JPS63108005A - Catalyst for highly stereoregular polymerization of alpha-olefins - Google Patents

Catalyst for highly stereoregular polymerization of alpha-olefins

Info

Publication number
JPS63108005A
JPS63108005A JP25076986A JP25076986A JPS63108005A JP S63108005 A JPS63108005 A JP S63108005A JP 25076986 A JP25076986 A JP 25076986A JP 25076986 A JP25076986 A JP 25076986A JP S63108005 A JPS63108005 A JP S63108005A
Authority
JP
Japan
Prior art keywords
catalyst
alkyl group
solid
titanium tetrachloride
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25076986A
Other languages
Japanese (ja)
Other versions
JPH0832739B2 (en
Inventor
Minoru Terano
稔 寺野
Hirokazu Soga
弘和 曽我
Masuo Inoue
益男 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP25076986A priority Critical patent/JPH0832739B2/en
Publication of JPS63108005A publication Critical patent/JPS63108005A/en
Publication of JPH0832739B2 publication Critical patent/JPH0832739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To obtain the title catalyst which is inexpensive and highly active and can give a highly stereoregular polymer, by combining a specified solid catalyst component with a silicon compound and an organoaluminum compound. CONSTITUTION:A dialkoxymagnesium is suspended in a liquid aromatic hydrocarbon, and titanium tetrachloride and an aromatic dicarboxylic diester are added to the solution and reacted at 80-135 deg.C. The obtained solid substance is separated and further reacted with titanium tetrachloride, and the formed solid product is contacted with a silicon compound of the formula (wherein R is alkyl, vinyl or the like, R' is alkyl and 0<=m<4) and further contacted with an organoaluminum compound to produce a solid catalyst component. This solid catalyst component is combined with a silicon compound (e.g., tetramethoxysilane) and an organoaluminum compound (e.g., triethylaluminum) to form the title polymerization catalyst.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はα−オレフィン類の重合に供した際に、高活性
を維持しつつ、極めて高い立体規則性を有する重合体を
得ることのできる高性能触媒に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is capable of obtaining a polymer having extremely high stereoregularity while maintaining high activity when subjected to the polymerization of α-olefins. It concerns high performance catalysts.

〔従来技術とその問題点〕[Prior art and its problems]

プロピレンの立体規則性重合用触媒としては、従来周知
の三塩化チタンと有機アルミニウム化合物を組合せた触
媒以外に、新しい型のいわゆる担持型触媒として四塩化
チタンを塩化マグネシウムに電子供与体と共に担持して
、有機アルミニウム化合物および電子供与体と組合せて
用いるものをはじめとする数多くの新型触媒が開発され
提案されている。しかし、これらいずれの触媒において
も生成重合体の立体規則性の点に関して改善の余地を残
しており、高い立体規則性を必要とする場合には重合時
に多量の電子供与体を添加使用することが実用上不可欠
とされていた。ところが、斯かる手法をもってしても極
端に高い立体規則性を有する重合体は得られず、特に高
活性を維持しつつ、しかも極めて高い立体規則性をも得
ることは全く不可能であった。
Catalysts for the stereoregular polymerization of propylene include, in addition to the well-known catalyst combining titanium trichloride and an organoaluminum compound, a new type of supported catalyst in which titanium tetrachloride is supported on magnesium chloride together with an electron donor. A number of new catalysts have been developed and proposed, including those used in combination with organoaluminum compounds and electron donors. However, in all of these catalysts, there is still room for improvement in terms of the stereoregularity of the resulting polymer, and if high stereoregularity is required, it is recommended to add a large amount of electron donor during polymerization. It was considered indispensable for practical purposes. However, even with such a method, a polymer having extremely high stereoregularity could not be obtained, and it was completely impossible to obtain extremely high stereoregularity while maintaining particularly high activity.

また、従来のいわゆる相持型触媒においては触媒中に含
まれるチタン原子に対して圧到的大過剰の有機アルミニ
ウム化合物を用いることが必要であり、これはポリオレ
フィンのコストノ」二昇につながるばかりでなく、生成
重合体にアルミニウム成分残渣として含まれるために、
品質低下の原因ともなっていた。しだがって有機アルミ
ニウム化合物の使用量を減少させることは解決すべき技
術的課題であったが、単に有機アルミニウム化合物の使
用量を減少させるのみでは触媒の活性が低下し、本発明
者等の知見によれば生成重合体の嵩比重も低下する。
In addition, in conventional so-called supported catalysts, it is necessary to use an extremely large excess of organoaluminum compounds relative to the titanium atoms contained in the catalyst, which not only leads to an increase in the cost of polyolefins but also , because it is included as an aluminum component residue in the produced polymer,
It was also a cause of quality deterioration. Therefore, reducing the amount of organoaluminum compounds used was a technical problem to be solved, but simply reducing the amount of organoaluminum compounds used would reduce the activity of the catalyst, and the inventors of the present invention According to findings, the bulk specific gravity of the resulting polymer also decreases.

