JPS6319302Y2 - - Google Patents

Info

Publication number
JPS6319302Y2
JPS6319302Y2 JP1982034051U JP3405182U JPS6319302Y2 JP S6319302 Y2 JPS6319302 Y2 JP S6319302Y2 JP 1982034051 U JP1982034051 U JP 1982034051U JP 3405182 U JP3405182 U JP 3405182U JP S6319302 Y2 JPS6319302 Y2 JP S6319302Y2
Authority
JP
Japan
Prior art keywords
furnace
furnace body
glass beads
rotatably supported
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982034051U
Other languages
Japanese (ja)
Other versions
JPS58137437U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3405182U priority Critical patent/JPS58137437U/en
Publication of JPS58137437U publication Critical patent/JPS58137437U/en
Application granted granted Critical
Publication of JPS6319302Y2 publication Critical patent/JPS6319302Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

この考案は螢光X線分析用に使用するガラスビ
ードを作製する装置に関するものである。 最近、鉄や鋼以外の鉄鉱石、スラグ、セメント
ガラス、スケールなどの各種酸化物を螢光X線分
析する場合、粉体試料の試料調製法として従来の
微粉砕して加圧成型するブリケツト法に代つて、
試料に融解剤を加え加熱融解し、融解物を鋳型へ
注入したり、融解物の移しかえを行わないで融解
るつぼごと冷却し、均質なガラス円板(ガラスビ
ード)を作るガラスビード法が注目されるように
なつた。 しかしながら従来のガラスビードサンプラーは
電気抵抗体加熱炉、或は高周波加熱炉の中に試料
の入つた白金るつぼを入れ溶融し、把持具を用い
て取出し、手動で撹拌しながら白金るつぼ中の溶
融試料を黒鉛の鋳型に鋳込む方法、又は手動で撹
拌する代りに白金るつぼを電動で上下に揺動させ
撹拌する方法などが用いられていたが、何れの方
法でも黒鉛の鋳型に鋳込む時は溶融しながら自動
的に撹拌出来ないため均質なガラスビードが得ら
れずガラスビード内に気泡が残存したり、徐冷が
困難であるため冷却途中でガラスビードにひび割
れが生じ易い。また黒鉛鋳型が高温で肌荒れを生
じ、ガラスビード表面(黒鉛との接触面)が滑か
に仕上らないことが多い。 又高周波加熱炉についてはその設置にあたり官
庁手続を必要とし、また設備費が高価であるとい
う難点を有する。 さらに白金るつぼを上下に揺動させ撹拌する方
法は溶融試料が飛散したり、撹拌が不十分で均質
なガラスビードが出来ず、ガラスビード内に気泡
が残存したり、ひび割れを生じ易く、また能率的
でないなどの欠点があつた。 本案は従来方式のこのような欠点を除くために
考案されたものであつて、以下第1図乃至第4図
に基いてその一実施例を説明する。 1は基台で、底部2と左右の垂直部3,4とよ
り構成され、左右の垂直部3,4には軸受5,6
が設けられている。7は直方体形状をした加熱炉
体で、その左右壁体8,9の各中央部に突出した
水平軸10,11を前記軸受5,6により回動可
能に支承し、また一方の水平軸11はこの軸受6
を貫通し、延長上にウオームホイール12を嵌合
固着している。 基台1の垂直部4に軸承13を介して前後方向
に延びる水平なウオーム軸15が回転自在に支承
されており、該ウオーム軸15に嵌合固着したウ
オーム16は前記ウオームホイール12に噛合つ
ており、且つウオーム軸15の前端にはハンドル
17が取付けられている。それ故、ハンドル17
を回すことにより炉体7を任意の傾斜位置まで回
動させると共に、ハンドル17を停止することに
より炉体7を任意位置で停止状態に保持させるこ
とが可能である。すなわちウオームホイール1
2、ウオーム16、ウオーム軸15、ハンドル1
7により手動傾動装置14が構成されている。 加熱炉体7は電気抵抗発熱体18を炉内要所に
配設し、又炉室19を囲繞する6面の壁体は断熱
性の高いもので構成され、且つ前面の壁体は開閉
自在の炉蓋20となつていて開放時には炉室19
の保守管理ならびにるつぼ等の出し入れを容易に
行うことが可能であり、而も閉止時には炉室19
内外の断熱を十分に行うよう製作されている。 炉体7の下方には吊支枠21が懸吊固着され、
またこの吊支枠21を構成する上横桁22、下横
桁23に設けられた軸支具24,25により回転
可能に支承された垂直軸26の下部は、大歯車2
7を含む公知の可変速電動駆動装置28に連結さ
れ任意の回転速度(たとえば1r.p.m)が与えられ
るよう構成されている。 また前記炉室19内には、るつぼ29の載置用
係合部30を複数個遊星状に配置した回転テーブ
ル31がその下面中心を、炉底32の中央を貫い
て炉室19内に上向に突出した前記垂直軸26の
上端に係合載置される。 なお、33は温度センサー、34は温度制御盤
である。 この考案になる傾斜回転撹拌式ガラスビード作
製装置は以上のような構造となつていて、これを
使用する場合は炉室19の温度を電気抵抗発熱体
18により各種酸化物を溶融する為必要な温度に
昇温し、白金るつぼ29に試料及び融解剤を入
れ、回転テーブル31上の複数の係合部30に載
置する。 次に回転テーブル31を可変速電動駆動装置2
8により水平状態において数分間回転させたる
後、回転テーブル28の回転はそのまま継続しな
がら炉体傾動用のハンドル17を操作して炉体7
を30゜〜60゜傾斜せしめる。 この状態で一定時間溶融加熱を行うと溶融され
た試料は、回転テーブル31が傾斜回転を行うの
でるつぼ29内で自動的に緩やかに撹拌され、均
質で気泡のない状態になり、しかる後炉室19外
にるつぼ29を取出し放冷する。室温まで冷却し
たガラスビードはるつぼ29から自然に剥離し簡
単に取出すことが出来る。 また本考案に成る装置では同時に複数個のガラ
スビードが製作出来、しかも機構的に振動を与え
るものでないので静粛であり、また溶融物の飛散
もなく、且つ出来上つたガラスビード面が従来に
比べ著しく平滑である等数々の特徴を有するもの
である。 第5図は、酸化物0.4g、融解剤6g、1100℃、
20分間溶融後取出し、手動にて撹拌した場合のガ
ラスビードの平面図である。また第6図は酸化物
0.4g、融解剤6g、1100℃、20分間本考案に係
る装置で撹拌した場合のガラスビードの平面図で
ある。この第5図及び第6図から本考案に係る装
置で作つたガラスビードは十分撹拌されており、
むらのない優れたガラスビード試料であることが
理解出来る。 また、この第5図及び第6図に示したガラスビ
ードを分析比較した結果を次の表に示す。
This invention relates to an apparatus for producing glass beads used for fluorescent X-ray analysis. Recently, when performing fluorescent X-ray analysis of various oxides such as iron ore other than steel, slag, cement glass, and scale, the conventional briquetting method of finely pulverizing and press molding has been used as a sample preparation method for powder samples. On behalf of
