JPS63108252A - Melting crucible for preparing glass bead sample - Google Patents

Melting crucible for preparing glass bead sample

Info

Publication number
JPS63108252A
JPS63108252A JP61251878A JP25187886A JPS63108252A JP S63108252 A JPS63108252 A JP S63108252A JP 61251878 A JP61251878 A JP 61251878A JP 25187886 A JP25187886 A JP 25187886A JP S63108252 A JPS63108252 A JP S63108252A
Authority
JP
Japan
Prior art keywords
melting
sample
crucible
melting crucible
glass bead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61251878A
Other languages
Japanese (ja)
Inventor
Yoshinori Watabe
渡部 義範
Takaaki Kondo
隆明 近藤
Takanori Akiyoshi
孝則 秋吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP61251878A priority Critical patent/JPS63108252A/en
Publication of JPS63108252A publication Critical patent/JPS63108252A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To permit quick vitrification of a sample and flux in a melting furnace of a high-frequency induction heating type or the like by providing a peak- shaped projecting part to the central part at the base of a melting crucible. CONSTITUTION:The peak-shaped projecting part 10 is provided to the central part at the base of the melting crucible 4 in the case of melting and vitrifying the pulverized powder sample with the flux in the melting furnace of the high- frequency induction heating type or the like by using the melting crucible for preparing a glass bead sample to be used in the case of determining the contents, etc. of the constituting elements of slag, iron ore, etc., by a fluorescent X-ray analysis. The melt which rises on the side wall and moves to the central part in the case of mixing and melting the sample by the vertical convection between the side wall and the central part descends in said part and rotates in a manner as to flush away the base without remaining in said part. The lateral oscillating motion of the melting furnace additionally accelerates the mixing and stirring to shorten the time for melting.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は滓、鉄鉱石等の構成元素の含有率等を蛍光X
線分析する場合に用いるガラスビード試料を作製するた
めの融解坩堝の改良に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention detects the content of constituent elements of slag, iron ore, etc. using fluorescent X-ray technology.
This invention relates to improvements in melting crucibles for producing glass bead samples used for line analysis.

〔従来技術〕[Prior art]

滓、鉄鉱石等の構成元素の含有率等を分析するにあたり
、非破壊で、かつ迅速に分析出来る蛍光X線分析方法が
広く用いられている。この種の蛍光x!a分析方法では
、試料として固体試料、粉体試料が用いられるが、特に
ガラスビード試料が多く用いられている。ガラスビード
試料は一般に第8図に示されるような工程で作製される
。(a)図(b)図ではサンプリングした試料lは微粉
砕器2で微粉砕され、ホウ酎ナトリウム等の融剤3と一
緒に平底坩堝4に入れられる。(C)図ではこの坩堝4
は融解炉5に挿入され、そこで同一組成にガラス化され
る。融解炉には電気炉方式、高周波誘導加熱方式がある
が、ここでは高周波誘導加熱方式融解炉を示している。
In analyzing the content of constituent elements of slag, iron ore, etc., fluorescent X-ray analysis methods are widely used because they are non-destructive and can be analyzed quickly. This kind of fluorescence x! In the a analysis method, solid samples and powder samples are used as samples, and glass bead samples are particularly often used. Glass bead samples are generally prepared through the steps shown in FIG. In the figures (a) and (b), a sample l is pulverized by a pulverizer 2 and put into a flat-bottomed crucible 4 together with a flux 3 such as sodium borax. (C) In the figure, this crucible 4
are inserted into a melting furnace 5 where they are vitrified to the same composition. There are two types of melting furnaces: an electric furnace type and a high-frequency induction heating type, but the high-frequency induction heating type melting furnace is shown here.

(d)図ではガラス化した試ネ1はビード鋳込器6に移
され、冷却してガラスビード試料を形成する。この場合
融解炉は試料等の混合を併進するために、左右に首振り
して振動させる。このようにして作製したガラスビード
試料は蛍光X線分析装置で蛍光X線分析に供される。
In the figure (d), the vitrified sample 1 is transferred to a bead caster 6 and cooled to form a glass bead sample. In this case, the melting furnace is vibrated by swinging from side to side in order to mix the samples, etc. in translation. The glass bead sample thus prepared is subjected to fluorescent X-ray analysis using a fluorescent X-ray analyzer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

近年、滓、鉄鉱石等については通常の入荷分析に加えて
、工程管理分析の必要性が増しており、より迅速な分析
結果が要求されている。
In recent years, there has been an increasing need for process control analysis of slag, iron ore, etc. in addition to normal incoming analysis, and faster analysis results are required.