さらに、通常、前記電子供与体は有機アルミニウム化合
物に対して一定のモル比で用いられるため、従来一般に
行なわれてきた方法では、固体触媒成分に対してかなり
多量に使用することが必要であった。
Furthermore, since the electron donor is usually used in a fixed molar ratio to the organoaluminum compound, in conventional methods, it was necessary to use it in a fairly large amount relative to the solid catalyst component. .

本発明は、かかる従来技術における種々の問題点を解決
し得る新規なα−オレフィン類の高立体規則性重合用触
媒を提供することを目的とするものである。
The object of the present invention is to provide a novel catalyst for highly stereoregular polymerization of α-olefins that can solve the various problems in the prior art.

〔発明の開示〕[Disclosure of the invention]

本発明は、 (I)  ジアルコキシマグネシウム(a)を常温で液
体の芳香族炭化水素(bl中に懸濁させ、しかる後に四
塩化チタン(c)および芳香族ジカルボン酸のジエステ
ル(d)と80℃ないし135℃の温度域で反応させて
得られた固体物質を分離して、これにさらに四塩化チタ
ン(c)を反応させて固体生成物を得、該固体生成物に
一般式siRm(oR/)4−m (式中Rはアルキル
基、シクロアルキル基、ビニル基またはアリール基であ
り、R′はアルキル基である。Rがアルキル基である場
合はそのアルキル基はR′と同一であってもよい。mは
0≦m<4である。)で表わされるケイ素化合物(e)
を接触させ、次いで有機アルミニウム化合物(f)を接
触させることによって得られる固体触媒成分;(IT)
  一般式SiRm(OR’)4−m (式中Rはアル
キル基、シクロアルギル基、ビニル基またはアリール基
であり、R′はアルキル基である。Rがアルキル基であ
る場合はそのアルキル基はR′と同一であってもよい。
The present invention comprises: (I) Dialkoxymagnesium (a) is suspended in an aromatic hydrocarbon (bl) which is liquid at room temperature, and then titanium tetrachloride (c) and a diester of an aromatic dicarboxylic acid (d) are suspended at room temperature. The solid material obtained by the reaction in the temperature range of 135 °C to 135 °C is separated and further reacted with titanium tetrachloride (c) to obtain a solid product, which has the general formula siRm (oR /) 4-m (In the formula, R is an alkyl group, cycloalkyl group, vinyl group, or aryl group, and R' is an alkyl group. When R is an alkyl group, the alkyl group is the same as R'. silicon compound (e), where m is 0≦m<4.
A solid catalyst component obtained by contacting with the organic aluminum compound (f); (IT)
General formula SiRm(OR')4-m (wherein R is an alkyl group, cycloargyl group, vinyl group, or aryl group, and R' is an alkyl group. When R is an alkyl group, the alkyl group is R ’ may be the same as ’.

mは0≦m<4である。)で表わされるケイ素化合物 および (■)有機アルミニウム化合物 ヨリなることを特徴とするα−オレフィン類の高立体規
則性重合用触媒を提供するものである。
m is 0≦m<4. The present invention provides a catalyst for highly stereoregular polymerization of α-olefins, characterized by comprising a silicon compound represented by () and an organoaluminum compound (■).

本発明に係るオレフィン類重合用触媒において使用され
る前記(a)のジアルコキシマグネシウム(以下単に(
a)物質という。)としては、ジェトキシマグネシウム
、ジブトキシマグネシウム、ジフェノキシマグネシウム
、ジプロポキシマグネシウム、ジイソブトキシマグネシ
ウム、ジイソプロポキシマグネシウム等があげられるが
中でもジェトキシマグネシウム、ジプロポキシマグネシ
ウムが好ましい。
Dialkoxymagnesium (hereinafter simply referred to as (a)) used in the catalyst for polymerizing olefins according to the present invention
a) It is called a substance. ) include jetoxymagnesium, dibutoxymagnesium, diphenoxymagnesium, dipropoxymagnesium, diisobutoxymagnesium, diisopropoxymagnesium, etc. Among them, jetoxymagnesium and dipropoxymagnesium are preferred.