The glass bead method, which creates homogeneous glass disks (glass beads) by adding a melting agent to a sample and heating it to melt it, then cooling the entire melting crucible without injecting the melt into a mold or transferring the melt, is attracting attention. It started to be done. However, in conventional glass bead samplers, a platinum crucible containing a sample is melted by placing it in an electric resistance heating furnace or a high frequency heating furnace, then taking it out using a gripper, and manually stirring the molten sample in the platinum crucible. Methods such as casting into a graphite mold, or stirring by shaking a platinum crucible up and down electrically instead of stirring manually, were used, but in either method, when casting into a graphite mold, the molten metal However, since it cannot be automatically stirred, homogeneous glass beads cannot be obtained and air bubbles remain inside the glass beads, and since slow cooling is difficult, the glass beads tend to crack during cooling. In addition, the surface of the graphite mold becomes rough at high temperatures, and the surface of the glass bead (the surface in contact with the graphite) often does not finish smoothly. Furthermore, high-frequency heating furnaces require government procedures for installation and have the disadvantage of being expensive. Furthermore, the method of stirring the platinum crucible by shaking it up and down may cause the molten sample to scatter, the stirring may not be sufficient and homogeneous glass beads cannot be formed, air bubbles may remain in the glass bead, cracks may easily occur, and efficiency may be reduced. It had some drawbacks, such as not being accurate. The present invention was devised to eliminate such drawbacks of the conventional system, and one embodiment thereof will be described below with reference to FIGS. 1 to 4. Reference numeral 1 denotes a base, which is composed of a bottom part 2 and left and right vertical parts 3 and 4, and bearings 5 and 6 are mounted on the left and right vertical parts 3 and 4.
is provided. Reference numeral 7 denotes a heating furnace body in the shape of a rectangular parallelepiped, and horizontal shafts 10 and 11 protruding from the center portions of left and right walls 8 and 9 are rotatably supported by the bearings 5 and 6, and one horizontal shaft 11 is rotatably supported by the bearings 5 and 6. This bearing 6
The worm wheel 12 is fitted and fixed on the extension. A horizontal worm shaft 15 extending in the front-rear direction is rotatably supported on the vertical portion 4 of the base 1 via a bearing 13, and a worm 16 fitted and fixed to the worm shaft 15 meshes with the worm wheel 12. A handle 17 is attached to the front end of the worm shaft 15. Therefore, handle 17
By turning the handle 17, the furnace body 7 can be rotated to an arbitrary tilted position, and by stopping the handle 17, the furnace body 7 can be held stopped at an arbitrary position. That is, worm wheel 1
2, worm 16, worm shaft 15, handle 1
7 constitutes a manual tilting device 14. The heating furnace body 7 has electrical resistance heating elements 18 disposed at important points in the furnace, and the six walls surrounding the furnace chamber 19 are made of highly insulating material, and the front wall can be opened and closed. It serves as a furnace lid 20, and when opened, the furnace chamber 19