しかるに、第8図に示したような工程では、電気炉方式
融解炉を用いた場合には、炉の構造上から、融解時間が
長くかかり、工程管理分析の要求に対処できない問題が
ある。又、高周波誘導加熱炉方式融解炉では坩堝が誘導
加熱されるので、電気炉方式融解炉に比べて、時間の短
縮が期待されるが、平底坩堝内の試料と融剤との混合の
ための攪拌が弱い、これは第8図に示すように高周波誘
導加熱式融解炉5はその側壁に沿ってコイル7が配列さ
れており、絶縁体lOを介して坩堝4が誘導加熱をうけ
る。ここにおいて、記号8は絶縁体10の取り付は台で
ある。コイル7は通常大気に晒されており、蓋をしたと
しても、坩堝の上部は下部よりも温度が低い、坩堝内の
試料等は側壁下部の方から融解し、側壁と中央部との間
に上下の対流を起こして、中央部で試料がぶつかり合い
沈澱し易くなる。第9図、第10図はその状態を説明す
る為の+7面図及びその断面図である。図から明らかな
ように、該融解炉を左右に首振りさせたとしても、融液
の大部分が直線的に移動するのに対して、試料は融液よ
りおくれて移動し、坩堝の底面中央部に未融解試料9と
して残る傾向がある。そのため必要以上に時間をかけた
り、温度を上げたりしている。このように迅速性に欠け
たり、必要以上の温度上昇のために揮散成分のような場
合には、分析精度が劣化等を生じる等の問題がある。こ
れらのことから特に工程管理分析に対処出来るガラスビ
ード試料の作成が強く望まれていた。
However, in the process shown in FIG. 8, when an electric furnace type melting furnace is used, there is a problem that the melting time is long due to the structure of the furnace, and the requirements for process control analysis cannot be met. In addition, in a high-frequency induction heating furnace type melting furnace, the crucible is heated by induction, so it is expected that the time will be shorter than that in an electric furnace type melting furnace. The stirring is weak, because as shown in FIG. 8, the high-frequency induction heating type melting furnace 5 has coils 7 arranged along its side wall, and the crucible 4 receives induction heating through the insulator IO. Here, symbol 8 is a stand on which the insulator 10 is mounted. The coil 7 is normally exposed to the atmosphere, and even with a lid on, the temperature at the top of the crucible is lower than the bottom.The sample inside the crucible melts from the bottom of the side wall, and there is a gap between the side wall and the center. This causes vertical convection, making it easier for the samples to collide and settle in the center. 9 and 10 are a +7 view and a sectional view for explaining the state. As is clear from the figure, even when the melting furnace is oscillated from side to side, most of the melt moves in a straight line, while the sample moves behind the melt and is placed in the center of the bottom of the crucible. There is a tendency for the sample 9 to remain as an unmelted sample 9. Therefore, it takes longer than necessary and the temperature is raised more than necessary. In the case of volatile components due to lack of promptness or excessive temperature rise, there are problems such as deterioration of analysis accuracy. For these reasons, there has been a strong desire to create glass bead samples that can be used particularly for process control analysis.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は前記の様な問題点を解決するために、高周
波誘導加熱方式融解炉のような融解炉での融解に適した
坩堝について、精意検討を行い本発明にいたった。即ち
融解坩堝の底面中央部に山形状の突出部を設けてなるガ
ラスビード試料作製用坩堝である。さらには該融解坩堝
の内面側壁に鋳込み用窪みを設けてなるガラスビード試
料作製用融解坩堝である。
In order to solve the above-mentioned problems, the present inventors conducted careful studies on a crucible suitable for melting in a melting furnace such as a high-frequency induction heating type melting furnace, and arrived at the present invention. That is, this is a crucible for preparing a glass bead sample in which a mountain-shaped protrusion is provided at the center of the bottom of the melting crucible. Furthermore, the present invention is a melting crucible for preparing a glass bead sample, in which a recess for casting is provided on the inner side wall of the melting crucible.

