JPS63108762A - Manufacture of heat-insulating structure of sensor element - Google Patents

Manufacture of heat-insulating structure of sensor element

Info

Publication number
JPS63108762A
JPS63108762A JP25544386A JP25544386A JPS63108762A JP S63108762 A JPS63108762 A JP S63108762A JP 25544386 A JP25544386 A JP 25544386A JP 25544386 A JP25544386 A JP 25544386A JP S63108762 A JPS63108762 A JP S63108762A
Authority
JP
Japan
Prior art keywords
film
sio2
substrate
indentation
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25544386A
Other languages
Japanese (ja)
Inventor
Shigeyuki Tsurumi
重行 鶴見
Kazuo Mogi
一男 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP25544386A priority Critical patent/JPS63108762A/en
Publication of JPS63108762A publication Critical patent/JPS63108762A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of disconnections at stepped sections in a wiring by forming a diaphragm, an upper surface of which is shaped by SiO2, and forming a sensor element onto the SiO2 surface in the diaphragm. CONSTITUTION:When nitrogen is boiled frothed with an etchant, using silicon nitride or thermal oxide as a mask material onto an Si substrate 4 and the substrate 4 is etched, an indentation in depth of 5-100mum and width of approximately 45mum can be formed. The particulates of SiO2 are deposited onto the surface to which the indentation is shaped, and an SiO2 film in approximately 50mum thicker than the depth of the indentation is formed through heating. The shaped SiO2 film is polished to expose the surface of the Si substrate except the indentation. An silicon section being positioned at the position of the indentation and having an area smaller than the indentation is etched in an anisotropic manner from another surface of the surface of the Si substrate, and removed until etching reaches the surface of SiO2, thus forming a diaphragm, an upper section of which is shaped by the SiO2 film. An element requiring heat insulation is formed onto the diaphragm, a peripheral circuit controlling the element is shaped by the Si surface, and both the element and the circuit are connected by a metallic thin-film wiring. Accordingly, heat insulating structure having high mechanical reliability and the metallic thin-film wiring forming no stepped section between the surface of the Si substrate 4 and the SiO2 film 5 for heat insulation are acquired.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はシリコン基板上でセンサ素子を熱的に絶縁する
構造の作製方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for manufacturing a structure for thermally insulating a sensor element on a silicon substrate.

「従来の技術・発明が解決しようとする問題点」赤外光
センサとして用いるサーミスタ、ゴーレイセル、サーモ
パイルなどに用いられている熱絶縁構造を第1図に示す
(1)。この第5図において符号101はセンサ素子、
102は5isN4層、103はSin、層、104は
Si、N、層、105はSi括板、106はSi3N4
層、107は孔である。
``Prior art/problems to be solved by the invention'' Figure 1 shows a thermal insulation structure used in thermistors, Golay cells, thermopiles, etc. used as infrared light sensors (1). In FIG. 5, reference numeral 101 denotes a sensor element;
102 is a 5isN4 layer, 103 is a Sin layer, 104 is a Si, N layer, 105 is a Si plate, 106 is a Si3N4 layer
The layer 107 is a hole.

素子の基板は結晶方位(100)のn形のンリ 。The substrate of the device is an n-type substrate with a (100) crystal orientation.

コンを用いており、薄膜はS 13N 4s S 10
 t、Si3N4の三層構造となっている。これら薄膜
はCVD法により、全体で2〜4μmの膜厚である。基
板105は異方性エツチングにより、孔109が設けて
あり、ダイヤフラム構造となっている。この構造では膜
部分の強度が小さく、製造時の信頼性、使用時の信頼性
ともに問題があり、さらにSi面をすべて膜が被覆して
おり、膜を除去してSi表面上で周辺回路を形成した場
合に配線を数μmの段差を通して行う必要があるため配
線が段切れを起こすという欠点があった。
The thin film is S 13N 4s S 10
It has a three-layer structure of t and Si3N4. These thin films are made by CVD and have a total thickness of 2 to 4 μm. A hole 109 is formed in the substrate 105 by anisotropic etching to form a diaphragm structure. In this structure, the strength of the membrane part is low, causing problems in both reliability during manufacture and during use.Furthermore, the entire Si surface is covered with the membrane, so the peripheral circuitry can be built on the Si surface by removing the membrane. When formed, it is necessary to route the wiring through a level difference of several μm, which has the disadvantage of causing disconnection of the wiring.

