JPS6310908B2 - - Google Patents

Info

Publication number
JPS6310908B2
JPS6310908B2 JP56043002A JP4300281A JPS6310908B2 JP S6310908 B2 JPS6310908 B2 JP S6310908B2 JP 56043002 A JP56043002 A JP 56043002A JP 4300281 A JP4300281 A JP 4300281A JP S6310908 B2 JPS6310908 B2 JP S6310908B2
Authority
JP
Japan
Prior art keywords
region
conductivity type
source
contact
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56043002A
Other languages
Japanese (ja)
Other versions
JPS56153773A (en
Inventor
Junichi Nishizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4300281A priority Critical patent/JPS56153773A/en
Publication of JPS56153773A publication Critical patent/JPS56153773A/en
Publication of JPS6310908B2 publication Critical patent/JPS6310908B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 本発明は改善された特性を有する半導体集積回
路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit device with improved characteristics.

従来の電界効果トランジスタは大きい内部負帰
還抵抗の存在により、そのドレイン電圧一電流特
性は五極真空管型の飽和特性を示す。しかるに、
本願発明者により提案、実現された静電誘導型電
界効果トランジスタSITは、内部負帰還抵抗rs
極めて小さいため、rs・Gn≪1となり三極真空
管型の立上り特性を示す。
Due to the presence of a large internal negative feedback resistance, a conventional field effect transistor has a drain voltage-current characteristic exhibiting a saturation characteristic of a pentode vacuum tube type. However,
The electrostatic induction field effect transistor SIT proposed and realized by the inventor of the present application has an extremely small internal negative feedback resistance r s , so that r s ·G n <<1, and exhibits a triode vacuum tube type rise characteristic.

本発明は静電誘導電界効果トランジスタの内部
負帰還抵抗が従来の五極管型飽和特性を示す電界
効果トランジスタの内部抵抗に比して極端に小さ
く、負帰還抵抗を外部から容易に制御できること
に根ざしている。つまり静電誘導電界効果トラン
ジスタのソースに直列に周波数数特性を有するイ
ンピーダンスZsを挿入し、所望の信号周波数に対
してのみ、Zs・Gn≪1の関係を満足させ、負帰
還量を小さくし、その他の周波数範囲の信号に対
しては、Zs・Gn≫1となり、大きな負帰還作用
が働くようにしたものである。
The present invention has the advantage that the internal negative feedback resistance of an electrostatic induction field effect transistor is extremely small compared to the internal resistance of a conventional field effect transistor exhibiting pentode type saturation characteristics, and that the negative feedback resistance can be easily controlled from the outside. It's rooted. In other words, an impedance Z s having a frequency characteristic is inserted in series with the source of the electrostatic induction field effect transistor, and the relationship Z s・G n ≪1 is satisfied only for the desired signal frequency, thereby reducing the amount of negative feedback. For signals in other frequency ranges, Z s ·G n ≫1, and a large negative feedback effect is exerted.

以下本発明を詳細に説明する。 The present invention will be explained in detail below.

