JPS63108273A - Impedance measuring instrument - Google Patents

Impedance measuring instrument

Info

Publication number
JPS63108273A
JPS63108273A JP25452386A JP25452386A JPS63108273A JP S63108273 A JPS63108273 A JP S63108273A JP 25452386 A JP25452386 A JP 25452386A JP 25452386 A JP25452386 A JP 25452386A JP S63108273 A JPS63108273 A JP S63108273A
Authority
JP
Japan
Prior art keywords
measured
voltage
amplifier
measurement
bridge circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25452386A
Other languages
Japanese (ja)
Inventor
Koichi Yanagawa
柳川 光一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Japan Inc
Original Assignee
Yokogawa Hewlett Packard Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hewlett Packard Ltd filed Critical Yokogawa Hewlett Packard Ltd
Priority to JP25452386A priority Critical patent/JPS63108273A/en
Publication of JPS63108273A publication Critical patent/JPS63108273A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure impedance stably by supplying a current which flows through an element to be measured to a parallel of a resistance and a capacitor having specific values respectively and calculating the impedance value of the element from measured values of a measured voltage and a voltage for current measurement. CONSTITUTION:A bridge circuit constituted by adding a parallel capacitor 43 to a reference resistance 4 is used to reduce the influence of internal noises of an input amplifier. Further, un stable bridge circuit operation based upon frequency characteristics of an amplifier is eliminated. The output voltage of this bridge circuit is measured while decomposed into a measurement signal and an in-phase and an orthogonal component, and then digitized, and the influence of the added capacitor 3 is removed to find a value of admittance to be measured. Consequently, a stable, high-accuracy measurement is taken even in environment where a measuring instrument needs to be connected to the element to be measured by using a long cable.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電圧電流法によって安定にインピーダンス測定
ができるように被測定素子に流れる電流の検出法と被測
定インピーダンス値の算出法を改良したインピーダンス
測定器に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides an impedance measurement method that improves the method for detecting the current flowing through the device under test and the method for calculating the impedance value to be measured so that impedance measurement can be stably performed using the voltage-current method. Concerning vessels.

〔従来技術とその問題点〕[Prior art and its problems]

インピーダンスの精密測定器は、ハーフブリッジ法によ
るものが市販されて賞月されている。
Precision impedance measuring instruments based on the half-bridge method are commercially available and have been widely praised.

第2図は、従来技術によるインピーダンス測定器を動作
説明のため簡単化して示している。接地された正弦波信
号源1は被測定アドミッタンス2を介して高入力インピ
ーダンス増幅器5の反転入力端子51に接続される。増
幅器5の反転入力端子51と出力端子6の間には基準抵
抗4が接続される。
FIG. 2 shows an impedance measuring device according to the prior art in a simplified manner for explaining the operation. A grounded sinusoidal signal source 1 is connected to an inverting input terminal 51 of a high input impedance amplifier 5 via an admittance 2 to be measured. A reference resistor 4 is connected between the inverting input terminal 51 and the output terminal 6 of the amplifier 5 .

また、反転入力端子51と接地間にはケーブル等による
漂遊容I3が存在し、増幅器5の非反転入力端子52と
接地間には等値電圧雑音源7が存在する。
Further, a stray capacitance I3 due to a cable or the like exists between the inverting input terminal 51 and the ground, and an equal voltage noise source 7 exists between the non-inverting input terminal 52 of the amplifier 5 and the ground.

(1)雑音源7.漂遊容量3が存在しない場合。(1) Noise source 7. If there is no stray capacity 3.

信号源lの電圧をViとすれば、その出力値v0は電流
測定用電圧で端子6において次式となる。
Assuming that the voltage of the signal source 1 is Vi, its output value v0 is a voltage for current measurement and is expressed by the following equation at the terminal 6.

Vo= R(G−jB) Vz        (1)
ここで、 R:基準抵抗4の値。
Vo= R(G-jB) Vz (1)
Here, R: value of reference resistance 4.

G:被測定アドミッタンスのコンダクタンス。G: Conductance of the admittance to be measured.

B:被測定アドミッタンスのサセプタンス。B: Susceptance of the admittance to be measured.

j:虚数単位1”=−1)。j: imaginary unit 1”=-1).