It is possible to easily maintain and manage the furnace and take out and take out crucibles, etc., and when it is closed, the furnace chamber 19
It is manufactured to provide sufficient insulation inside and out. A suspension support frame 21 is suspended and fixed below the furnace body 7,
Further, the lower part of the vertical shaft 26, which is rotatably supported by shaft supports 24 and 25 provided on the upper cross beam 22 and the lower cross beam 23 that constitute the suspension support frame 21, is connected to the large gear 2.
It is connected to a known variable speed electric drive device 28 including 7, and is configured to provide an arbitrary rotational speed (for example, 1 r.pm). In addition, in the furnace chamber 19, a rotary table 31 having a plurality of engagement parts 30 for placing the crucibles 29 arranged in a planetary manner passes the center of the lower surface of the rotary table 31 through the center of the furnace bottom 32, and moves upward into the furnace chamber 19. The vertical shaft 26 is engaged with and placed on the upper end of the vertical shaft 26 that protrudes in the direction. Note that 33 is a temperature sensor, and 34 is a temperature control panel. The tilted rotation stirring type glass bead manufacturing device devised has the above-mentioned structure, and when this device is used, the temperature of the furnace chamber 19 is controlled by the electrical resistance heating element 18 to melt various oxides. The sample and melting agent are placed in the platinum crucible 29 and placed on the plurality of engaging portions 30 on the rotary table 31. Next, the rotary table 31 is moved to the variable speed electric drive device 2.
8 for several minutes in a horizontal state, the furnace body 7 is rotated by operating the handle 17 for tilting the furnace body while continuing to rotate the rotary table 28.
Tilt it between 30° and 60°. When melting and heating is performed for a certain period of time in this state, the molten sample is automatically and gently stirred in the crucible 29 as the rotary table 31 rotates at an angle, making it homogeneous and bubble-free, and then entering the furnace chamber. 19 Take out the crucible 29 outside and leave it to cool. The glass beads cooled to room temperature naturally peel off from the crucible 29 and can be easily taken out. In addition, the device of the present invention can produce multiple glass beads at the same time, is quiet because it does not mechanically vibrate, does not scatter melt, and has a smoother surface than conventional glass beads. It has many characteristics such as being extremely smooth. Figure 5 shows 0.4g of oxide, 6g of melting agent, 1100℃,
FIG. 2 is a plan view of glass beads taken out after melting for 20 minutes and manually stirred. Also, Figure 6 shows the oxide
0.4 g of melting agent, 6 g of melting agent, and stirred at 1100° C. for 20 minutes using the apparatus according to the present invention. FIG. From FIGS. 5 and 6, it can be seen that the glass beads made with the device according to the present invention are sufficiently stirred.
It can be seen that this is an excellent glass bead sample with no unevenness. Further, the results of analysis and comparison of the glass beads shown in FIGS. 5 and 6 are shown in the following table.