第1図を用いて本発明の原理を説明する。G,
S,Dは夫々静電誘導電界効果トランジスタ1の
ゲート、ソース、ドレインであり、Vioは入力信
号、VDDはドレイン・バイアス電圧、Rlは負荷抵
抗、Zsはソースに直列に接続されたインピーダン
スを表わす。負帰還作用のある場合の見掛上の相
互コンダクタンスG′nは、 G′n=Gn/1+Zs・Gn で表わされ、Zs・Gn≪1の場合のみ負帰還量が
小さく、G′n=Gnとなり三極管型の立上り特性を
示す。逆に、Zs・Gn≫1の場合は大きな負帰還
作用のため増幅度は低下する。Zs・Gn≪1の場
合、この回路の増幅度Kは静電容量が無視できる
範囲では簡単な計算により K=−μRl/Rl+rd+(1+μ)Zs ……(1) となる。ここでrdは内部抵抗、μは静電誘導電界
効果トランジスタ固有の増幅率、Wは使用角周波
数である。高周波領域では静電容量の存在のため
増幅度Kは小さくなる。Zsとしては種々のものが
考えられるが、周波数に対して非線型性を有する
ものならば何でもよく、その代表的なものを第2
図に示す。今、最も簡単な第2図aの静電容量Cs
と抵抗Rsの並列回路がソースに直列に接続され
た場合を例にとつて説明する。式(1)にZs=(jωc
+1/Rs-1なるインピーダンスを代入すると、
増幅度Kは以下のようになる。
The principle of the present invention will be explained using FIG. G,
S and D are the gate, source, and drain of the electrostatic induction field effect transistor 1, respectively, V io is the input signal, V DD is the drain bias voltage, R l is the load resistance, and Z s is connected in series with the source. represents the impedance. The apparent mutual conductance G′ n when there is a negative feedback effect is expressed as G′ n = G n /1 + Z s・G n , and the amount of negative feedback is small only when Z s・G n ≪1. , G′ n =G n , indicating a triode-type rise characteristic. Conversely, when Z s ·G n ≫1, the amplification degree decreases due to a large negative feedback effect. When Z s・G n ≪1, the amplification degree K of this circuit can be calculated by simple calculation as long as the capacitance can be ignored: K=-μR l /R l +r d + (1+μ)Z s ……(1) becomes. Here, r d is the internal resistance, μ is the amplification factor specific to the electrostatic induction field effect transistor, and W is the angular frequency used. In the high frequency region, the amplification degree K becomes small due to the presence of capacitance. Various types of Z s can be considered, but any type may be used as long as it has nonlinearity with respect to frequency.
As shown in the figure. Now, the simplest capacitance C s in Figure 2 a
An example will be explained in which a parallel circuit of R and R s is connected in series to the source. In equation (1), Z s = (jωc
+1/R s ) -1 impedance is substituted, we get
The amplification degree K is as follows.

K=−μRl/Rl+rd+(1+μ)Rs・1+jωcsRs/1
+jωcsRs(rd+Rl)/Rl+rd+(1+μ)Rs……(2) (2)式は低周波領域では K0=−μRl/Rl+rd+(1+μ)Rs ……(3) 高周波領域では K1=−μRl/rd+Rl ……(4) となる。上式(3)、(4)より、Cs、Rsの並列インピ
ーダンスは低周波領域においては大きな負帰還効
果をもつており増幅度Kを低減させることがわか
る。逆に高周波領域では負帰還作用は軽減され、
増幅度は低下しない。この様子を第3図aに示
す。
K=-μR l /R l +r d +(1+μ)R s・1+jωc s R s /1
+jωc s R s (r d +R l )/R l +r d + (1+μ)R s ……(2) In the low frequency region, equation (2) is K 0 =−μR l /R l +r d + (1+μ) R s ...(3) In the high frequency region, K 1 = -μR l /r d + R l ...(4). From the above equations (3) and (4), it can be seen that the parallel impedance of C s and R s has a large negative feedback effect in the low frequency region and reduces the amplification degree K. Conversely, in the high frequency range, the negative feedback effect is reduced,
The degree of amplification does not decrease. This situation is shown in FIG. 3a.