Si基板上に作製されたガスセンサの熱絶縁構造として
Siを熱酸化して得られるSiO2膜あるいはCVD法
によって得られるSio!膜による橋構造がある(2)
。橋構造は、結晶方位(100)のSi基板に橋形の5
iOzを作り、その下を異方性エツチングを利用してア
ンダー、カットするものである。この構造の欠点は、熱
酸化あるいはCVD法による5idt膜が2μm程度の
厚さでSin、膜による橋はきわめて機械的に弱いこと
、Si部分で周辺回路を形成した場合に2μm程度の段
差を通して行う必要があり配線が段切れを起こすという
欠点があった。
As a thermal insulation structure for a gas sensor fabricated on a Si substrate, an SiO2 film obtained by thermally oxidizing Si or a SiO2 film obtained by CVD method! There is a bridge structure made of membrane (2)
. The bridge structure consists of a bridge-shaped 5-layer structure on a Si substrate with crystal orientation (100).
This method creates an iOz and undercuts it using anisotropic etching. The disadvantage of this structure is that the 5idt film produced by thermal oxidation or CVD is about 2 μm thick, and the bridge made of the Si film is extremely mechanically weak, and when a peripheral circuit is formed in the Si part, it is necessary to pass through a step of about 2 μm. This has the disadvantage that the wiring may break.

本発明の目的は、Si基板上においてSiO2膜、Si
3N4膜などで作製された熱絶縁構造の機械的強度が弱
い点と熱絶縁構造上で作製されるセンサ素子とSi基板
上で作製される周辺回路を結ぶ配線に段切れを生じる点
を解決したセンサ素子の熱絶縁構造の作製方法を提供す
ることにある。
The purpose of the present invention is to form a SiO2 film on a Si substrate.
Solved the problem of weak mechanical strength of the thermal insulation structure made with 3N4 film etc. and the problem of disconnection in the wiring connecting the sensor element made on the thermal insulation structure and the peripheral circuit made on the Si substrate. An object of the present invention is to provide a method for manufacturing a thermal insulation structure of a sensor element.

参考文献(1)三重、柴1)「Siレンズ付遠赤外セン
サ」儒学技報 ED83 −134  p27 (2)間中、水1)「低電力 高速応 答マイクロガスセンサ」第32回 応用物理学会講演予稿集 31p A−3 「問題点を解決するための手段」 この発明のうち第1の発明は、シリコン基板にエツチン
グにより深さ5〜100μmの正方形または長方形の窪
みを形成したあと、該シリコン基板上に5iOyの微粒
子を堆積し、加熱して前記の窪みの深さより厚いSiO
x膜を形成し、その後Sio、iを窪み以外のシリコン
面が露出するまで研磨し、さらに、該シリコン基板のも
う一方の面から窪みの位置で窪みより小さい面積のシリ
コン部分を異方性エツチングにより、5hot面に達す
るまで除去し、上部が5iOzで形成されたダイヤフラ
ムを形成し、前記ダイヤフラムのSiO2面上にセンサ
素子を形成することを特徴とする。
References (1) Mie, Shiba 1) "Far-infrared sensor with Si lens" Confucian Technical Report ED83-134 p27 (2) Manchu, Mizu 1) "Low power high-speed response micro gas sensor" 32nd Japan Society of Applied Physics lecture Proceedings 31p A-3 "Means for solving the problems" The first invention of the present invention is to form a square or rectangular depression with a depth of 5 to 100 μm on a silicon substrate by etching, and then remove the silicon substrate. Fine particles of 5 iOy are deposited on top and heated to form a SiO layer thicker than the depth of the recess.
x film is formed, and then Sio,i is polished until the silicon surface other than the depression is exposed, and further, a silicon portion having an area smaller than the depression is anisotropically etched from the other side of the silicon substrate at the location of the depression. The diaphragm is removed until the 5-hot surface is reached, a diaphragm whose upper part is made of 5 iOz is formed, and a sensor element is formed on the SiO2 surface of the diaphragm.

