる程度まで予備加熱しておく必要が
ある。また、鋳ぐるみ後に熱処理を行う場合、熱処理に
伴ってセラミック製キャビティ部材4にクラックが発生
するのを防止するためには、鋳ぐるみに際して・セラミ
ック製キャビティ部材4のキャビティ2に装着した図示
しない中子を取り外すことなく熱処理を行うことが好ま
しい。
In addition, when casting the ceramic cavity member 4 and the heat insulating layer 5 with the piston body 1, the piston body 1
In order to alleviate the thermal shock applied to the ceramic cavity member 4 from the molten metal such as aluminum alloy forming the ceramic cavity member 4, the ceramic cavity member 4 is preheated to such an extent that the temperature difference with the molten metal is 300°C or less. There is a need. In addition, when heat treatment is performed after casting, in order to prevent cracks from occurring in the ceramic cavity member 4 due to the heat treatment, during casting, Preferably, the heat treatment is performed without removing the child.

次に、断熱層5の好ましい材質等について詳述する。本
発明者は、セラミックファイバーとして、アルミナシリ
ケートファイバー(以下、ファイバーAと称する)、ア
ルミナファイバー(以下、ファイバーBと称する)の2
種類を使用し、一方、無機材を含むコーテイング材とし
て第1表に示す3種類を使用して、セラミックファイバ
ーの振動による崩れ、および加熱に伴う収縮につき実験
を行った。
Next, preferred materials for the heat insulating layer 5 will be described in detail. The present inventor has developed two types of ceramic fibers: alumina silicate fiber (hereinafter referred to as fiber A) and alumina fiber (hereinafter referred to as fiber B).
On the other hand, using three types of inorganic-containing coating materials shown in Table 1, experiments were conducted to examine the collapse of ceramic fibers due to vibration and shrinkage due to heating.

上記の第1表から明らかなように、コーティング材No
、 1は、無機材としてのコロイダル(コロイド状)シ
リカのみで構成される。また、コーティング材No、2
は、コロイダルシリカにMgO粉その他の粉末を表中の
最右欄に示す割合で混合して混練したものであり、コー
テイング材N003は、無機材としてのエチルシリケー
ト系シリカゾルにMgO粉その他の粉末を表中の最右欄
に示す割合で混合して混練したものである。実験には、
上記各ファイバーA−Bの成形体のみからなる試料(そ
れぞれ試料A、試料Bとする)、ファイバーAの成形体
の外表面に各コーテイング材No、1”No、3を塗布
して乾燥させてなる試料(それぞれ試料A−1〜A−3
とする)、およびファイバーBの成形体の外表面に各コ
ーテイング材N001〜N003を塗布して乾燥させて
なる試料(それぞれ試料B−1〜B−3とする)の合計
8種類の試料を使用した。第1の実験では、各試料に1
250℃×3時間の熱処理を施し、この熱処理の前後に
おける寸法の変化量(収縮量)を測定した。この結果を
第2図に示す。また、第2の実験として、各試料に10
00℃×3時間の熱処理を施した後に、ストローク13
0cmの往復動を毎分230回行わせる振動試験を実施
し、振動付加時間と試料の重量の減少量との関係を測定
した。この結果を第3図に示す。振動によりファイバー
成形体の重量が減少するのは、ファイバー成形体からフ
ァイバーが崩れ落ちるためである。
As is clear from Table 1 above, coating material No.
, 1 is composed only of colloidal silica as an inorganic material. In addition, coating material No. 2
Coating material No. 003 is a mixture of colloidal silica and MgO powder and other powders in the ratio shown in the rightmost column of the table, and coating material No. 003 is a mixture of MgO powder and other powders with ethyl silicate-based silica sol as an inorganic material. These were mixed and kneaded in the proportions shown in the rightmost column in the table. The experiment included
Samples consisting only of molded bodies of each of the fibers A and B (referred to as sample A and sample B, respectively) were coated with coating materials No. 1, No. 3, and dried on the outer surface of the molded bodies of fiber A. samples (respectively samples A-1 to A-3)
A total of 8 types of samples were used: samples obtained by applying coating materials N001 to N003 on the outer surface of a molded body of fiber B and drying them (respectively referred to as samples B-1 to B-3). did. In the first experiment, each sample had 1
A heat treatment was performed at 250° C. for 3 hours, and the amount of change in dimensions (amount of shrinkage) before and after this heat treatment was measured. The results are shown in FIG. In addition, as a second experiment, 10
After heat treatment at 00℃ x 3 hours, stroke 13
A vibration test was conducted in which a reciprocating motion of 0 cm was performed 230 times per minute, and the relationship between the vibration application time and the amount of decrease in the weight of the sample was measured. The results are shown in FIG. The reason why the weight of the fiber molded body decreases due to vibration is that the fibers collapse from the fiber molded body.

