JPS63108951A - Production of cast slab having high cleanness - Google Patents

Production of cast slab having high cleanness

Info

Publication number
JPS63108951A
JPS63108951A JP25416586A JP25416586A JPS63108951A JP S63108951 A JPS63108951 A JP S63108951A JP 25416586 A JP25416586 A JP 25416586A JP 25416586 A JP25416586 A JP 25416586A JP S63108951 A JPS63108951 A JP S63108951A
Authority
JP
Japan
Prior art keywords
slab
rolls
cast slab
inclusions
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25416586A
Other languages
Japanese (ja)
Inventor
Koji Ueyama
植山 高次
Yuichiro Kaieda
海江田 雄一郎
Yoichiro Tanaka
陽一郎 田中
Kazuhito Nomoto
一仁 野元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25416586A priority Critical patent/JPS63108951A/en
Publication of JPS63108951A publication Critical patent/JPS63108951A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/122Accessories for subsequent treating or working cast stock in situ using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To effectively execute the floating up and the separation of non-metallic inclusion by arranging linear motor type shifting magnetic field between rolls having the prescribed distance from meniscus part in a bending type continuous casting machine and giving the thrust vertically upward to non-solidified part of a cast slab. CONSTITUTION:In the continuous casting machine, molten steel 2 in a mold 1 becomes to the cast slab 3 and sends out by drawing or through the bending passage of rolls 4 for guiding. Then, three low frequency AC shifting the cycles by one-third is conducted to plural conducting bars 5 respectively arranged in parallel with roll 4 axes between the rolls 4 in the range of 0.5-8.0m from the meniscus part. Thus, the electromagnetic force is generated to vertical upward direction in the non-solidified part in the inner part of cast slab 3, to execute the electromagnetic stirring. In this way, at the narrow position of top zone, the floating up and separation of non-metallic inclusion is effectively executed.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、連続!h造機の鋳型から送り出された鋳片の
内部にある未凝固部分を電磁力で攪拌することによって
、非金属介在物の浮上分離を促進させ、清浄度の高い鋳
片を製造する方法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is based on continuous! The present invention relates to a method of manufacturing a highly clean slab by stirring the unsolidified portion inside the slab sent out from a mold of a molding machine using electromagnetic force to promote floating separation of non-metallic inclusions.

〔従来の技術〕[Conventional technology]

連続鋳造機の鋳型から送り出された鋳片にはアルミナ、
スラグ、パウダー等が巻き込まれ、これらが鋳片内部に
残留するとき、製品の性状を低下させる原因となる。ま
た、炭素、燐、硫黄等の非金属元素は、鋳片の中心部に
ある未凝固部分に偏析し易く、製品の機械的性質、化学
的性質等を劣化させる。
The slab sent out from the mold of the continuous casting machine contains alumina,
When slag, powder, etc. are entrapped and remain inside the slab, they cause deterioration in the properties of the product. In addition, nonmetallic elements such as carbon, phosphorus, and sulfur tend to segregate in the unsolidified portion at the center of the slab, deteriorating the mechanical properties, chemical properties, etc. of the product.

たとえば、設備費が安く、鋳造速度を上昇させることが
できること等から、湾曲型連続鋳造機が広く採用されて
いる。この形式の連続鋳造機においては、鋳型から送り
出された鋳片が、部分的に未凝固のままで湾曲部に沿っ
て曲げられるため、アルミナ、スラグ、パウダー等の微
小介在物が垂直上方に浮上分離することが抑制され、湾
曲部の上部凝固殻近傍に集積し易い。第3図は、この連
続鋳造機の形式の違いが介在物の分布に与える影響を示
したものである。この図から明らかなように、湾曲型連
続鋳造機による場合、特に湾曲部の上部凝固殻近傍にお
ける介在物濃度が高くなっている。
For example, curved continuous casting machines are widely used because of their low equipment cost and ability to increase casting speed. In this type of continuous casting machine, the slab sent out from the mold is bent along the curved part while remaining partially unsolidified, causing minute inclusions such as alumina, slag, and powder to float vertically upward. Separation is suppressed and it tends to accumulate near the upper solidified shell of the curved part. FIG. 3 shows the influence of different types of continuous casting machines on the distribution of inclusions. As is clear from this figure, when a curved continuous casting machine is used, the concentration of inclusions is particularly high near the upper solidified shell of the curved portion.