静電誘導電界効果トランジスタの内部抵抗rd
従来の飽和特性を有する電界効果トランジスタの
それよりも少くとも4桁は小さいので高周波領域
では増幅度はほぼμに等しくすることができる。
第2図aの回路を用いたとするならば、低周波領
域での増幅度が小さいので、低周波雑音を効率よ
く抑制することが可能である。また、この回路は
自動バイアス作用を兼ね備えている。即ち、ドレ
イン電流Idにより電界効果トランジスタ1のゲー
トにはVg=−Id・Rsのバイアス電圧が自動的に
印加される。バイアス点はRsの負帰還作用によ
つて安定に保持される。他方、高周波信号はバイ
パス・コンデンサCsを通して流れるので大きな負
帰還作用を受けない。従つて、高周波領域の増幅
度はCsとRsの並列回路の挿入によつて何ら変化
しない。
Since the internal resistance r d of the electrostatic induction field effect transistor is at least four orders of magnitude smaller than that of a conventional field effect transistor having saturation characteristics, the amplification factor can be made approximately equal to μ in the high frequency region.
If the circuit shown in FIG. 2a is used, the degree of amplification in the low frequency region is small, so it is possible to efficiently suppress low frequency noise. This circuit also has an automatic bias function. That is, a bias voltage of V g =-I d ·R s is automatically applied to the gate of the field effect transistor 1 by the drain current I d . The bias point is stably maintained by the negative feedback effect of R s . On the other hand, high frequency signals flow through the bypass capacitor Cs and are not subject to large negative feedback effects. Therefore, the amplification degree in the high frequency region does not change at all by inserting the parallel circuit of C s and R s .

以上の例により静電誘導電界効果トランジスタ
2の動作特性がソースに直列に入る周波数に対し
て非線形に変化する負帰還インピーダンスにより
周波数に大きく依存して変化することが明確にな
つたものと思われる。
It seems clear from the above example that the operating characteristics of the electrostatic induction field effect transistor 2 change largely depending on the frequency due to the negative feedback impedance that changes non-linearly with respect to the frequency applied in series to the source. .

第2図a以外の回路例もZsが周波数に対して非
線型に変化する点においては同様である。第2図
aは一種の高域通過フイルタ、bは低域通過フイ
ルタとして働き、夫々高、低周波数領域でインピ
ーダンスが小さくなり、負帰還量が減少するの
で、増幅度Kはそれに対応して第3図a,bに示
すように増加する。
The circuit examples other than those shown in FIG. 2a are similar in that Z s changes nonlinearly with respect to frequency. Figure 2 a acts as a kind of high-pass filter, and b acts as a low-pass filter.The impedance becomes smaller in the high and low frequency regions, respectively, and the amount of negative feedback decreases, so the amplification degree K changes accordingly. It increases as shown in Figure 3a and b.

第2図c,dはZsとして夫々並列及び直列共振
回路を用いたもので、共振周波数ω2=1/LCで
インピーダンスは夫々最大及び最小となる。従つ
て増幅度Kは第4図に示すように並列共振周波数
で最小、直列共振周波数で最大となる。以上、第
2図に示した回路例はいずれもフイルタ作用をも
つているものであり、ある時定周波数範囲の負帰
還インピーダンスを変えて静電誘導トランジスタ
1の増幅度を制御するという点で共通している。
これらの回路はほんの一例にすぎず、そのインピ
ーダンスが周波数依存性を有する回路であるなら
ば、受動、能動回路を問わず有効であることは言
うまでもない。
FIGS. 2c and 2d use parallel and series resonant circuits as Z s , respectively, and the impedance reaches its maximum and minimum at the resonant frequency ω 2 =1/LC, respectively. Therefore, as shown in FIG. 4, the amplification degree K is minimum at the parallel resonance frequency and maximum at the series resonance frequency. All of the circuit examples shown in Figure 2 have a filter effect, and the common feature is that the amplification degree of the static induction transistor 1 is controlled by changing the negative feedback impedance in a certain fixed frequency range. are doing.
These circuits are just examples, and it goes without saying that any circuit, passive or active, is effective as long as its impedance is frequency dependent.

例えば選択増幅器の周波数選択に用いられるツ
インテイ回路あるいは種々のフイルタ群、代表的
にはセラミツクフイルタ能動素子を主要構成要素
とするアクテイブ・フイルタなどが挙げられる。
For example, a twin-tay circuit or various filter groups used for frequency selection of a selective amplifier, typically an active filter whose main component is a ceramic filter active element, etc., can be mentioned.