上記の実験結果から、ファイバー成形体にコーティング
を施すことにより、耐収縮性、耐振性が向上することが
判明した。また、コーテイング材として優れているのは
、No、2、No、3、No、1の順であり、無機材の
みからなるコーテイング材よりも、MgO等の粉末を添
加したコーテイング材の方が好ましいことが認められた
。また、このように粉末を添加することにより、セラミ
ックファイバー成形体の耐熱性、断熱性を向上させるこ
とができる。
The above experimental results revealed that shrinkage resistance and vibration resistance were improved by applying a coating to the fiber molded body. In addition, the order of excellence as a coating material is No. 2, No. 3, No. 1, and a coating material containing powder such as MgO is preferable to a coating material made only of inorganic materials. This was recognized. Moreover, by adding powder in this way, the heat resistance and heat insulation properties of the ceramic fiber molded body can be improved.

なお、上記の実験で使用した各コーテイング材の組成は
単なる例示に過ぎず、コーテイング材の組成は前掲の表
中の好適な組成範囲の欄を目安として変更しうるもので
ある。また、セラミンクファイバー、無機材および添加
粉末として上述した以外のものを使用しても良いことは
勿論である。
The composition of each coating material used in the above experiment is merely an example, and the composition of the coating material can be changed using the preferred composition range column in the table above as a guide. It goes without saying that ceramic fibers, inorganic materials, and additive powders other than those mentioned above may also be used.

さらに、上記実施例では、セラミックファイバー成形体
の外表面に無機材等からなるコーテイング材を塗布した
が、これに代えて、セラミックファイバー成形体に無機
材または無機材にMgO粉等の粉末を添加したものを含
侵させて断熱層を形成するようにしても良い。さらに、
上記実施例では、直接噴射式ディーゼルエンジンのピス
トンについて述べたが、本発明は間接噴射式ディーゼル
エンジンおよびガソリンエンジンのピストンにも適用で
きるものである。
Furthermore, in the above example, a coating material made of an inorganic material was applied to the outer surface of the ceramic fiber molded body, but instead of this, an inorganic material or a powder such as MgO powder was added to the ceramic fiber molded body. The heat insulating layer may be formed by impregnating the material. moreover,
In the above embodiment, a piston of a direct injection diesel engine was described, but the present invention can also be applied to a piston of an indirect injection diesel engine and a gasoline engine.

〔発明の効果〕〔Effect of the invention〕

本発明に係る内燃機関のピストンは、以上のように、ピ
ストン上部にセラミック製キャビティ部材を有する内燃
機関のピストンにおいて、ピストン本体と、ピストン本
体の上部に鋳ぐるまれる上記セラミック製キャビティ部
材と、セラミックファイバーの成形体に無機材を塗布ま
たは含侵させてなり、上記セラミック製キャビティ部材
の外表面を被覆した状態でピストン本体に鋳ぐるまれる
断熱層とを備えた構成である。
As described above, the piston for an internal combustion engine according to the present invention includes a piston body, the ceramic cavity member cast in the upper part of the piston body, It is constructed by coating or impregnating a ceramic fiber molded body with an inorganic material, and includes a heat insulating layer that is cast into the piston body while covering the outer surface of the ceramic cavity member.

これにより、セラミック製キャビティ部材の外側に配し
た断熱層によって、セラミック製キャビティ部材の内表
面と外表面との間の温度差を小さくすることができるの
で、セラミック製キャビティ部材のクラックを減少させ
ることができる。また、断熱層を空気層ではなく、セラ
ミックファイバー成形体により形成したので、セラミッ
ク製キャビティ部材の外表面に断熱層を装着した後に、
これらをピストン本体内に鋳ぐるむことによりピストン
を製造でき、これにより、製造工程の単純化を図ること
ができる。さらに、セラミックファイバー成形体に無機
材を塗布または含侵させることにより、セラミックファ
イバー成形体の少なくとも外表面を硬化させたので、鋳
ぐるみ時に、セラミックファイバー成形体内に、ピスト
ン本体を形成する溶湯が侵入するのを防止でき、この結
果、セラミックファイバー成形体からなる断熱層の断熱
性を低下を阻止できる。また、上記無機材によりセラミ
ックファイバー成形体の少なくとも外表面を硬化させた
ので、振動によるセラミックファイバー成形体の崩れや
、加熱に伴うセラミックファイバー成形体の収縮を低減
させることができる等の効果を奏する。
As a result, the temperature difference between the inner and outer surfaces of the ceramic cavity member can be reduced by the heat insulating layer placed on the outside of the ceramic cavity member, thereby reducing cracks in the ceramic cavity member. Can be done. In addition, since the heat insulating layer is formed from a ceramic fiber molded body instead of an air layer, after the heat insulating layer is attached to the outer surface of the ceramic cavity member,
The piston can be manufactured by casting these into the piston body, thereby simplifying the manufacturing process. Furthermore, by coating or impregnating the ceramic fiber molded body with an inorganic material, at least the outer surface of the ceramic fiber molded body is hardened, so that the molten metal forming the piston body enters into the ceramic fiber molded body during casting. As a result, the heat insulating properties of the heat insulating layer made of the ceramic fiber molded body can be prevented from deteriorating. Furthermore, since at least the outer surface of the ceramic fiber molded body is hardened with the above-mentioned inorganic material, it is possible to reduce the collapse of the ceramic fiber molded body due to vibration and the shrinkage of the ceramic fiber molded body due to heating. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の一実施例を示すものであ
って、第1図は直接噴射式ディーゼルエンジンのピスト
ンの縦断面図、第2図はセラミックファイバー成形体の
熱処理前後の寸法変化量を示すグラフ、第3図はセラミ
ックファイバー成形体に対する振動付加時間と重量減少
量との関係を示すグラフである。 ■はピストン本体、4はセラミック製キャビティ部材、
5は断熱層である。 一4″−j
Figures 1 to 3 show an embodiment of the present invention, in which Figure 1 is a longitudinal cross-sectional view of a piston of a direct injection diesel engine, and Figure 2 is a dimension of a ceramic fiber molded body before and after heat treatment. A graph showing the amount of change, and FIG. 3 is a graph showing the relationship between the vibration application time and the amount of weight reduction for the ceramic fiber molded body. ■ is the piston body, 4 is the ceramic cavity member,
5 is a heat insulating layer. 14″-j