このような鋳片をその後冷延すると、その最小介在物集
積部が表面に現れ、得られた板材を製缶加工する際にフ
ランジクランクが発生したり、ブリキ板として使用する
際にヘゲが発生する原因となる。
When such slabs are subsequently cold-rolled, the smallest inclusion accumulation areas appear on the surface, causing flange cranks when the resulting plates are processed into cans, and bald spots when used as tin plates. This will cause this to occur.

そこで、非金属介在物を電磁攪拌により浮上分離させる
方法が、特開昭49−94522号公報、特開昭54−
14”1132号公報等で提案されている。
Therefore, methods of floating and separating nonmetallic inclusions by electromagnetic stirring have been proposed in Japanese Patent Laid-Open No. 49-94522 and Japanese Patent Laid-Open No. 54-
This method has been proposed in Japanese Patent Application No. 14''1132.

特開昭49−94522号公報の連続鋳造Vt1ffi
においては、鋳型と引抜きロールとの間に配置した第1
の電磁攪拌手段により、鋳片内部にある未凝固部分を電
磁攪拌し、混入しているスラグ、ガス等の浮上分離を促
進させ、製品に残存する非金属介在物の減少を図ってい
る。
Continuous casting Vt1ffi of JP-A No. 49-94522
In this method, the first
The electromagnetic stirring means electromagnetically stirs the unsolidified portion inside the slab, promoting floating separation of mixed slag, gas, etc., and reducing nonmetallic inclusions remaining in the product.

また、特開昭54−147132号公報の′r4磁攪拌
方法においては、鋳型と引抜きロールとの間に複数の電
磁攪拌装置を配置し、鋳片内部の未凝固部分を攪拌しな
がら凝固させている。この攪拌により、非金属介在物が
鋳片に均等に分散され、偏析に起因した欠陥の発生が防
止される。
Furthermore, in the 'r4 magnetic stirring method disclosed in JP-A-54-147132, a plurality of electromagnetic stirring devices are arranged between the mold and the drawing roll, and the unsolidified portion inside the slab is solidified while being stirred. There is. By this stirring, nonmetallic inclusions are evenly dispersed in the slab, and defects caused by segregation are prevented from occurring.

、〔発明が解決しようとする問題点〕 この非金属介在物を効果的に浮上分離し清浄な鋳片を得
ようとするには、垂直上方に向かう電磁的な推力を、鋳
型に近く溶鋼落下流の影響が小さな位置で未凝固部分に
与える必要がある。しかしながら、二次冷却帯の屈曲部
上部、いわゆるトップゾーンは狭隘な個所であるため、
空間上の制約から、通常の電磁攪拌装置を配置できない
, [Problem to be solved by the invention] In order to effectively float and separate these nonmetallic inclusions and obtain a clean slab, it is necessary to apply vertically upward electromagnetic thrust to the molten steel falling close to the mold. It is necessary to apply it to the unsolidified part at a position where the influence of the flow is small. However, the upper part of the bend in the secondary cooling zone, the so-called top zone, is a narrow place.
Due to space constraints, a regular electromagnetic stirring device cannot be installed.

また、前述の特開昭54−147132号公報に示され
ている電磁攪拌装置にあっては、電磁力の損失を低減さ
せるため、それに隣接するロールをステンレス鋼製とす
る必要があり、設備費が高騰する原因となっていた。更
に、この方式による電Na拌をミクロ的にみると、攪拌
力が分断されており、電磁力が介在物の浮上に効率良く
利用できないでいる。
In addition, in the electromagnetic stirring device shown in the above-mentioned Japanese Patent Application Laid-Open No. 54-147132, in order to reduce the loss of electromagnetic force, the roll adjacent to it needs to be made of stainless steel, which increases the equipment cost. was causing the price to soar. Furthermore, when looking at the electro-Na agitation by this method from a microscopic perspective, the agitation force is divided, and the electromagnetic force cannot be efficiently used to float inclusions.