〔作用〕[Effect]

本発明による融解坩堝を用いて、高周波誘導加熱式のよ
うな融解炉で、微粉体試料を融剤で融解してガラス化す
る場合、該融解坩堝の底面中央部に山形状の突出部を設
けているので、側壁と中央部での上下による対流で、試
料が混合融解する場合側壁で上昇し中央部に移動した融
液はそこで下降し、底面を押し流す様に回転するので残
留することがない、この場合該融解炉の左右の首振り振
動は混合攪拌を一層促進して、融解時間を短縮する。
When the melting crucible according to the present invention is used to melt a fine powder sample with a flux and vitrify it in a melting furnace such as a high-frequency induction heating type, a mountain-shaped protrusion is provided at the center of the bottom of the melting crucible. Therefore, when the sample mixes and melts due to the vertical convection between the side walls and the center, the melt that rises on the side walls and moves to the center falls there and rotates to wash away the bottom, so there is no residue. In this case, the oscillation of the melting furnace from side to side further promotes mixing and agitation, thereby shortening the melting time.

更に、本発明の融解坩堝の内面側壁に鋳込み用窪みを設
けたものは、融解が終了した後に、融解坩堝の残熱を利
用して傾斜し鋳込み用窪みに直ぐに注入することができ
、それから該融解坩堝を冷却するので、外壁等に融解液
が付着することがない。
Further, in the melting crucible of the present invention having a casting depression on the inner side wall, after melting is completed, the remaining heat of the melting crucible can be used to tilt the melting crucible and immediately pour into the casting depression. Since the melting crucible is cooled, the melt does not adhere to the outer walls, etc.

〔実施例〕〔Example〕

次に本発明による融解坩堝を図によって説明する。第1
図、第2図は本発明の一実施例を示す平面図びその断面
図である。ここにおいて融解坩堝4は底面中央部に山形
状の突出部lOを設けている。
Next, the melting crucible according to the present invention will be explained with reference to the drawings. 1st
FIG. 2 is a plan view and a sectional view thereof showing an embodiment of the present invention. Here, the melting crucible 4 is provided with a mountain-shaped protrusion lO at the center of the bottom surface.

融解坩堝は一般に白金坩堝が用いられる。突出部の高さ
は融解坩堝の高さと関係があるが、融解坩堝の高さが5
0mm程度の場合は突出部の高さは2〜5■がこのまし
い、一般には上限は融解液に突出部が隠れる程度である
。突出部が露出するとそこに試ネ1が付着しやすいこと
による。5mmを超えた場合には効果が横這いであり、
2■未満では効果が期待できない、山形状の頂点は半球
状が°望ましい、試料の流れが円滑となるからによる。
A platinum crucible is generally used as the melting crucible. The height of the protrusion is related to the height of the melting crucible, but if the height of the melting crucible is 5
In the case of approximately 0 mm, the height of the protrusion is preferably 2 to 5 cm, and generally the upper limit is such that the protrusion is hidden in the melt. This is because when the protrusion is exposed, the test piece 1 tends to adhere there. When the thickness exceeds 5 mm, the effect remains flat;
If it is less than 2cm, no effect can be expected. It is desirable that the apex of the mountain shape be hemispherical because it will allow the sample to flow smoothly.

突出部の裾野は特に限定はないが、融解坩堝の内径の局
程度が好ましい、この場合には融解坩堝の底をくり貫い
て突出部を溶接することが容易である。
The base of the protrusion is not particularly limited, but it is preferably approximately the same as the inner diameter of the melting crucible. In this case, it is easy to hollow out the bottom of the melting crucible and weld the protrusion.

第3図、第4図、第5図は本発明の他の実施例を示めす
平面図、正面図、断面図である。第5図では融解坩堝4
の底面中央部に山形状の突出部10を設けるとともに、
その側壁の一部に鋳込み用窪み12を設けている。ここ
において鋳込み川窪み12を設けたのは、融解が終わっ
て直ぐに注入できることによる。この場合は融解炉の熱
により融解液が移動し易い、鋳込み田窪み12の形状は
ガラスビード試料の形状に対応して決められる。第4図
ではティパー状の円盤型を示している。
3, 4, and 5 are a plan view, a front view, and a sectional view showing other embodiments of the present invention. In Figure 5, melting crucible 4
A mountain-shaped protrusion 10 is provided at the center of the bottom surface of the
A casting depression 12 is provided in a part of the side wall. The reason why the pouring recess 12 is provided here is that pouring can be performed immediately after melting. In this case, the shape of the casting field depression 12, through which the melt can easily move due to the heat of the melting furnace, is determined in accordance with the shape of the glass bead sample. FIG. 4 shows a tipper-shaped disk.