本発明に係るオレフィン類重合用触媒で用いられる前記
(blの常温で液体の芳香族炭化水素(以下単に(1)
)物質という。)としてはトルエン、キシレン、エチル
ベンゼン、フロビルベンゼン、ブチルベンゼンなどがあ
げられる。
The aromatic hydrocarbon (hereinafter simply referred to as (1)) which is liquid at room temperature (bl) used in the catalyst for polymerizing olefins according to the present invention
) called substance. ) include toluene, xylene, ethylbenzene, flobylbenzene, butylbenzene, etc.

本発明に係るオレフィン類重合用触媒で用いられる前記
(d、)の芳香族ジカルボン酸のジエステル(以下単に
(d)物質という。)としては、フタル酸のりエステル
が好ましく、例えば、ジメチルフタレート、ジエチルツ
クレート、ジメチルフタレート、ジインプロピルツクレ
ート、ジブチルフタレ−1・、ジイソブチルフタレート
、シアミルフタレート、ジイソアミルフタレート、エチ
ルブチルフタレート、エチルイソブチルフタV−ト、エ
チルプロピルフタレートなどがあげられる。
As the aromatic dicarboxylic acid diester (d) (hereinafter simply referred to as (d) substance) used in the catalyst for polymerizing olefins according to the present invention, phthalic acid glue ester is preferable, such as dimethyl phthalate, diethyl Examples include dimethyl phthalate, diimpropyl phthalate, dibutyl phthalate, diisobutyl phthalate, cyamyl phthalate, diisoamyl phthalate, ethyl butyl phthalate, ethyl isobutyl phthalate, and ethylpropyl phthalate.

本発明に係るオレフィン類重合用触媒において使用され
る前記(e)のケイ素化合物(以下単に(θ)物質とい
う。)としてはアルコキシシラン、フェニルアルコキシ
シラン、アルキルアルコキシシラン、ビニルアルコキシ
シランなどがhけられるが具体的例としてテトラメトキ
シシラン、テトラエトキシシラン、フェニルトリメトキ
シシラン、フェニルトリエトキシシラン、フェニルトリ
プロポキシシラン、フェニルトリイソプロポキシシラン
、ジフェニルジメトキシシラン、ジフェニルジェトキシ
7ラン、エチルトリメトキシシラン、メチルトリメi・
キシシラン、メチルトリエトキシシラン、エチルトリエ
トキシシラン、エチルトリイソプロポキシシラン、ビニ
ルトリメトキシシラン、ビニルトリエトキシシランなど
をあげることができる。
Examples of the silicon compound (e) (hereinafter simply referred to as (θ) substance) used in the catalyst for polymerizing olefins according to the present invention include alkoxysilane, phenylalkoxysilane, alkylalkoxysilane, vinylalkoxysilane, etc. Specific examples include tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltripropoxysilane, phenyltriisopropoxysilane, diphenyldimethoxysilane, diphenyljethoxy 7rane, ethyltrimethoxysilane, Methyltrimei・
Examples include xysilane, methyltriethoxysilane, ethyltriethoxysilane, ethyltriisopropoxysilane, vinyltrimethoxysilane, and vinyltriethoxysilane.

本発明に係るオレフィン類重合用触媒において用いられ
る前記(TT)のケイ素化合物としては(e)物質とし
て上述したものの中から適当なものを選択して使用する
ことができる。
As the silicon compound (TT) used in the catalyst for polymerizing olefins according to the present invention, an appropriate one can be selected from among those mentioned above as the substance (e).

本発明に係るオレフィン類重合用触媒において用いられ
る前記(f) tたけに)の有機アルミニウム化合物と
しては、トリアルキルアルミニウム、ジアルキルアルミ
ニウムハライド、アルキルアルミニウムシバライド、ア
ルキルアルミニウムセスキハライドおよびこれらの混合
物があげられる。
Examples of the organoaluminum compound (f) above used in the catalyst for polymerizing olefins according to the present invention include trialkylaluminum, dialkylaluminum halide, alkylaluminum civalide, alkylaluminum sesquihalide, and mixtures thereof. It will be done.

前述の固体生成物を得る際の第1の好ましい態様として
は、(a)物質を(b)物質中に懸濁させ、しかる後に
四塩化チタンを加え、80℃以上に昇温した後(d)物
質を添加して80℃ないし135℃の温度域で反応させ
る方法があげられる。また、第2の好ましい態様として
は、四塩化チタンと(d)物質を室温で添加した後、8
0℃ないし135℃の温度域で反応させる方法があげら
れる。なお、上述の四塩化チタンは、これを常温で液体
の芳香族炭化水素で希釈して用いることができる。
A first preferred embodiment for obtaining the above-mentioned solid product is to suspend (a) the substance in the (b) substance, then add titanium tetrachloride, raise the temperature to 80°C or higher, and then (d) ) A method of adding a substance and reacting in a temperature range of 80°C to 135°C is mentioned. In a second preferred embodiment, after adding titanium tetrachloride and the substance (d) at room temperature,
An example is a method in which the reaction is carried out in a temperature range of 0°C to 135°C. Note that the above-mentioned titanium tetrachloride can be used by diluting it with an aromatic hydrocarbon that is liquid at room temperature.