そこで、本発明は、鋳片に対する1111′に、を非接
触で行い、且つ未凝固部分に垂直上方に向かう均一な推
力を与えることにより、非金属介在物の浮上分離を効率
良く行うことを目的とする。
Therefore, an object of the present invention is to efficiently float and separate non-metallic inclusions by performing 1111' on the slab without contact and applying a uniform vertically upward thrust to the unsolidified portion. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の高清浄度鋳片の製造方法は、その目的を達成す
るため、湾曲型連続鋳造機のメニスカス部から0.5〜
8.0mの範囲にあるロール間に、そのロールの軸と平
行に複数の導体棒を配設し、該導体棒のそれぞれに1/
3づつ周期をずらせた三相の低周波交流電流を通電する
ことにより移動磁界を発生させるリニアモータを構成し
、鋳片内部にある未凝固部に垂直上方に向かう推力を与
えて攪拌することを特徴とする。
In order to achieve the objective, the method for producing high-cleanliness slabs of the present invention has the following advantages:
A plurality of conductor rods are arranged parallel to the axis of the rolls between the rolls within a range of 8.0 m, and each of the conductor rods has a
It consists of a linear motor that generates a moving magnetic field by passing three-phase low-frequency alternating current with a three-phase alternating cycle, and stirs the unsolidified portion inside the slab by applying a vertically upward thrust to it. Features.

以下、図面を参照しながら、本発明を、その作用と共に
具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below, together with its effects, with reference to the drawings.

第1図は、本発明の要部を示す図である。FIG. 1 is a diagram showing essential parts of the present invention.

連続鋳造機に鋳型1内の溶鋼2は、鋳片3となって引抜
き又は案内用のロール4によって湾曲路を経て送り出さ
れる。このとき、本発明にあっては、複数のロール4の
間に、ロール4の軸方向に沿って導体棒5を配置してい
る。これらの導体棒5に、三相交流のU相、V相及びW
相を順次通電するとき、移動磁界が発生する。この移動
磁界によって鋳片3の内部に渦電流が生じ、この渦電流
と磁束により鋳片3に対して垂直上方に向がう電磁力が
発生し、鋳片3内部の未凝固部分が電磁攪拌される。
Molten steel 2 in a mold 1 of a continuous casting machine becomes a slab 3 and is sent out through a curved path by rolls 4 for drawing or guiding. At this time, in the present invention, the conductor rod 5 is arranged between the plurality of rolls 4 along the axial direction of the rolls 4. These conductor rods 5 are connected to three-phase alternating current U phase, V phase, and W phase.
When energizing the phases one after the other, a moving magnetic field is generated. This moving magnetic field generates an eddy current inside the slab 3, and this eddy current and magnetic flux generate an electromagnetic force directed upward perpendicularly to the slab 3, causing the unsolidified portion inside the slab 3 to undergo electromagnetic stirring. be done.

この電磁力は、導体棒5が設けられている鋳片3の長手
方向全域にわたって連続的にしかも均等に作用する。そ
のため、従来の電磁攪拌装置に比較して、攪拌範囲が広
く、且つ整流された一方向の攪拌流が形成される。その
ため、凝固しつつある溶鋼の近傍に渦流を生じることな
く、均一な一方向に沿った未凝固部分の攪拌が充分に行
われ、差し込み或いは捕捉されることなく非金属介在物
の浮上分離が確実となる。また、ロール4間に導体棒5
を配置するだけで所定の電磁力が得られ、導体棒5近傍
をロール4を小径化或いは非磁性化する必要もない。
This electromagnetic force acts continuously and uniformly over the entire length of the slab 3 on which the conductor rod 5 is provided. Therefore, compared to conventional electromagnetic stirring devices, the stirring range is wider and a rectified unidirectional stirring flow is formed. Therefore, the unsolidified portion is uniformly and sufficiently stirred in one direction without creating a vortex near the solidifying molten steel, and the floating separation of nonmetallic inclusions is ensured without being inserted or captured. becomes. Also, a conductor rod 5 is placed between the rolls 4.
A predetermined electromagnetic force can be obtained by simply arranging the conductor rod 5, and there is no need to reduce the diameter of the roll 4 or make it non-magnetic near the conductor rod 5.