また、第2の発明は、上記第1の発明と同一の工程を経
てSiO2膜を形成し、研磨した後、窪み部分のSiO
2膜にエツチングにより橋を作り、橋の下部のSiを異
方性エツチングにより除去して空間を形成し、前記Si
O2膜の橋の上にセンサ素子を形成することを特徴とす
る。
In addition, the second invention is to form an SiO2 film through the same process as the first invention, and after polishing, remove the SiO2 film in the recessed portion.
A bridge is created between the two films by etching, and the Si below the bridge is removed by anisotropic etching to form a space.
A feature of this method is that the sensor element is formed on the bridge of the O2 film.

「実施例」 実施例1 第1図は本発明の一実施例を示す工程図であり、第2図
は第1図の方法で作製したセンナ素子の熱絶縁構造の断
面図である。
"Example" Example 1 FIG. 1 is a process diagram showing an example of the present invention, and FIG. 2 is a sectional view of a thermal insulation structure of a Senna element manufactured by the method shown in FIG. 1.

第2図において、lはセンサ素子(ガスセンサの場合;
5hot薄膜、ZnO薄膜あるいは、Pd/ZnOショ
ットキーダイオード、PdゲートFET素子など、赤外
光センサ場合;サーミスタ、ゴーレイセル、サーモパイ
ルなど)、2はセンサ素子を加熱するヒータ (ガスセ
ンサの場合のみ)、3はセンサを制御する集積回路、4
はSi基板、5はSin!の微粒子を堆積させた後加熱
して作製した厚さ約40μmのSiO2膜でSi面とS
iO2膜の面とは同一平面上にあり段差がない。6はセ
ンサと集積回路を結ぶ金属薄膜配線、7はポンディング
パッド、8はダイヤフラム空間、9はヒートシンク用金
属、lOはSiとヒートシンク用金属を接着する熱伝導
性の良い接着剤である。
In Fig. 2, l is the sensor element (in the case of a gas sensor;
5hot thin film, ZnO thin film, Pd/ZnO Schottky diode, Pd gate FET element, etc., for infrared light sensors; thermistor, Golay cell, thermopile, etc.), 2 is a heater that heats the sensor element (only for gas sensors), 3 is an integrated circuit that controls the sensor, 4
is Si substrate, 5 is Sin! A SiO2 film with a thickness of approximately 40 μm was prepared by depositing and heating fine particles of
It is on the same plane as the surface of the iO2 film and there is no difference in level. 6 is a metal thin film wiring connecting the sensor and the integrated circuit, 7 is a bonding pad, 8 is a diaphragm space, 9 is a metal for a heat sink, and IO is an adhesive with good thermal conductivity for bonding Si and the metal for a heat sink.