Claims (1)

【特許請求の範囲】 1、ピストン上部にセラミック製キャビティ部材を有す
る内燃機関のピストンにおいて、ピストン本体と、ピス
トン本体の上部に鋳ぐるまれる上記セラミック製キャビ
ティ部材とを備え、セラミックファイバーの成形体に無
機材が付与されてなる断熱層を、上記セラミック製キャ
ビティ部材の外表面を被覆した状態でピストン本体に鋳
ぐるんで成る内燃機関のピストン。 2、上記の断熱層は、セラミックファイバーの成形体に
無機材が塗布されたものである特許請求の範囲第1項記
載の内燃機関のピストン。 3、上記の断熱層は、セラミックファイバーの成形体に
無機材が含浸されたものである特許請求の範囲第1項記
載の内燃機関のピストン。
[Claims] 1. A piston for an internal combustion engine having a ceramic cavity member in the upper part of the piston, comprising a piston body and the above ceramic cavity member cast in the upper part of the piston body, and a molded body of ceramic fiber. A piston for an internal combustion engine, comprising a heat insulating layer formed by adding an inorganic material to the ceramic cavity member, which is cast into the piston body with the outer surface of the ceramic cavity member coated. 2. The piston for an internal combustion engine according to claim 1, wherein the heat insulating layer is a ceramic fiber molded body coated with an inorganic material. 3. The piston for an internal combustion engine according to claim 1, wherein the heat insulating layer is a ceramic fiber molded body impregnated with an inorganic material.
JP61253948A 1986-10-24 1986-10-24 Piston of internal combustion engine Pending JPS63109267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61253948A JPS63109267A (en) 1986-10-24 1986-10-24 Piston of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61253948A JPS63109267A (en) 1986-10-24 1986-10-24 Piston of internal combustion engine

Publications (1)

Publication Number Publication Date
JPS63109267A true JPS63109267A (en) 1988-05-13

Family

ID=17258210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61253948A Pending JPS63109267A (en) 1986-10-24 1986-10-24 Piston of internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63109267A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645028A (en) * 1995-11-21 1997-07-08 Isuzu Motors Limited Piston structure with a combustion chamber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4245611A (en) * 1978-09-05 1981-01-20 General Motors Corporation Ceramic insulated engine pistons

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4245611A (en) * 1978-09-05 1981-01-20 General Motors Corporation Ceramic insulated engine pistons

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645028A (en) * 1995-11-21 1997-07-08 Isuzu Motors Limited Piston structure with a combustion chamber

Similar Documents

Publication Publication Date Title
US4694735A (en) Piston for internal combustion engine
JP6927057B2 (en) Compression self-ignition internal combustion engine
JP6065388B2 (en) Thermal insulation film structure and manufacturing method thereof
US4522171A (en) Pre-combustion or turbulence chamber for internal combustion engines
JPS63109267A (en) Piston of internal combustion engine
JPH0536990Y2 (en)
EP0274505A1 (en) Insulation material and method of applying the same to a component in a combustion engine.
JPS6014901B2 (en) Piston manufacturing method
JPS6027820B2 (en) Method for manufacturing combustion chamber components for internal combustion engines
JPS633128B2 (en)
JPH0639940B2 (en) Engine parts for internal combustion engines such as pistons and cylinder heads
JPS6128822B2 (en)
JPS61218715A (en) Combustion chamber of internal-combustion engine
JPH02112613A (en) Structure for subcombustion chamber
JPS60113021A (en) Nozzle part for auxiliary chamber of internal-combustion engine
JPS59108848A (en) Cylinder head of internal-combustion engine
WO2018029903A1 (en) Internal combustion engine piston and method for manufacturing internal combustion engine piston
US5738066A (en) Piston structure with heat insulated combustion chamber
JPH0118821Y2 (en)
JPH0313581A (en) Method for coating aluminum or aluminum alloy parts with ceramic
JPH04347329A (en) Ceramics sub-combustion chamber for diesel engine and manufacture thereof
KR100590952B1 (en) 2-ring piston and manufacturing method for gasoline engine
JPS59170444A (en) Ceramic engine
JPH0243563Y2 (en)
JPH0541232Y2 (en)