このとき、導体棒5に供給する電流は、25Hz以下の
低周波交流電流とする。電磁攪拌時における電磁力は、
一般的にいって通電される電流の周波数と比例関係にあ
るが、ある程度以上の周波数領域においては電磁力は増
加せず、逆に減少する傾向を示す。このため、最大電磁
力を効率良く得るためには、25H2以下が必要である
At this time, the current supplied to the conductor bar 5 is a low frequency alternating current of 25 Hz or less. The electromagnetic force during electromagnetic stirring is
Generally speaking, it is proportional to the frequency of the current being applied, but in a frequency range above a certain level, the electromagnetic force does not increase, but on the contrary shows a tendency to decrease. Therefore, in order to efficiently obtain the maximum electromagnetic force, 25H2 or less is required.

この電磁力を作用させる位置、すなわち導体棒5の設置
個所は、次のようにして決められる。
The position where this electromagnetic force is applied, that is, the location where the conductor rod 5 is installed is determined as follows.

鋳片厚み方向の介在物の分布は、鋳造速度及び鋳片3W
!送経路の曲率に応じて定まる。この点、現状の湾曲型
連続鋳造機においては、第3図に示したように、鋳片3
の上面から20〜60mmの間に微小介在物の大部分が
集積する。すなわち、この部分の凝固殻に捕捉される。
The distribution of inclusions in the slab thickness direction depends on the casting speed and slab 3W.
! It is determined according to the curvature of the feeding path. In this regard, in the current curved continuous casting machine, as shown in Fig. 3, the slab
Most of the microscopic inclusions accumulate between 20 and 60 mm from the top surface. That is, it is trapped in the solidified shell of this part.

他方、微小介在物の最大集積確率位置は、鋳片3搬送経
路の曲率よりも鋳造速度に大きく依存する。また、鋳片
3搬送経路の曲率が同一の場合、鋳片3の上面から微小
介在物の集積位置までの距離は、鋳造速度の増加に伴っ
て減少する。
On the other hand, the position of the maximum accumulation probability of minute inclusions depends more on the casting speed than on the curvature of the conveyance path of the slab 3. Moreover, when the curvature of the slab 3 conveyance path is the same, the distance from the upper surface of the slab 3 to the accumulation position of minute inclusions decreases as the casting speed increases.

ここで、冷却条件を同一とした場合、凝固殻の厚みd(
IIm)は、次式(1)に示すように、鋳造速度t(m
/分)及びメニスカスからの距ML(m)で定まる。
Here, when the cooling conditions are the same, the thickness of the solidified shell d(
IIm) is the casting speed t(m
/min) and the distance ML (m) from the meniscus.

ただし、kは、冷却条件に応じて定まる定数であり、以
降これを凝固係数という。この凝固係数には、鋳造され
る鋳片3の材質に応じた冷却条件の如何に基づき変わる
ものであるが、通常は25〜31程度の値である。たと
えば、缶材として使用するMキルド材にあっては、kζ
28である。
However, k is a constant determined depending on the cooling conditions, and is hereinafter referred to as a solidification coefficient. This solidification coefficient varies depending on the cooling conditions depending on the material of the slab 3 to be cast, but is usually a value of about 25 to 31. For example, for M-killed material used as can stock, kζ
It is 28.

そこで、鋳造速度tを1〜1.7m/分とし、凝固係数
に−28の缶材についてみると、前述したように鋳片3
の上面から20〜60m1mの位置にある凝固殻に微小
介在物の大部分が捕捉されるので、式(1)から得たし
=(a/)c)”−taにこれらの値を代入すると、次
のようになる。
Therefore, when we set the casting speed t to 1 to 1.7 m/min and consider a can stock with a solidification coefficient of -28, as mentioned above, the slab 3
Since most of the microscopic inclusions are captured in the solidified shell located 20 to 60 m from the top surface of the , becomes as follows.