第3図では鋳込み川窪み12が融解坩堝4の側壁の一部
を切り欠きして、そこに設けである。これは、融解坩堝
が融解炉に挿入する場合に支障を来たすことがないよう
にしたものである。
In FIG. 3, a casting recess 12 is formed by cutting out a part of the side wall of the melting crucible 4. This is to avoid any trouble when the melting crucible is inserted into the melting furnace.

第6図は本発明による突き出し部を設けた融解坩堝を用
いた場合の鋳込み操作を示す説明図である。(a)図で
は高周波誘導加熱式融解炉5に挿入した融解坩堝4に、
シュート13から所定の試料lと融剤3とを添加し、加
熱をおこなう、(b)図では該融解炉5を左右に首振り
振動させて、試料の混合の使道をはかる。振動は図示し
ていない振動台に融解炉5を固定して行う、そして(C
)図では融解終了と共に直ちに該融解炉5を傾斜して、
鋳込み田窪み12に融解液を注入する。その後融解坩堝
4は引き出して冷却するか又はそのままエアーを吹き付
けて急冷し、ガラスビード試料が形成される0次に本発
明の融解坩堝を使用してガラスビード試料を作成する場
合の温度と時間との関係を未融解試料量によって試験し
た結果を示す、ここにおいて従来の坩堝を使用した場合
を比較例とした。
FIG. 6 is an explanatory view showing a casting operation using a melting crucible provided with a protruding portion according to the present invention. In the figure (a), a melting crucible 4 inserted into a high-frequency induction heating type melting furnace 5,
A predetermined sample 1 and flux 3 are added through the chute 13 and heated. In the figure (b), the melting furnace 5 is oscillated from side to side to measure the efficiency of mixing the samples. The vibration is performed by fixing the melting furnace 5 on a vibration table (not shown), and (C
) In the figure, the melting furnace 5 is tilted immediately upon completion of melting,
The melt is injected into the casting field depression 12. Thereafter, the melting crucible 4 is pulled out and cooled, or is quenched by blowing air as it is to form a glass bead sample. The results of testing the relationship between the following using the amount of unmelted sample are shown here, and the case where a conventional crucible is used is used as a comparative example.

「実施例」 試料は難溶解性の電気炉滓((:r20360%)をも
ちい、粒度は80メツシユを用いた。各坩堝に試料0.
5grを秤取し、融剤としてほう醜ナトリウム5 gr
、硝酸ナトリウム0.5gr 、塩化パリュム0.5g
rを添加混合した。 この場合本発明による融解堝堝は
突出部のみを設けたものでその高さは21層と5濡脂の
ものを用いた0次いで高周波誘導加熱式融解炉をもちい
て、各種の温度と時間における試料の混合融解の状態を
調べた。 HCe (1: I)で加熱融解後の残滓を
濾過分別して、乾燥し、これを不溶解残試料量として求
めた。其の結果を表1にしめす、ここでは各温度で時間
を変えた場合の不溶解残試料量が本発明の融解坩堝を用
いた場合、従来の融解坩堝を用いた場合にくらべて少な
く、混合攪拌の効果の大きいことをえた。この傾向につ
いて低温側の場合を第7図にしめす、実線は発明の5m
■の突出部を設けた融解坩堝の場合であり、点線は従来
の融解坩堝の場合を示す、第7図から本発明の融解用を
用いた場合、同一温度で融解時間を短縮出来ることがわ
かる。なお鋳込み用窪みを設けた融解坩堝をもちいても
同様な結果かえられた。
"Example" The sample used was hardly soluble electric furnace slag ((R20360%), and the particle size was 80 mesh.0.
Weigh out 5 gr, add 5 gr of Hougou sodium as a fluxing agent.
, sodium nitrate 0.5g, parium chloride 0.5g
r was added and mixed. In this case, the melting pot according to the present invention is provided with only a protrusion, and its height is 21 layers and 5 times using a high-frequency induction heating melting furnace. The state of mixed melting of the sample was investigated. The residue after heating and melting with HCe (1: I) was separated by filtration and dried, and this was determined as the amount of undissolved remaining sample. The results are shown in Table 1, which shows that when the melting crucible of the present invention was used, the amount of undissolved residual sample when changing the time at each temperature was smaller than when the conventional melting crucible was used, and the mixing rate was lower. It was found that the stirring effect was large. Figure 7 shows this tendency on the low temperature side.The solid line is 5m below the invention.
This is the case of a melting crucible equipped with a protrusion (2), and the dotted line shows the case of a conventional melting crucible.It can be seen from Figure 7 that when the melting crucible of the present invention is used, the melting time can be shortened at the same temperature. . Similar results were obtained using a melting crucible with a casting depression.