公知の方法により前記電圧v0のV、に対する同相公知
の方法により前記電圧v0のV、に対する同相成分V。
An in-phase component V of the voltage v0 with respect to V by a known method.

、と直交成分V。2を測定すれば下式となる。, and the orthogonal component V. If 2 is measured, the following formula is obtained.

(但し、測定において、適当な係数を乗じてV□の効果
が単位ユニットになるようにした)従って、G =Vo
+/ RlB =Voz/ RとしてG。
(However, in the measurement, the effect of V□ was multiplied by an appropriate coefficient so that it was a unit.) Therefore, G = Vo
+/RlB =Voz/G as R.

Bが求められる。B is required.

(2)漂遊容量3 (値C)が存在する場合。(2) When a stray capacity of 3 (value C) exists.

この場合つぎのような問題が生ずる。In this case, the following problem occurs.

増幅器5の増幅度Aの周波数特性を考慮すると、となる
。ここに、 Ao :直流増幅度。
Considering the frequency characteristics of the amplification degree A of the amplifier 5, it becomes as follows. Here, Ao: DC amplification degree.

ω。:増幅度3dB低下角周波数 ω :信号源lの出力角周波数 (測定角周波数)。ω. :Amplification 3dB decrease angular frequency ω: Output angular frequency of signal source l (measured angular frequency).

今、ω/ω。〉〉1のときを考えれば、容量3の両端か
ら増幅器5をみた入力アドミッタンスはこれをYinと
すると、 となる。従って漂遊容量3と合成されたアドミッタンス
は、 となり、等価的な増幅器5の入力アドミッタンスは小さ
くなり、かつ増幅度が不安定となる。
Now, ω/ω. 〉〉1, the input admittance of the amplifier 5 viewed from both ends of the capacitor 3 is expressed as follows. Therefore, the admittance combined with the stray capacitance 3 is as follows, the equivalent input admittance of the amplifier 5 becomes small, and the amplification degree becomes unstable.

(3)漂遊容量3と雑音源7がある場合。(3) When there is a stray capacitance 3 and a noise source 7.

被測定素子を取りはずして考えても本質は変わらないの
で、そのようにすれば、 V o  = (1+j(J) ncR)  e   
       (6)となる。
The essence remains the same even if the device under test is removed, so if we do so, then V o = (1+j(J) ncR) e
(6) becomes.

ここで、e、ω、は雑音源7の大きさと角周波数である
。従って、測定角波数ωの増加とともに雑音出力が増加
してしまう。従来、増幅度Aの周波数変化による効果を
改善するために、第3図に示すように増幅器5を電圧入
力電流出力増幅器80とし、出力に進相回路90とバッ
ファ81を付加して位相補正をおこなっていたが、進相
回路90とバッファ81によるコストアップがあり、か
つ十分な位相補正は困難であった。また、これによって
も、雑音出力の増加については何等改善がおこなわれな
かった。
Here, e, ω are the magnitude and angular frequency of the noise source 7. Therefore, the noise output increases as the measurement angular wave number ω increases. Conventionally, in order to improve the effect of the frequency change of the amplification degree A, as shown in FIG. 3, the amplifier 5 is replaced with a voltage input current output amplifier 80, and a phase advancing circuit 90 and a buffer 81 are added to the output to perform phase correction. However, the phase advance circuit 90 and the buffer 81 increased the cost, and it was difficult to perform sufficient phase correction. Moreover, even with this, no improvement was made in the increase in noise output.

従来のインピーダンス測定器においては、第4図に示す
ように、抵抗4を2本の抵抗41.42に分割し、その
分割点43を容量403を介して接地する構成とし、測
定周波数において、抵抗41.42の漂遊容1401.
402の効果を相殺するようにしていた。
In the conventional impedance measuring device, as shown in FIG. Stray volume of 41.42 1401.
I was trying to cancel out the effect of 402.

第4図の構成においては、漂遊容量3の効果がさらに著
しく、増幅器の動作は不安定となる。近年測定器と被測
定アドミッタンスを接続する測定ケーブルが長(なり、
漂遊容ff13が増加しており、この問題は重大である
In the configuration of FIG. 4, the effect of the stray capacitance 3 is even more significant, and the operation of the amplifier becomes unstable. In recent years, the measurement cable that connects the measuring instrument and the admittance to be measured has become longer.
This problem is serious as the stray volume ff13 is increasing.