これらの回路は個別部品を用いて構成する他、
固体上にモノリシツクに集積化しても、あるいは
混成集積回路を使用しても有効に作用することは
いうまでもない。以下に第2図aに示した静電容
量と抵抗の並列回路をSi中の集積化した場合につ
いて具体的に説明する。
These circuits are constructed using individual components, and
It goes without saying that monolithic integration on a solid state or use of a hybrid integrated circuit will work effectively. A case in which the parallel circuit of capacitance and resistance shown in FIG. 2a is integrated in S i will be specifically explained below.

第5図は、ソース側にチヤンネルと逆導電型の
層を設け、接合容量をバイパスコンデンサーとし
て用い、逆導電型層の一部を貫いてチヤンネルと
同導電型でつながる窓によつて抵抗Rsを設けた
例である。aは、埋め込みゲート型nチヤンネル
静電誘導トランジスタに本発明を適用した例であ
り、ソース側半導体表面のほとんどがp型領域2
4となつており、一部にn型領域の窓17があい
ている。抵抗RsとコンデンサCsは、それぞれの
表面積で制御できるが、n型層16とp型層24
またはn型層17との間にn型領域19を少くと
も一部に設けることによつて、抵抗Rsと容量Cs
の制御が可能である。同図b,cは倒立型静電誘
導トランジスタに本発明の構造を適用した例であ
る。b図では逆導電型領域24の開口部17付近
のソース高不純物濃度(n+)領域18はより不
純物濃度の小さいiまたはn-領域に置き換えら
れている。この領域の不純物濃度を加減すること
によつて抵抗値の値を調節することができる。第
5図cは開口部の中心とチヤンネルの中心をずら
して故意に電流通路長を長くし、その分だけ抵抗
を大きくした例である。このようにソース領域に
接して形成された逆導電型領域の開口部を加減す
ることにより主に静電容量を、開口部付近のソー
ス領域の不純物濃度を加減することにより主に抵
抗を簡単に調節でき、効率よく負帰還インピーダ
ンスをソース回路中に挿入できる。
In Figure 5, a layer of conductivity type opposite to the channel is provided on the source side, a junction capacitance is used as a bypass capacitor, and a resistor R s is created by a window penetrating a part of the layer of opposite conductivity type and connected to the channel with the same conductivity type. This is an example where . Figure a is an example in which the present invention is applied to a buried gate type n-channel static induction transistor, in which most of the source side semiconductor surface is a p-type region 2.
4, and a window 17 for the n-type region is partially opened. The resistance R s and the capacitor C s can be controlled by their respective surface areas, but the n-type layer 16 and the p-type layer 24
Alternatively, by providing at least a part of the n-type region 19 between the n-type layer 17, the resistance R s and the capacitance C s
control is possible. Figures b and c show examples in which the structure of the present invention is applied to an inverted electrostatic induction transistor. In figure b, the source high impurity concentration (n + ) region 18 near the opening 17 of the opposite conductivity type region 24 is replaced with an i or n - region having a lower impurity concentration. By adjusting the impurity concentration in this region, the resistance value can be adjusted. FIG. 5c shows an example in which the center of the opening and the center of the channel are shifted to intentionally lengthen the current path length, and the resistance is increased accordingly. In this way, by adjusting the opening of the opposite conductivity type region formed in contact with the source region, the capacitance can be increased, and by adjusting the impurity concentration of the source region near the opening, the resistance can be increased. Adjustable, negative feedback impedance can be efficiently inserted into the source circuit.

以下に本発明の他の実施例を参考までにあげて
おく。
Other embodiments of the present invention are listed below for reference.

第6図aは、p型埋め込みゲート13を有する
nチヤンネルの縦型電界効果トランジスタの断面
であり、ドレイン電極11、n型高不純物密度領
域14、n型低不純物密度領域15、チヤンネル
はゲート13を貫通し、n型低不純物密度領域1
5に連続している。
FIG. 6a is a cross section of an n-channel vertical field effect transistor having a p-type buried gate 13, including a drain electrode 11, an n-type high impurity density region 14, an n-type low impurity density region 15, and a channel consisting of the gate 13. through the n-type low impurity density region 1
5 in a row.