センサ素子!としてSnO薄膜ガスセンサとした場合の
動作について説明する。ヒータ2に通電しセンサ素子l
を400℃に加熱する。可燃性ガスがセンサ素子lに触
れるとセンサ素子1の抵抗が減少し、配線6を通して集
積回路3で情報処理されて警報信号を出す。このような
構造になっているため、センサ素子lが400℃に加熱
されても約40μmのSiO2膜のダイヤフラムで熱的
に絶縁されることにより、Si基板4の上に形成された
集積回路3に悪影響を及ぼさない。また、金属薄膜配線
6はSiO2膜5の表面とSi基板4の表面が段差な(
つながっているため、段切れを生じない。40μmのS
iO2膜5は機械的にも強く、信頼性が高い。この結果
から明らかなように従来の技術に比べて機械的信頼性の
高い熱絶縁が得られさらにSi基板4面と熱絶縁用のS
iO2膜5との段差のない金属薄膜配線が行える改善効
果が得られた。
Sensor element! The operation of a SnO thin film gas sensor will now be described. The heater 2 is energized and the sensor element l
Heat to 400°C. When the combustible gas comes into contact with the sensor element 1, the resistance of the sensor element 1 decreases, and the information is processed by the integrated circuit 3 through the wiring 6 to issue an alarm signal. Because of this structure, even if the sensor element l is heated to 400°C, it is thermally insulated by the SiO2 film diaphragm of approximately 40 μm, so that the integrated circuit 3 formed on the Si substrate 4 has no adverse effect on. In addition, the metal thin film wiring 6 has a step between the surface of the SiO2 film 5 and the surface of the Si substrate 4 (
Since they are connected, there will be no disconnection. 40 μm S
The iO2 film 5 is mechanically strong and highly reliable. As is clear from these results, it is possible to obtain thermal insulation with higher mechanical reliability compared to the conventional technology.
An improved effect was obtained in which metal thin film wiring without a step difference with the iO2 film 5 could be formed.

熱絶縁構造の作製方法は第1図に示す通りであ゛る。(
1)の工程において方位(100)面のSi基板上に窒
化シリコンまたは熱酸化シリコンをマスク材としピロカ
テコール4モル%、エチレンジアミン46.4モル%、
水49.6モル%の混合液で窒素を泡立てさせながら1
18°Cで沸騰させ50分間エツチングすると(1)に
見られるような深さ約45μmの窪みが形成できる。次
に(2)の工程において窪みを形成した面上に5iOy
の微粒子を堆積し、加熱し約50μmのSiO2膜と形
成する。
The method for manufacturing the thermal insulation structure is as shown in FIG. (
In the step 1), pyrocatechol 4 mol%, ethylenediamine 46.4 mol%,
1 while bubbling nitrogen with a mixture of 49.6 mol% water.
When boiled at 18°C and etched for 50 minutes, depressions with a depth of about 45 μm as seen in (1) can be formed. Next, apply 5iOy on the surface where the depression was formed in step (2).
fine particles are deposited and heated to form a SiO2 film of approximately 50 μm.

(3)の工程において形成したSiO2膜を研磨し、窪
み以外のSi基板面を露出させる。(4)の工程ではS
i基板面のもう一方の面から窪みの位置で窪みより小さ
な面積のシリコン部分を(1)の工程と同様な方法でエ
ツチングし5iOy面に達するまで除去して、上部がS
iO2膜で形成されたダイヤフラムを形成する。(5)
の工程でダイヤフラム上に熱絶縁を必要とする素子を形
成し、Si表面で前記素子を制御する周辺回路を形成し
て、両者を金属薄膜配線で接続さ仕る。以上の作製方法
により機械的信頼性の高い熱絶縁構造及びSi基板4面
と熱絶縁用SiO2膜5との段差のない金属薄膜配線が
得られた。なお、SiO2膜5の厚さは5μm未満では
機械的信頼性が乏しく100μm以上ではSiO2膜の
形成及び研磨がむずかしくなる。
The SiO2 film formed in step (3) is polished to expose the Si substrate surface other than the depression. In step (4), S
From the other side of the i-substrate surface, at the location of the depression, a silicon portion with an area smaller than the depression is etched in the same manner as in step (1) until it reaches the 5iOy plane, and the upper part is etched with S.
A diaphragm made of an iO2 film is formed. (5)
In the process, an element requiring thermal insulation is formed on the diaphragm, a peripheral circuit for controlling the element is formed on the Si surface, and the two are connected by metal thin film wiring. By the above manufacturing method, a thermally insulating structure with high mechanical reliability and a metal thin film wiring without a step between the Si substrate 4 surface and the thermally insulating SiO2 film 5 were obtained. Note that if the thickness of the SiO2 film 5 is less than 5 μm, the mechanical reliability is poor, and if it is more than 100 μm, it becomes difficult to form and polish the SiO2 film.