【表】 この表から分かる如く本考案に係る装置により
作つたガラスビードは、従来法により作つたガラ
スビードに比べ分析精度が極めて高く信頼性に富
むものである。 以上述べた通り本考案に成るX線分析用傾斜回
転撹拌式ガラスビード作製装置は、炉底32の中
央を貫いて回転可能に支承した垂直軸26の下部
に電動駆動装置28を連結し、またるつぼ載置係
合部30を複数個遊星状に配置した回転テーブル
31の下面中心を炉内における前記垂直軸26の
上端に係合載置し、かつ炉体7の外面両側に突出
した水平軸10,11を基台1に回動可能に支承
し、しかも炉体7を任意の傾斜位置まで回動させ
ると共に、該任意位置で停止状態を保持させるこ
との可能な手動傾動装置14を設けてなるもので
あり、高品質の螢光X線分析用ガラスビード作製
を可能ならしめたものであり、構造が簡単で操作
が容易であり実用性が極めて高いものである。
[Table] As can be seen from this table, the glass beads made by the apparatus according to the present invention have extremely high analytical accuracy and are highly reliable compared to glass beads made by the conventional method. As described above, the tilted rotation stirring type glass bead manufacturing device for X-ray analysis according to the present invention has an electric drive device 28 connected to the lower part of the vertical shaft 26 which is rotatably supported through the center of the furnace bottom 32. The center of the lower surface of a rotary table 31 on which a plurality of crucible mounting engagement parts 30 are arranged in a planetary manner is engaged with and mounted on the upper end of the vertical shaft 26 in the furnace, and a horizontal shaft protrudes from both sides of the outer surface of the furnace body 7. 10 and 11 are rotatably supported on the base 1, and a manual tilting device 14 is provided which is capable of rotating the furnace body 7 to an arbitrary tilted position and keeping it stopped at the arbitrary position. This makes it possible to produce high-quality glass beads for fluorescent X-ray analysis, and the structure is simple, easy to operate, and extremely practical.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの考案に係る傾斜回転撹拌式ガラスビ
ード作製装置の一実施例を示すもので、第1図は
装置全体の斜視外観図、第2図は装置全体の正面
図、第3図は回転テーブルの平面図、第4図は回
転テーブルの側面図である。第5図は従来の手動
法により作つたガラスビードの平面図、第6図は
本考案の装置により作つたガラスビードの平面図
である。 7……加熱炉体、10,11……水平軸、14
……手動傾動装置、26……垂直軸、28……可
変速電動駆動装置、30……係合部、31……回
転テーブル、32……炉底。
The drawings show one embodiment of the tilted rotary stirring type glass bead making device according to this invention, in which Fig. 1 is a perspective external view of the whole device, Fig. 2 is a front view of the whole device, Fig. 3 is a plan view of the rotary table, and Fig. 4 is a side view of the rotary table. Fig. 5 is a plan view of glass beads made by the conventional manual method, and Fig. 6 is a plan view of glass beads made by the device of this invention. 7 ... heating furnace body, 10, 11 ... horizontal axis, 14
......Manual tilting device, 26...Vertical shaft, 28...Variable speed electric drive device, 30...Engagement portion, 31...Rotary table, 32...Furnace bottom.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 炉底の中央を貫いて回転可能に支承した垂直軸
の下部に電動駆動装置を連結し、またるつぼ載置
係合部を複数個遊星状に配置した回転テーブルの
下面中心を炉内における前記垂直軸の上端に係合
載置し、かつ炉体外面両側に突出した水平軸を基
台に回動可能に支承し、しかも炉体を任意の傾斜
位置まで回動させると共に、該任意位置で停止状
態を保持させることの可能な手動傾動装置を設け
てなる螢光X線分析用傾斜回転撹拌式ガラスビー
ド作製装置。
An electric drive device is connected to the lower part of a vertical shaft rotatably supported through the center of the furnace bottom, and the center of the lower surface of the rotary table has a plurality of crucible mounting engagement parts arranged in a planetary manner. A horizontal shaft that is engaged with the upper end of the shaft and protrudes from both sides of the outer surface of the furnace body is rotatably supported on the base, and the furnace body can be rotated to an arbitrary tilted position and stopped at the arbitrary position. A tilting rotation stirring type glass bead manufacturing device for fluorescent X-ray analysis, which is equipped with a manual tilting device that can maintain the state.
JP3405182U 1982-03-10 1982-03-10 Inclined rotation stirring type glass bead production equipment Granted JPS58137437U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3405182U JPS58137437U (en) 1982-03-10 1982-03-10 Inclined rotation stirring type glass bead production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3405182U JPS58137437U (en) 1982-03-10 1982-03-10 Inclined rotation stirring type glass bead production equipment