ソース側は、SiO2、Si3N4、Al2O3等の絶縁物
質の薄膜18に窓をあけてソース電極12が絶縁
膜18とn型高不純物密度領域17とそれぞれ接
している。この窓の大きさを小さくすればする
程、抵抗Rsは大きくなり、絶縁膜18の面積が
大きい程、厚みがうすい程、絶縁膜18の誘電率
が大きい程、バイパスコンデンサCsの値が大きく
なる。必要に応じては、ソース側n型高不純物密
度領域17に隣接して、図中点線の如く、低不純
物密度または真性領域等の高抵抗領域19を設け
ることにより、抵抗Rsの値を制御することがで
きる。また、n型領域17は絶縁膜18全面と接
していてもよい。第6図bは、段差構造を設けた
縦型電界効果トランジスタに、本発明を適用した
例であり、aと同様な思想にもとづく。図中、ソ
ース高不純物密度領域17が凸部を有するのは、
ゲート領域13との間に静電容量を増加させず
に、しかもチヤンネル抵抗rsを小さくした、本願
発明者提案による特公昭56−26148号「電界効果
トランジスタ」にもとづくものであり、絶縁膜1
8にあけた窓は、図の如くゲート3の直下にあつ
た場合が最も抵抗Rsの値を大きくすることがで
きるが、位置は任意であり、設計により決る。第
6図c,dは、同様な発明の思想を、横型の電界
効果トランジスタに適用した例であり、ソース高
不純物密度領域17,17′は、電極12と直接
接する部分と絶縁膜18を介して接する部分より
成つている。n型領域17′は、必ずしも必要な
いが、n型領域17と17′は一体となつていて
も構わないが、図cの如く、P型領域21をその
間に設けることにより、抵抗Rsを大きくするこ
とができる。さらに、P型領域21は、n領域1
7,17′と接する必要はなく、17と17′の間
のn型低不純物密度領域15に所々に設けてもよ
く、その大きさ、深さ、間隔等によつて、また窓
の大きさによつて抵抗Rsを制御できる。dは、
絶縁ゲート型の電界効果トランジスタであり、ゲ
ート13は絶縁膜18を介してソース領域17,
17′とドレイン領域14との間にP型基板20
表面近くにチヤンネルを形成する。この場合ソー
ス領域17と17′は一体でも図の如くn型層2
2を介して接続してもよい。n型層22によつ
て、抵抗Rsを効果的に制御できる。
On the source side, a window is opened in a thin film 18 of an insulating material such as SiO 2 , Si 3 N 4 , Al 2 O 3 , etc., and the source electrode 12 is in contact with the insulating film 18 and the n-type high impurity density region 17 . The smaller the size of this window is, the larger the resistance R s becomes . growing. If necessary, the value of the resistance R s can be controlled by providing a high resistance region 19 such as a low impurity density or intrinsic region adjacent to the source side n-type high impurity density region 17 as shown by the dotted line in the figure. can do. Furthermore, the n-type region 17 may be in contact with the entire surface of the insulating film 18. FIG. 6b shows an example in which the present invention is applied to a vertical field effect transistor provided with a step structure, and is based on the same idea as in a. In the figure, the source high impurity density region 17 has a convex portion because
This is based on the "Field Effect Transistor" proposed by the present inventor in Japanese Patent Publication No. 56-26148, which does not increase the capacitance between the gate region 13 and reduces the channel resistance r s .
The value of the resistance R s can be maximized if the window 8 is placed directly under the gate 3 as shown in the figure, but the position is arbitrary and is determined by the design. 6c and d show an example in which a similar idea of the invention is applied to a lateral field effect transistor. It consists of parts that touch each other. Although the n-type region 17' is not necessarily required, the n-type regions 17 and 17' may be integrated, but by providing the P-type region 21 between them as shown in Figure c, the resistance R s can be reduced. Can be made larger. Furthermore, the P type region 21 is the n region 1
7 and 17', and may be provided here and there in the n-type low impurity density region 15 between 17 and 17', depending on the size, depth, spacing, etc., and the size of the window. The resistance R s can be controlled by d is
It is an insulated gate type field effect transistor, and the gate 13 is connected to the source region 17 and the source region 17 through the insulating film 18.
17' and the drain region 14 is a P-type substrate 20.
Forms a channel near the surface. In this case, even if the source regions 17 and 17' are integrated, as shown in the figure, the n-type layer 2
It may also be connected via 2. With the n-type layer 22, the resistance R s can be effectively controlled.