〔効果〕〔effect〕

本発明による融解坩堝は、従来の融解坩堝に対して、該
融解坩堝の底面中央部に山・形状の突出部を設けただけ
の簡単な構造で、高岡波誘導加熱式のような融解炉にお
ける試料と融剤とのガラス化を、迅速に行うことが出来
、又該融解坩堝の内面側壁に鋳込み用窪みを設けること
によって、融解液の壁等への付着をなくし、工程管理分
析としての、安定した蛍光X線分析用ガラスビート試料
を得ることが出来、産業上大きな発明である。
The melting crucible according to the present invention has a simple structure compared to the conventional melting crucible, with only a mountain-shaped protrusion provided at the center of the bottom of the melting crucible. Vitrification of the sample and flux can be performed quickly, and by providing a casting depression on the inner side wall of the melting crucible, the melt does not adhere to the walls, etc., and can be used for process control analysis. It is possible to obtain a stable glass bead sample for fluorescent X-ray analysis, which is an industrially significant invention.

表1 各J4温度における時間と未融M lj、試$i
l+tとの関係
Table 1 Time and unmelted M lj at each J4 temperature, trial $i
Relationship with l+t

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す平面図、第2図はその
断面図であり、第3図は本発明の他の実施例を示す平面
図であり、第4図は第3図の正面図であり、第5図は第
3図の断面図であり、第6図は第3図による実施例の融
解坩堝による鋳込み方法を示す説明図であり、(a)図
は試料等を添加加熱している状態の一部断面図、 (b
)図は振動してし、する状態の一部断面図、 (C)図
は鋳込み状態の一部断面図であり、第7図は融解時間と
融解温度とによる不溶解残試料量との関係図であり、第
8図は、従来のガラスビード料の作製工程説明図であり
、 (a)図は試料を示す概略断面図、(b)図は粉砕
状態を示す概略断面図、(C)図は融解炉での首振り振
動の状態を示す概略断面図;  (d)図は鋳込み状態
を示す概略断面図であり、第9図は従来の融解炉におけ
る融解坩堝内の融解状態を示す説明の為の平面図、第1
O図は第9図の断面図である。 〔記号〕  4.11・・・融解坩堝。 lO・・・山形状の突出部、12・・・鋳込み用窪み第
1図  第2図 113図    第5図 第4図 tIS7図 敵IM−11’l Cケ)
FIG. 1 is a plan view showing one embodiment of the present invention, FIG. 2 is a sectional view thereof, FIG. 3 is a plan view showing another embodiment of the present invention, and FIG. 4 is a plan view showing another embodiment of the present invention. FIG. 5 is a sectional view of FIG. 3, FIG. 6 is an explanatory diagram showing a casting method using the melting crucible of the embodiment shown in FIG. 3, and FIG. Partial cross-sectional view of the state of additive heating, (b
) Figure is a partial cross-sectional view of the vibrating state, Figure (C) is a partial cross-sectional view of the cast state, and Figure 7 shows the relationship between the amount of undissolved sample and the melting time and melting temperature. FIG. 8 is an explanatory diagram of the production process of a conventional glass bead material, (a) a schematic cross-sectional view showing a sample, (b) a schematic cross-sectional view showing a pulverized state, (C) The figure is a schematic cross-sectional view showing the state of swing vibration in the melting furnace; Figure (d) is a schematic cross-sectional view showing the casting state, and Figure 9 is an explanation showing the melting state in the melting crucible in a conventional melting furnace. Floor plan for, 1st
Figure O is a sectional view of Figure 9. [Symbol] 4.11...Melting crucible. lO...Mountain-shaped protrusion, 12...Indentation for casting Fig. 1 Fig. 2 113 Fig. 5 Fig. 4 tIS7 Fig. IM-11'l C ke)