実施例2 第3図は本発明の別の実施例を示す工程図であり、第4
図は第3図の方法で作製したセンサ素子の熱絶縁構造の
斜視図である。
Embodiment 2 FIG. 3 is a process diagram showing another embodiment of the present invention, and FIG.
This figure is a perspective view of the thermal insulation structure of the sensor element manufactured by the method shown in FIG. 3.

第4図において11はSiO2膜の下のSiを異方性エ
ツチングにより除去して形成した空間であり、12は厚
さ40μmの5iOp膜による橋で、Si面とStow
膜の面とが同一平面上にあり、段差がない。
In FIG. 4, 11 is a space formed by removing Si under the SiO2 film by anisotropic etching, and 12 is a bridge made of a 5iOp film with a thickness of 40 μm, which connects the Si surface and Stow.
The surface of the membrane is on the same plane and there is no difference in level.

動作は実施例1と同様にSiO2膜の橋12の上に形成
されたセンサ素子lを加熱して動作させ配線6を通して
集積回路3で情報処理する。このような構造になってい
るため、センサ素子lが400℃加熱されても集積回路
3に熱が伝導せず影響を与えない。また金属薄膜配線6
は、Si0g膜による橋12の表面とSi基板の表面が
同一平面上にあるため段切れを生じない。40μmのS
 iOを膜による橋12は機械的にも強く信頼性が高い
As in the first embodiment, the sensor element 1 formed on the SiO2 film bridge 12 is heated and operated, and information is processed by the integrated circuit 3 through the wiring 6. Because of this structure, even if the sensor element 1 is heated to 400° C., the heat will not be conducted to the integrated circuit 3 and will not have any effect. Also, metal thin film wiring 6
Since the surface of the bridge 12 made of the Si0g film and the surface of the Si substrate are on the same plane, no step breaks occur. 40 μm S
The bridge 12 made of iO is mechanically strong and highly reliable.

第4図の熱絶縁構造の作製方法は第3図に示す通りで、
(1)〜(3)の工程は実施例2と同じである。(4)
の工程はSiO2膜が形成された面に対してレジストワ
ークにより第4図の11の部分以外をマスクするように
パターニングし、異方性エツチングを用いて前記11の
部分における5iot膜の下のSiをアンダーカットす
ることにより5iO8膜の橋が形成できる。(5)の工
程は5iot膜の上に熱絶縁を必要とする素子を形成し
Si部分て前記素子を制御する周辺回路を形成して、両
者を金属配線で接続させる。以上の作製方法により、機
械的信頼性の高い熱絶縁構造及びSi面と熱絶縁用のS
iOx膜との段差のない金属薄膜配線が得られた。
The method for manufacturing the thermal insulation structure shown in Fig. 4 is as shown in Fig. 3.
Steps (1) to (3) are the same as in Example 2. (4)
In the process, the surface on which the SiO2 film is formed is patterned by resist work so as to mask areas other than the 11 part in FIG. By undercutting, a bridge of 5iO8 film can be formed. In the step (5), an element requiring thermal insulation is formed on the 5iot film, a peripheral circuit for controlling the element is formed on the Si portion, and both are connected by metal wiring. By the above manufacturing method, a thermally insulating structure with high mechanical reliability and a Si surface and a thermally insulating S
A metal thin film wiring without a step difference from the iOx film was obtained.