これを計算すると、L =0.51〜7.8となる。そ
こで、この距離りの範囲に導体棒5を配置し、リニアモ
ータの原理を利用して未凝固部分を攪拌するとき、計算
上からは微小介在物が凝固殻に捕捉されることが少なく
なる。
When this is calculated, L = 0.51 to 7.8. Therefore, when the conductor rod 5 is arranged within this distance range and the unsolidified portion is stirred using the principle of a linear motor, it is calculated that minute inclusions are less likely to be captured in the solidified shell.

しかし、このL−0,51〜7.8は、鋳造速度昧=1
〜1.7m/分及び凝固係数に=28としたときの値で
あるから、これに若干の含みをもたせて距離りを0.5
〜8.0mの範囲にとる。また、この距離りが0.5m
より小さいときには、注入下降流の影響が大きい介在物
の押込み領域であるため、電■i攪拌によって介在物の
浮上を促進させる効果は小さなものである。他方、8.
0m以上の個所にある鋳片3に電NU拌を付与しても、
内在介在物の浮上域外となるので、介在物を浮上分離す
る効果が小さくなる。
However, this L-0,51~7.8 is the casting speed difference=1
This is the value when ~1.7 m/min and the coagulation coefficient = 28, so we added some inclusion to this and set the distance to 0.5.
~8.0m. Also, this distance is 0.5m
When it is smaller, the influence of the downward injection flow is large in the region where the inclusions are pushed, so the effect of promoting the floating of the inclusions by electric stirring is small. On the other hand, 8.
Even if electric NU stirring is applied to the slab 3 located at a distance of 0 m or more,
Since it is outside the flotation area of the inherent inclusions, the effect of flotation and separation of the inclusions is reduced.

〔実施例〕〔Example〕

以下、実施例により本発明の効果を具体的に説明する。 EXAMPLES Hereinafter, the effects of the present invention will be specifically explained with reference to Examples.

第2図は、本発明に従って導体棒を組み込んだロールセ
グメントを示す。
FIG. 2 shows a roll segment incorporating conductor rods according to the invention.

鋳型1から下降してきた鋳片3を引き抜き、或いは案内
する複数のロール4間に導体棒5を配置し、全体をセグ
メントフレーム6に取り付けている。そして、セグメン
トフレーム6の外周部に、導体棒5に通電する給電部7
を設けている。このロールセグメントは、鋳片3の両側
に設けることもできるが、非金属介在物が凝固殻に捕捉
されやすい上側のみに配置しても良い、このように、導
体棒5をロール4と一体的にすることにより、保守・点
検のための組込み、抜出し作業が容易となる。
A conductor rod 5 is disposed between a plurality of rolls 4 that pull out or guide the slab 3 that has descended from the mold 1, and the entire body is attached to a segment frame 6. A power supply section 7 that supplies electricity to the conductor rod 5 is provided on the outer periphery of the segment frame 6.
has been established. These roll segments can be provided on both sides of the slab 3, but they may also be placed only on the upper side where nonmetallic inclusions are likely to be captured by the solidified shell. By doing so, assembly and removal work for maintenance and inspection becomes easier.

また、従来のものと比較するとき、本例におけるロール
セグメントは、ロール4間に導体棒5が介在されている
点が相違するだけである。このように、極めて小さな設
計上の変更により、電ait Pil拌に必要とする力
が得られることも、本発明の特徴である。なお、第2図
では、導体棒5を3本配置した状態を示しているが、こ
れは図面を簡単にするためだけであって、実際には連続
鋳造機のサイズに応じて配置されるロール4に対応して
適宜数の導体棒5が設けられることは勿論である。
Further, when compared with the conventional roll segment, the only difference in the roll segment in this example is that a conductor bar 5 is interposed between the rolls 4. In this way, it is also a feature of the present invention that the force required for electrolyte pil agitation can be obtained with extremely small design changes. In addition, although FIG. 2 shows a state in which three conductor rods 5 are arranged, this is only to simplify the drawing, and in reality, the rolls are arranged according to the size of the continuous casting machine. Of course, an appropriate number of conductor rods 5 are provided corresponding to the number of conductor rods 4.