以上は、ソース電極金属が半導体と直接接する
部分と絶縁膜を介して接する部分とから成る場合
であるが、半導体との接触抵抗が大きい金属を用
いることも効果的である。
The above is a case in which the source electrode metal consists of a portion that is in direct contact with the semiconductor and a portion that is in contact with the semiconductor through an insulating film, but it is also effective to use a metal that has a high contact resistance with the semiconductor.

また、ソース半導体領域とソース電極金属の
間、または、ソース電極金属間にTiO2等の半絶
縁物質層を設けることによつても本発明を実現で
きる。埋め込みゲートを有する場合には、全表面
にわたつて、または一部に半絶縁物質層を設ける
ことができるが、その他の例を第7図に示す。a
は、凹部側壁にゲート13を有する切り込み構造
の縦型電界効果トランジスタに本発明を適用した
例であり、ソース側は、電極12、半絶縁物質層
23、高不純物密度層17から成る。半導体領域
17は、必ずしも必要ない。b,cは、表面配線
型縦型電界効果トランジスタに本発明を適用した
例であり、特にcはソース電極金属間に半絶縁物
質層が入つている。
The present invention can also be realized by providing a semi-insulating material layer such as TiO 2 between the source semiconductor region and the source electrode metal or between the source electrode metal. In the case of a buried gate, a layer of semi-insulating material can be provided over the entire surface or in part; another example is shown in FIG. a
1 is an example in which the present invention is applied to a vertical field effect transistor having a notch structure having a gate 13 on the side wall of a recess, and the source side is composed of an electrode 12, a semi-insulating material layer 23, and a high impurity density layer 17. Semiconductor region 17 is not necessarily required. Figures b and c are examples in which the present invention is applied to surface-wiring type vertical field effect transistors, and in particular, figure c has a semi-insulating material layer between the source electrode metals.

第2図b,c,d中のインダクタンスLは周知
のリアクタンスダイオード、リアクタンストラン
ジスタを用いて同一Si基板上に集積化できる。
The inductance L in FIGS. 2b, c, and d can be integrated on the same Si substrate using well-known reactance diodes and reactance transistors.

次に混成集積回路を用いた具体例を第8図に示
す。
Next, a specific example using a hybrid integrated circuit is shown in FIG.

インダクタンスLは、蒸着などによりつくり、
モノリシツクIC部と結合する。30はソース電
極、31は蒸着等によつてパターン化されたイン
ダクタンス、32は結合電極、33は半絶縁性
膜、34はソース拡散領域、35はSiO2であり、
A,Bは横断面個所を示す。このようにソース電
極30とソース拡散領域34との間に半絶縁性膜
の抵抗Rと静電容量Cに並列にインダクタンスL
を付加することができ、第2図cの回路を実現で
きる。
The inductance L is made by vapor deposition etc.
Combines with monolithic IC part. 30 is a source electrode, 31 is an inductance patterned by vapor deposition or the like, 32 is a coupling electrode, 33 is a semi-insulating film, 34 is a source diffusion region, 35 is SiO 2 ,
A and B indicate cross-sectional locations. In this way, an inductance L is connected between the source electrode 30 and the source diffusion region 34 in parallel to the resistance R and capacitance C of the semi-insulating film.
can be added, and the circuit shown in FIG. 2c can be realized.