「発明の効果」 本発明によれば、Si基板にエツチングにより深さ5〜
100μmの窪みを形成した後、S i Oy膜を窪み
の深さ以上に形成し、その後Si面が露出するまで研磨
し、Si面とSiO2膜而を同一平面にしてSiの異方
性エツチングすることにより5〜100μmnのSif
、膜によるダイヤプラムまたは橋構造を作製し、これを
熱絶縁構造としているから、熱絶縁構造の機械的信頼性
が高<、Si面と5102膜にまノこがる金属薄膜によ
る配線に段切れを生じない利点がある。
"Effects of the Invention" According to the present invention, a Si substrate is etched to a depth of 5 to
After forming a 100 μm depression, a Si Oy film is formed to a depth greater than the depth of the depression, and then polished until the Si surface is exposed, and the Si surface and the SiO2 film are made on the same plane for anisotropic etching of the Si. Possibly a Sif of 5 to 100 μmn
The mechanical reliability of the thermal insulation structure is high because a diaphragm or bridge structure is fabricated using a film and this is used as a thermal insulation structure. It has the advantage of not causing cuts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(1)〜(5)は本発明の一実施例を示す工程図
、第2図は第1図の方法で作製したセンサ素子の熱絶縁
構造の断面図、第3図(1)〜(5)は本発明の別の実
施例を示す工程図、第4図は第3図の方法で作製したセ
ンサ素子の熱絶縁構造の斜視図、第5図は従来の代表的
なセンサ素子の熱絶縁構造の断面図である。 l・・・・・・センサ素子、4・・・・・・Si基板、
5・・・・・・SiO2膜、11・・・・・・空間、1
2・・・・・・SiO2の橋。 出−願人   日本電信電話株式会社 第1図 第8図
Figures 1 (1) to (5) are process diagrams showing one embodiment of the present invention, Figure 2 is a sectional view of the thermal insulation structure of the sensor element manufactured by the method shown in Figure 1, and Figure 3 (1). ~(5) are process diagrams showing another embodiment of the present invention, FIG. 4 is a perspective view of a thermal insulation structure of a sensor element manufactured by the method shown in FIG. 3, and FIG. 5 is a typical conventional sensor element. FIG. 2 is a cross-sectional view of a thermal insulation structure of l...Sensor element, 4...Si substrate,
5... SiO2 film, 11... Space, 1
2...SiO2 bridge. Applicant Nippon Telegraph and Telephone Corporation Figure 1 Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン基板にエッチングにより深さ5〜100
μmの正方形または長方形の窪みを形成した後、該シリ
コン基板上にSiO_2の微粒子を堆積し、加熱して前
記の窪みの深さより厚いSiO_2膜を形成し、その後
SiO_2膜を窪み以外のシリコン面が露出するまで研
磨し、さらに、該シリコン基板のもう一方の面から窪み
の位置で窪みより小さい面積のシリコン部分を異方性エ
ッチングにより、SiO_2面に達するまで除去し、上
部がSiO_2で形成されたダイヤフラムを形成し、前
記ダイヤフラムのSiO_2面上にセンサ素子を形成す
ることを特徴とするセンサ素子の熱絶縁構造の作製方法
(1) Depth 5-100 by etching on silicon substrate
After forming a μm square or rectangular depression, SiO_2 fine particles are deposited on the silicon substrate and heated to form a SiO_2 film that is thicker than the depth of the depression. The silicon substrate was polished until it was exposed, and then from the other side of the silicon substrate, at the location of the depression, a silicon portion with an area smaller than the depression was removed by anisotropic etching until it reached the SiO_2 surface, and the upper part was formed of SiO_2. A method for manufacturing a thermal insulation structure for a sensor element, comprising forming a diaphragm and forming a sensor element on the SiO_2 surface of the diaphragm.
(2)シリコン基板にエッチングにより深さ5〜100
μmの正方形または長方形の窪みを形成した後、該シリ
コン基板上にSiO_2の微粒子を堆積し、加熱して前
記の窪みの深さより厚いSiO_2膜を形成し、その後
SiO_2膜を窪み以上のシリコン面が露出するまで研
磨し、窪み部分のSiO_2膜にエッチングにより橋を
作り、橋の下部のSiを異方性エッチングにより除去し
て空間を形成し、前記SiO_2膜の橋の上にセンサ素
子を形成することを特徴とするセンサ素子の熱絶縁構造
の作製方法。
(2) Depth 5 to 100 by etching on silicon substrate
After forming a μm square or rectangular depression, fine particles of SiO_2 are deposited on the silicon substrate and heated to form a SiO_2 film that is thicker than the depth of the depression, and then the SiO_2 film is removed so that the silicon surface above the depression is Polish until exposed, create a bridge by etching the SiO_2 film in the recessed part, remove Si under the bridge by anisotropic etching to form a space, and form a sensor element on the bridge of the SiO_2 film. A method for manufacturing a thermally insulating structure for a sensor element, characterized in that:
JP25544386A 1986-10-27 1986-10-27 Manufacture of heat-insulating structure of sensor element Pending JPS63108762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25544386A JPS63108762A (en) 1986-10-27 1986-10-27 Manufacture of heat-insulating structure of sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25544386A JPS63108762A (en) 1986-10-27 1986-10-27 Manufacture of heat-insulating structure of sensor element