そして、三相交流を、これら導体棒5にそれぞれU相、
■相、W相のj頃に通電する。たとえば、仮yJ、25
0m−の鋳片3に対して、約4000 Aの電流を距&
IL=0.5〜8.0mの範囲に配置した6本の導体棒
5に通電した。これによって、導体棒5が設けられた全
域にわたり、鋳片3内部にある未凝固部が充分に攪拌さ
れ、微小介在物の浮上分離が効果的に行われた0次表は
、このように電磁攪拌しながら板厚25fbmの鋳片を
製造した際、その鋳片の幅方向に沿った介在物の分布状
態を、多数個所の測定点における平均値として示したも
のである。
Then, three-phase alternating current is applied to these conductor rods 5, U-phase,
Activate around J of phase ■ and W phase. For example, temporary yJ, 25
A current of approximately 4000 A is applied to the slab 3 at a distance of 0 m.
Electricity was applied to six conductor rods 5 arranged in a range of IL=0.5 to 8.0 m. As a result, the unsolidified portion inside the slab 3 is sufficiently stirred over the entire area where the conductor rod 5 is provided, and the floating and separation of minute inclusions is effectively achieved. When a slab with a plate thickness of 25 fbm was produced while stirring, the distribution of inclusions along the width direction of the slab is shown as an average value at multiple measurement points.

なお、同表には、電磁攪拌を付与せずに得られた鋳片に
おける介在物の分布状態を、比較のために掲げている。
The table also lists the distribution of inclusions in slabs obtained without electromagnetic stirring for comparison.

(以下、このページ余白) この表から明らかなように、本実施例の1iN’lB拌
を施した鋳片にあっては、介在物の絶対量が少なく、ま
たその分布も鋳片の幅方向に沿って一様となっている。
(Hereinafter, the margin of this page) As is clear from this table, the absolute amount of inclusions is small in the slab subjected to 1iN'lB stirring in this example, and the distribution thereof is also in the width direction of the slab. It is uniform along the

このため、鋳片を熱延、冷延して得られた板材又は帯材
において、介在物が表面に露出することによる欠陥の発
生を抑制することができた。
For this reason, it was possible to suppress the occurrence of defects due to inclusions being exposed on the surface in the plate material or strip material obtained by hot rolling or cold rolling the slab.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明の高?f?浄度鋳片の製
造方法においては、非金属介在物が凝固殻に捕捉され易
い個所に電磁力が連続して作用するように、ロールの間
に複数の導体棒を設けている。
As explained above, the high efficiency of the present invention? f? In the method for manufacturing clean slabs, a plurality of conductor rods are provided between the rolls so that electromagnetic force continuously acts on locations where nonmetallic inclusions are likely to be captured by the solidified shell.

そのため、垂直上方に向かう推力が鋳片内部にある未凝
固部分に均等に働き、非金属介在物の浮上分離が促進さ
れ、偏析が少なく清浄度の高い鋳片が得られる。また、
その電磁力はりニアモータ方式で鋳片に与えられ、従来
の電磁攪拌装置のように場所をとることがないため、鋳
型直下の狭隘な個所であっても充分な設置空間をとるこ
とができる。このようにして本発明によって得られた鋳
片は、その高い?NN変度ために、これを熱延、冷延し
て機械的性質、化学的性質及び加工性に優れ表面欠陥の
ない板材を製造することができる。
Therefore, the vertically upward thrust acts evenly on the unsolidified portion inside the slab, promoting floating separation of non-metallic inclusions, resulting in a slab with less segregation and high cleanliness. Also,
The electromagnetic force is applied to the slab using a linear motor system, and because it does not take up space unlike conventional electromagnetic stirring devices, it can take up ample installation space even in a narrow space directly under the mold. The slab thus obtained according to the present invention has a high price. Because of the NN variation, it can be hot-rolled or cold-rolled to produce a plate material with excellent mechanical properties, chemical properties, and workability, and without surface defects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で使用する装置の概要を示し、第2図は
ロールセグメントの一例を示す。また、第3図は、連続
鋳造機の機種の違いが介在物の分布に与える影響を示す
FIG. 1 shows an overview of the apparatus used in the present invention, and FIG. 2 shows an example of a roll segment. Moreover, FIG. 3 shows the influence that different types of continuous casting machines have on the distribution of inclusions.