以上詳述したように、本発明は内部負帰還抵抗
の時に小さい静電誘導電界効果トランジスタのソ
ースに直列に周波数特性を有する外部付加回路を
接続して周波数の関数として負帰還量をコントロ
ールするものであり、該回路を適当に選択するこ
とにより、種々の動作特性を有する回路が個別部
品を用いても、また混成及びモノリシツク集積回
路を用いても容易に実現できる特徴を有してい
る。
As detailed above, the present invention controls the amount of negative feedback as a function of frequency by connecting an external additional circuit having frequency characteristics in series to the source of a small electrostatic induction field effect transistor when the internal negative feedback resistor is small. By appropriately selecting the circuit, circuits with various operating characteristics can be easily realized using individual components as well as hybrid and monolithic integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を説明するための回路
図、第2図は第1図のZsに相当する回路の回路
例、第3図、第4図は夫々第2図a乃至dに対応
する特性を示す特性例、第5図乃至第7図は本発
明の一実施例であり、固体上に集積化した場合の
横断面図であり、第8図は本発明の他の実施例
で、混成集積回路とした例である。
Fig. 1 is a circuit diagram for explaining the principle of the present invention, Fig. 2 is a circuit example of a circuit corresponding to Z s in Fig. 1, and Figs. 3 and 4 are respectively shown in Fig. 2 a to d. Characteristic examples showing the corresponding characteristics, FIGS. 5 to 7 are one embodiment of the present invention, and are cross-sectional views when integrated on a solid body, and FIG. 8 is a cross-sectional view of another embodiment of the present invention. This is an example of a hybrid integrated circuit.

Claims (1)

【特許請求の範囲】 1 半導体基板の一方の主表面に接して形成され
る一導電型のソース高不純物濃度領域及びその電
極、他方の主表面に接して形成される一導電型の
ドレイン高不純物濃度領域及びその電極、該半導
体基板中に埋込まれ複数個のチヤンネルを定義す
る一導電型と逆導電型の高不純物濃度のゲート領
域及びその電極より成る静電誘導トランジスタに
おいて、前記ソース領域が、一方の主表面に接し
て設けられ、主に静電容量を形成する逆導電型半
導体領域の開口部を通して該ソース領域よりも不
純物濃度の低い主に抵抗を形成する同一導電型の
半導体領域に接続する構造を有する静電誘導トラ
ンジスタを少なくとも1個含むことを特徴とする
半導体集積回路装置。 2 前記特許請求の範囲第1項において、前記逆
導電型半導体領域の開口部の中心とチヤンネルの
中心が一致していない静電誘導トランジスタを少
なくとも1個含むことを特徴とする半導体集積回
路装置。 3 半導体基板の一方の主表面に接して形成され
る一導電型のソース高不純物濃度領域及びその電
極、他方の主表面の一部分に接して形成される一
導電型ドレイン高不純物濃度領域及びその電極、
他方の主表面の一部分に接して形成され、チヤン
ネル領域を定義する一導電型と逆導電型の高不純
物濃度のゲート領域及びその電極よりなる静電誘
導トランジスタにおいて、前記ソース領域に接し
て形成された一導電型と逆導電型の主に静電容量
を形成する半導体領域の開口部を通してチヤンネ
ル領域と接続する構造を有する静電誘導トランジ
スタを少なくとも1個含むことを特徴とする半導
体集積回路装置。 4 前記特許請求の範囲第3項において、前記逆
導電型領域の開口部の中心とチヤンネルの中心と
が一致していない静電誘導トランジスタを少なく
とも1個含むことを特徴とする半導体集積回路装
置。
[Claims] 1. A source high impurity concentration region of one conductivity type and its electrode formed in contact with one main surface of a semiconductor substrate, and a high impurity concentration region of one conductivity type drain formed in contact with the other main surface. In a static induction transistor comprising a doped region and its electrode, and a highly doped gate region of one conductivity type and an opposite conductivity type that is embedded in the semiconductor substrate and defines a plurality of channels and its electrode, the source region is , through an opening in a semiconductor region of the opposite conductivity type that is provided in contact with one main surface and mainly forms a capacitance, to a semiconductor region of the same conductivity type that mainly forms a resistance and has a lower impurity concentration than the source region. A semiconductor integrated circuit device comprising at least one static induction transistor having a connecting structure. 2. The semiconductor integrated circuit device according to claim 1, comprising at least one static induction transistor in which the center of the opening of the opposite conductivity type semiconductor region and the center of the channel do not coincide with each other. 3. A source high impurity concentration region of one conductivity type and its electrode formed in contact with one main surface of the semiconductor substrate, and a drain high impurity concentration region of one conductivity type formed in contact with a part of the other main surface and its electrode. ,
In a static induction transistor formed in contact with a part of the other main surface and comprising a gate region of high impurity concentration of one conductivity type and an opposite conductivity type defining a channel region and its electrode, the transistor is formed in contact with the source region. 1. A semiconductor integrated circuit device comprising at least one static induction transistor of one conductivity type and the opposite conductivity type, which has a structure connected to a channel region through an opening in a semiconductor region mainly forming capacitance. 4. The semiconductor integrated circuit device according to claim 3, comprising at least one static induction transistor in which the center of the opening of the opposite conductivity type region and the center of the channel do not coincide with each other.
JP4300281A 1981-03-23 1981-03-23 Semiconductor integrated circuit device Granted JPS56153773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4300281A JPS56153773A (en) 1981-03-23 1981-03-23 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4300281A JPS56153773A (en) 1981-03-23 1981-03-23 Semiconductor integrated circuit device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16037476A Division JPS5382182A (en) 1976-12-27 1976-12-27 Fet transistor circuit and semiconductor ic