〔本発明の目的〕[Object of the present invention]

従って本発明の目的は、基準抵抗に並列容量を付加する
のみで前述の問題点を解消したインピーダンス測定器を
提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an impedance measuring instrument that solves the above-mentioned problems by simply adding a parallel capacitance to a reference resistor.

〔発明の概要〕[Summary of the invention]

本発明の1実施例によれば、基準抵抗に並列容量を付加
したブリフジ回路を用いることにより、入力増幅器の内
部雑音の影響を低減する。また、増幅器の周波数特性に
よる不安定なブリッジ回路動作も除去される。
According to one embodiment of the present invention, the influence of internal noise of the input amplifier is reduced by using a bridge circuit in which a parallel capacitance is added to a reference resistor. Furthermore, unstable bridge circuit operation due to the frequency characteristics of the amplifier is also eliminated.

ブリッジ回路の出力電圧は、従来技術により、測定信号
と同相分、直交分に分解して測定された後、デジタル化
され、前記付加した容量の影響を取り除いて、被測定ア
ドミッタンスの値が求められる。インピーダンス値はア
ドミツタンス値から計算で求められる。
Using conventional technology, the output voltage of the bridge circuit is measured by decomposing it into an in-phase component and a quadrature component with respect to the measurement signal, and then digitized, and the influence of the added capacitance is removed to determine the value of the admittance to be measured. . The impedance value is calculated from the admittance value.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の1実施例のブリッジ回路を示す。第2
図、第3図、第4図と同じ機能と性能を有する素子には
各々同じ番号を付しである。
FIG. 1 shows a bridge circuit according to one embodiment of the present invention. Second
Elements having the same functions and performance as those in FIGS. 3, 3, and 4 are given the same numbers.

抵抗4には並列容量43が付加されているから、その値
をC,とおくと、前述の式(4)に対応して次式が得ら
れる。
Since a parallel capacitance 43 is added to the resistor 4, if its value is set as C, the following equation can be obtained corresponding to the above-mentioned equation (4).

(1+JωC,R) = −(1+AOω。C,R− 従って、漂遊界I3によってYinの虚数部が零となっ
ても、Yinの大きさは従来比1+A0ω。C1R倍と
なりブリッジ回路の安定度が増す。
(1+JωC,R) = -(1+AOω.C,R-) Therefore, even if the imaginary part of Yin becomes zero due to the stray field I3, the magnitude of Yin is 1+A0ω.C1R times the conventional value, increasing the stability of the bridge circuit. .

また、式(6)に対応して次式が得られる。Furthermore, the following equation is obtained corresponding to equation (6).

従って、雑音の増倍率は高周波において(1+C/C,
)となる。
Therefore, the noise multiplication factor is (1+C/C,
).

代表的な実施例での素子値を下記に示す。Element values in typical examples are shown below.

R=800にΩ C=200〜600pF C,=20pF ω/2π=100011z A0ω。/2π=3MHz 1+A0ω、C,R=301.6 1 + C/C,=11〜31 次にG、Bの求め方を示す。式(11,(2+に対応し
て従って、 □aυ となる。
R=800 and Ω C=200 to 600 pF C,=20 pF ω/2π=100011z A0ω. /2π=3MHz 1+A0ω, C, R=301.6 1 + C/C,=11-31 Next, how to obtain G and B will be shown. Corresponding to equation (11, (2+), therefore, □aυ.

ωC,Rは既知の値である。■。I+  vowをデジ
タル化したのち、インピーダンス測定器に内蔵された(
または外付された)計算機によって、その・中にすでに
記憶されているωC,Rの値を用いてG、Bを計算する
ωC and R are known values. ■. After digitizing I+ vow, it was built into an impedance measuring device (
G and B are calculated by a computer (or externally attached) using the values of ωC and R already stored therein.

〔発明の効果〕〔Effect of the invention〕

以上実施例で詳述したことから明らかなように、本発明
を実施することにより、長いケーブルを用いて測定器と
被測定素子を接続しなければならないような環境でも、
安定で高精度の測定ができる。
As is clear from the detailed description of the embodiments above, by implementing the present invention, even in an environment where a measuring instrument and a device under test must be connected using a long cable,
Stable and highly accurate measurements are possible.