Claims (2)

【特許請求の範囲】[Claims] (1)融解坩堝の底面中央部に山形状の突出部を設けて
なるガラスビード試料作製用融解坩堝。
(1) A melting crucible for preparing glass bead samples, which has a mountain-shaped protrusion in the center of the bottom of the melting crucible.
(2)融解坩堝の底面中央部に山形状の突出部を設ける
とともに、該融解坩堝の内面側壁に鋳込み用窪みを設け
てなるガラスビード試料作製用融解坩堝。
(2) A melting crucible for preparing a glass bead sample, which is provided with a mountain-shaped protrusion in the center of the bottom of the melting crucible, and a casting depression is provided in the inner side wall of the melting crucible.
JP61251878A 1986-10-24 1986-10-24 Melting crucible for preparing glass bead sample Pending JPS63108252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61251878A JPS63108252A (en) 1986-10-24 1986-10-24 Melting crucible for preparing glass bead sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61251878A JPS63108252A (en) 1986-10-24 1986-10-24 Melting crucible for preparing glass bead sample

Publications (1)

Publication Number Publication Date
JPS63108252A true JPS63108252A (en) 1988-05-13

Family

ID=17229279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61251878A Pending JPS63108252A (en) 1986-10-24 1986-10-24 Melting crucible for preparing glass bead sample

Country Status (1)

Country Link
JP (1) JPS63108252A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651857U (en) * 1992-12-16 1994-07-15 日本サーモニクス株式会社 X-ray fluorescence analysis sample preparation device
JP2007010501A (en) * 2005-06-30 2007-01-18 Herzog Japan Ltd Glass bead manufacturing device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651857U (en) * 1992-12-16 1994-07-15 日本サーモニクス株式会社 X-ray fluorescence analysis sample preparation device
JP2007010501A (en) * 2005-06-30 2007-01-18 Herzog Japan Ltd Glass bead manufacturing device and method

Similar Documents

Publication Publication Date Title
CN104903698B (en) The multiple sample preparations analyzed for X-ray fluorescence spectra
GB1578013A (en) Apparatus for automatically preparing analysis samples
AU2013322930B2 (en) Arrangement and method for producing analysis samples
US3669435A (en) All-ceramic glass making system
JPS63108252A (en) Melting crucible for preparing glass bead sample
CN103930250A (en) Preparation of inorganic samples by fusion
RU2738742C2 (en) Method of processing lumpy material for producing high-quality steel
JPH0525709Y2 (en)
SU1712344A1 (en) Method of producing fused-cast baddeleyite-corrundum refractory
CA2243877C (en) Improvements to induction furnaces for the synthesis of glasses
Jecko et al. Automated sample preparation for X-ray fluorescence, plasma emission and atomic absorption spectrometry: sample preparation with PERL'X-2, PLASMASOL and SOL'X
JPH0225169Y2 (en)
JPH0280326A (en) Glass bead sample preparing device and its utilization
RU2010881C1 (en) Process of producing aluminum-silicon alloys
JPS6319302Y2 (en)
SU541869A1 (en) The method of producing slag alloy
US4497658A (en) Compact precious metal furnace and recovery method
RU2058397C1 (en) Method for production of complex modifier in coreless induction furnace with quartzite lining
JPS62240845A (en) Apparatus for preparing sample for fluorescent x-ray analysis
SU1075931A1 (en) Device for manufacturing consumable electrode
RU2247156C2 (en) Method of treatment of metal melt in ladle and device for realization of this method
CS246699B1 (en) Manufacturing method of borate beads for rentgen-spectral analysis
KR100736713B1 (en) Reinforced material input system for alloy fabrication
JP3301702B2 (en) Method for producing glass bead for X-ray fluorescence analysis
JPH0716725A (en) Production of clean precision cast product