Publications (2)

Publication Number Publication Date
JPS56153773A JPS56153773A (en) 1981-11-27
JPS6310908B2 true JPS6310908B2 (en) 1988-03-10

Family

ID=12651789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4300281A Granted JPS56153773A (en) 1981-03-23 1981-03-23 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS56153773A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078284A (en) * 1973-11-09 1975-06-26
JPS50120780A (en) * 1974-03-08 1975-09-22

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078284A (en) * 1973-11-09 1975-06-26
JPS50120780A (en) * 1974-03-08 1975-09-22

Also Published As

Publication number Publication date
JPS56153773A (en) 1981-11-27

Similar Documents

Publication Publication Date Title
CA1128670A (en) Semiconductor device having a mos-capacitor
US4814839A (en) Insulated gate static induction transistor and integrated circuit including same
US4095252A (en) Composite jfet-bipolar transistor structure
EP0036887A4 (en) Semiconductor devices controlled by depletion regions.
JPS6153861B2 (en)
US7342453B2 (en) Cascode circuit
US4921814A (en) Method of producing an MMIC
US3289093A (en) A. c. amplifier using enhancement-mode field effect devices
US3222610A (en) Low frequency amplifier employing field effect device
US4745274A (en) Semiconductor light detecting integrated circuit
US3257631A (en) Solid-state semiconductor network
JPS59108461A (en) Solid-state image pickup device
JPH06334445A (en) Semiconductor integrated circuit
US4159430A (en) Charge transfer device for processing video-frequency signals
US4205334A (en) Integrated semiconductor device
US5464997A (en) Charge detection device, a method for producing the same, and a charge transfer and detection apparatus including such a charge detection device
CA1154544A (en) Semiconductor integrated circuit devices
US6720621B1 (en) SOI semiconductor device with resistor body
JPH07147420A (en) Variable capacity device and semiconductor integrated circuit device provided with it
US3978431A (en) Temperature compensated oscillator
US4107725A (en) Compound field effect transistor
JPS6310908B2 (en)
US4314152A (en) Monolithically integrable semiconductor circuit with an amplifier controlled by a photo diode
US4931850A (en) Semiconductor device including a channel stop region
US5416346A (en) Charge transferring device having an FDA type charge detecting section and a method for producing the same