Publications (2)

Publication Number Publication Date
JPS58137437U JPS58137437U (en) 1983-09-16
JPS6319302Y2 true JPS6319302Y2 (en) 1988-05-30

Family

ID=30045565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3405182U Granted JPS58137437U (en) 1982-03-10 1982-03-10 Inclined rotation stirring type glass bead production equipment

Country Status (1)

Country Link
JP (1) JPS58137437U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634339Y2 (en) * 1989-10-18 1994-09-07 理学電機工業株式会社 Glass bead forming equipment
CN104445866B (en) * 2014-11-28 2016-09-14 湖北新华光信息材料有限公司 Optical glass smelting furnace and utilize the method that this smelting furnace carries out glass properties contrast

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242357Y2 (en) * 1977-09-06 1987-10-30

Also Published As

Publication number Publication date
JPS58137437U (en) 1983-09-16

Similar Documents

Publication Publication Date Title
US5315091A (en) Resistively heated sample preparation apparatus
JPS6319302Y2 (en)
US3669435A (en) All-ceramic glass making system
JPS597647B2 (en) Manufacturing method for anisotropic glass/ceramics panels
JPH0147729B2 (en)
JPH0335595B2 (en)
JP2002026405A (en) Thermoelectric material, and method and device for manufacturing it
JPS6242357Y2 (en)
JP6384800B2 (en) Method for producing glass beads for X-ray fluorescence analyzer
US5776397A (en) Method of producing zirconia fused cast refractories
JPH0470379B2 (en)
CN220649062U (en) Smelting furnace for cast iron
CN212512454U (en) Box type resistance furnace capable of turning over materials
JP2615292B2 (en) Method for manufacturing quartz glass crucible
JPH04182052A (en) Precise casting device for ti or ti base alloy
JPS648917B2 (en)
JPH0446903B2 (en)
JP3559853B2 (en) Glass melting apparatus and melting method
US3739066A (en) Electrode remelting arrangement
CN220472281U (en) Crucible shaking device for alkali fusion sample
JPS6234294Y2 (en)
SU1378572A1 (en) Method of producing glass-like specimens for radiofluorescent analysis of powder materials
CN211425050U (en) Copper smelting furnace for producing copper sculpture
JP3302133B2 (en) Differential pressure casting equipment
JP3081430U (en) melting furnace