近年自動化された製造ライン等では、このような要求が
多いから実用に供して有益である。
In recent years, automated manufacturing lines and the like have many such demands, so it is useful for practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例のブリッジ部分の回路図、第
2図は第1図のブリッジ部分に対応する従来例の回路図
、第3図は進相回路により位相補正した増幅器を用いる
従来例のブリッジ部の回路図、第4図は基準抵抗の並列
’am容量を補償した従来例のブリッジ部の回路図。 1:測定信号源; 2:被測定アドミッタンス;3.4
01.402 :漂遊容量; 4:基準抵抗;43:補
正容量; 5.80:増幅器; 6:出力端子; 7:雑音源;9
0:進相回路;
Fig. 1 is a circuit diagram of a bridge portion according to an embodiment of the present invention, Fig. 2 is a circuit diagram of a conventional example corresponding to the bridge portion of Fig. 1, and Fig. 3 uses an amplifier whose phase is corrected by a phase advance circuit. FIG. 4 is a circuit diagram of a conventional bridge section that compensates for the parallel 'am capacitance of a reference resistor. 1: Measurement signal source; 2: Measured admittance; 3.4
01.402: Stray capacitance; 4: Reference resistance; 43: Correction capacitance; 5.80: Amplifier; 6: Output terminal; 7: Noise source; 9
0: Phase advance circuit;

Claims (1)

【特許請求の範囲】[Claims] 被測定素子に測定電圧を印加し、該素子に流れる電流を
それぞれ所定の値を有する抵抗とコンデンサの並列回路
に導入し電流測定用電圧を発生させ、前記測定電圧と前
記電流測定用電圧の測定値から前記素子のインピーダン
ス値を計算するようにしたインピーダンス測定器。
A measurement voltage is applied to the element to be measured, a current flowing through the element is introduced into a parallel circuit of a resistor and a capacitor each having a predetermined value, a voltage for current measurement is generated, and the measurement voltage and the voltage for current measurement are measured. An impedance measuring device that calculates an impedance value of the element from the impedance value.
JP25452386A 1986-10-24 1986-10-24 Impedance measuring instrument Pending JPS63108273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25452386A JPS63108273A (en) 1986-10-24 1986-10-24 Impedance measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25452386A JPS63108273A (en) 1986-10-24 1986-10-24 Impedance measuring instrument

Publications (1)

Publication Number Publication Date
JPS63108273A true JPS63108273A (en) 1988-05-13

Family

ID=17266221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25452386A Pending JPS63108273A (en) 1986-10-24 1986-10-24 Impedance measuring instrument

Country Status (1)

Country Link
JP (1) JPS63108273A (en)

Similar Documents

Publication Publication Date Title
US6335642B1 (en) Impedance-to-voltage converter
US8036841B2 (en) Measuring method and apparatus for potentiometric measuring probes
JP4488400B2 (en) Impedance detection circuit
EP1426771B1 (en) Impedance measuring circuit and capacitance measuring circuit
JP3501398B2 (en) Impedance detection circuit and impedance detection method
EP0972205B1 (en) Impedance-to-voltage converter and converting method
US6822433B1 (en) Gain and phase detector having dual logarithmic amplifiers
CA1119253A (en) Capacitive pick-off circuit
US3694741A (en) Coupled inductance impedance measuring circuit with increased sensitivity and frequency independence
JP4562551B2 (en) Impedance detection device
JPS63108273A (en) Impedance measuring instrument
JP3454426B2 (en) Impedance detection circuit and impedance detection method
JP2003156551A (en) Method for calibrating capacitance meter, calibrating standard capacitance box, method for measuring electrostatic capacity, box for measuring capacity and capacitance meter
JP3252366B2 (en) Odor measuring device
Altwein et al. The measurement of calibrated current-voltage characteristics up to the second derivative
JP2763255B2 (en) Passive element value measuring device using current vector
JP2954449B2 (en) Capacitance measuring circuit and LCR meter having the same
JP2729903B2 (en) Displacement measuring device
JP3356029B2 (en) Electric quantity detection circuit
JPH09145760A (en) Capacitance measuring device
JPH0633424Y2 (en) Input circuit of measuring instrument
JP2862761B2 (en) Capacitance type alcohol concentration measurement device
SU679895A1 (en) Device for measuring complex conductivity constituents of two-pole circuits
SU977930A1 (en) Capacitive displacement meter
SU1196775A1 (en) Alternating voltage meter