Publications (1)

Publication Number Publication Date
JPS63108762A true JPS63108762A (en) 1988-05-13

Family

ID=17278838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25544386A Pending JPS63108762A (en) 1986-10-27 1986-10-27 Manufacture of heat-insulating structure of sensor element

Country Status (1)

Country Link
JP (1) JPS63108762A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058389A (en) * 2007-08-31 2009-03-19 New Cosmos Electric Corp Gas detection element
WO2011136203A1 (en) * 2010-04-26 2011-11-03 株式会社エッチ.エム.イー. Temperature sensor device and radiation thermometer using same, method for producing temperature sensor device, multilayered thin film thermopile using photoresist film and radiation thermometer using same, and method for producing multilayered thin film thermopile

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058389A (en) * 2007-08-31 2009-03-19 New Cosmos Electric Corp Gas detection element
WO2011136203A1 (en) * 2010-04-26 2011-11-03 株式会社エッチ.エム.イー. Temperature sensor device and radiation thermometer using same, method for producing temperature sensor device, multilayered thin film thermopile using photoresist film and radiation thermometer using same, and method for producing multilayered thin film thermopile
US9759613B2 (en) 2010-04-26 2017-09-12 Hme Co., Ltd. Temperature sensor device and radiation thermometer using this device, production method of temperature sensor device, multi-layered thin film thermopile using photo-resist film and radiation thermometer using this thermopile, and production method of multi-layered thin film thermopile

Similar Documents

Publication Publication Date Title
US6139758A (en) Method of manufacturing a micromachined thermal flowmeter
US7655538B2 (en) MEMS device and interposer and method for integrating MEMS device and interposer
JP4890708B2 (en) Dual wafer attachment method
US6022754A (en) Electronic device and method for forming a membrane for an electronic device
JP3418548B2 (en) Circuit board and method of manufacturing the same
JP2624186B2 (en) Manufacturing method of bonded silicon substrate
JP2847970B2 (en) Gas sensor and method of manufacturing the same
JPS63108762A (en) Manufacture of heat-insulating structure of sensor element
JP4032476B2 (en) Manufacturing method of micro device
JP2534673B2 (en) Method for manufacturing dielectric isolation substrate
JPH08248061A (en) Acceleration sensor and manufacture thereof
JP2584639B2 (en) Semiconductor substrate manufacturing method
JPH0563211A (en) Manufacture of semiconductor device
KR100578259B1 (en) Electronic device and film formation method for electronic device
JPH0894398A (en) Silicon microsensor
JP2004037297A (en) Infrared sensor and method for manufacturing the same
JPS63202035A (en) Manufacture of semiconductor device
JP2616183B2 (en) Flow sensor and manufacturing method thereof
KR100266558B1 (en) Manufacturing method of bodily sensation sensor
JPS6037177A (en) Semiconductor pressure sensor
JP2520944B2 (en) Semiconductor substrate manufacturing method
JPH07107938B2 (en) Method for manufacturing semiconductor pressure sensor
JPH10242534A (en) Micro device having hollow beam and its manufacture
JPH0555534A (en) Production of laminated semiconductor device
JPH0650255B2 (en) Method for manufacturing silicon microsensor