Claims (1)

【特許請求の範囲】[Claims] 1、湾曲型連続鋳造機のメニスカス部から0.5〜8.
0mの範囲にあるロール間に、そのロールの軸と平行に
複数の導体棒を配設し、該導体棒のそれぞれに1/3づ
つ周期をずらせた三相の低周波交流電流を通電すること
により移動磁界を発生させるリニアモータを構成し、鋳
片内部にある未凝固部に垂直上方に向かう推力を与えて
攪拌することを特徴とする高清浄度鋳片の製造方法。
1. 0.5 to 8.
A plurality of conductor rods are arranged parallel to the axis of the rolls between the rolls within a range of 0 m, and a three-phase low-frequency alternating current with a period shifted by 1/3 is applied to each of the conductor rods. 1. A method for producing a high-cleanness slab, characterized in that a linear motor is configured to generate a moving magnetic field, and the unsolidified portion inside the slab is stirred by applying a vertically upward thrust to the unsolidified portion.
JP25416586A 1986-10-25 1986-10-25 Production of cast slab having high cleanness Pending JPS63108951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25416586A JPS63108951A (en) 1986-10-25 1986-10-25 Production of cast slab having high cleanness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25416586A JPS63108951A (en) 1986-10-25 1986-10-25 Production of cast slab having high cleanness

Publications (1)

Publication Number Publication Date
JPS63108951A true JPS63108951A (en) 1988-05-13

Family

ID=17261134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25416586A Pending JPS63108951A (en) 1986-10-25 1986-10-25 Production of cast slab having high cleanness

Country Status (1)

Country Link
JP (1) JPS63108951A (en)

Similar Documents

Publication Publication Date Title
EP0114988B1 (en) Continuous metal casting method
JPS6188950A (en) Molten-metal electromagnetic agitator
AU655403B2 (en) Sidewall containment of liquid metal with horizontal alternating magnetic fields
Kunstreich et al. Effect of liquid steel flow pattern on slab quality and the need for dynamic electromagnetic control in the mould
WO1995024285A1 (en) Continuous casting method and apparatus
US4523628A (en) Process for casting metals in which magnetic fields are employed
JPS6192758A (en) Long-sized metallic product
KR20020063897A (en) Method for the vertical continuous casting of metals using electromagnetic fields and casting installation therefor
JP5245800B2 (en) Continuous casting mold and steel continuous casting method
JPS6355391B2 (en)
US4982796A (en) Electromagnetic confinement for vertical casting or containing molten metal
JPS63108951A (en) Production of cast slab having high cleanness
JP2007185675A (en) Method for predicting dangerous portion causing surface defect in continuously cast slab, and method for manufacturing continuously cast slab
US4562879A (en) Electromagnetically stirring the melt in a continuous-casting mold
JP3533042B2 (en) Flow controller for molten metal
CA1155630A (en) Apparatus and method for electromagnetic stirring in a continuous casting installation
US4770724A (en) Continuous metal casting method and apparatus and products
EP0531851A1 (en) Method and apparatus for the magnetic stirring of molten metals in a twin roll caster
EP3760337A1 (en) Molding facility
JP2005238276A (en) Electromagnetic-stirring casting apparatus
JPS60137558A (en) Electromagnetic stirrer for continuous casting machine
JPS63119962A (en) Rolling device for electromagnetic agitation
JP7218259B2 (en) Slab continuous casting method
JP4807115B2 (en) Steel continuous casting method
Trippelsdorf et al. Advances in strip surface quality from thin slab casters