前述の固体触媒成分の調製における各物質の使用割合は
通常(a)物質1グに対し、(d)物質は0.01〜2
f、好ましくは0.1〜1fの範囲であり、四塩化チタ
ンは0.1g以上、好マ、シ<は12以上の範囲である
。また、(1))物質は、任意の割合で用いられるが、
懸濁液を形成し得る量であることが必要である。
The ratio of each substance used in the preparation of the above-mentioned solid catalyst component is usually 1 g of (a) substance and 0.01 to 2 g of (d) substance.
f, preferably in the range of 0.1 to 1 f, titanium tetrachloride in the range of 0.1 g or more, and preferably in the range of 12 or more. In addition, (1)) substances may be used in any proportion,
It is necessary that the amount is sufficient to form a suspension.

さらに、各原料物質の反応および接触は通常0℃から用
いられるチタン・・ロケ゛ン化物の沸点までの温度で]
00時間以下、好ましくは10時間以下の範囲で行なわ
れる。
Furthermore, the reaction and contact of each raw material is usually carried out at a temperature from 0°C to the boiling point of the titanium locide used]
It is carried out within a range of 00 hours or less, preferably 10 hours or less.

以上の如くして得られた固体生成物に(e)物質を接触
させ、次いで有機アルミニウム化合物(f)を接触させ
て固体触媒成分を得るがこの際通常該固体生成物12に
対し、(e)物質は0.1〜57、有機アルミニウム化
合物(f)は0.1〜]OL?の範囲で用いられる。上
記の(e)物質との接触あるいは有機アルミニウム化合
物(f)との接触はいずれも100℃以下の温度で10
0時間以下、好1しくけ一1〇− 10時間以内行なわれる。
The solid product obtained as described above is brought into contact with the substance (e) and then brought into contact with the organoaluminum compound (f) to obtain a solid catalyst component. ) The substance is 0.1-57, the organoaluminum compound (f) is 0.1-]OL? Used within the range of Contact with the substance (e) above or contact with the organoaluminum compound (f) shall be carried out at a temperature of 100°C or less.
The test is carried out within 0 hours, preferably within 10-10 hours.

前記の固体生成物は(e)物質との接触に先だち適当な
有機溶媒を用いて洗浄される。
(e) The solid product is washed with a suitable organic solvent prior to contact with the substance.

捷だ、上記の(d)物質、(b)物質、四塩化チタンお
よび(d)物質よシ得られる固体物質および上記の固体
触媒成分はいずれも必要に応じて適時適当な有機溶媒を
用いて洗浄することが好ましい。
The above (d) substance, the solid substance obtained from the (b) substance, titanium tetrachloride and the (d) substance, and the above solid catalyst component are all treated as necessary using an appropriate organic solvent. Washing is preferred.

上述の操作は酸素および水分等の不存在下に行々われる
ことか好ましい。
Preferably, the above operations are carried out in the absence of oxygen, moisture, and the like.

以上の如くして製造された固体触媒成分は、前述のケイ
素化合物および有機アルミニウム化合物と組合せてオレ
フィン類重合用触媒を形成する。使用される有機アルミ
ニウム化合物の量は特に限定されるものではないが前述
の如き理由で少ない方が好ましく、通常触媒成分中のチ
タン原子のモル当りモル比で1〜50の範囲で用いられ
る。ただし、十分な性能を得られる範囲であれば、概略
上記モル比を満足していればよい。また、該ケイ素化合
物は有機アルミニウム化合物のモル当りモル比で1以下
、好ましくは0.005〜0.5の範囲で用いられる。
The solid catalyst component produced as described above is combined with the silicon compound and organoaluminum compound described above to form a catalyst for polymerizing olefins. Although the amount of the organoaluminum compound used is not particularly limited, it is preferably small for the reasons mentioned above, and is usually used in a molar ratio of 1 to 50 per mole of titanium atoms in the catalyst component. However, as long as sufficient performance can be obtained, approximately the above molar ratio may be satisfied. Further, the silicon compound is used in a molar ratio of 1 or less, preferably in the range of 0.005 to 0.5 per mole of the organoaluminum compound.

重合は有機溶媒の存在下でも或いは不存在下でも行なう
ことができ、まだオレフィン単量体は気体および液体の
いずれの状態でも用いることができる。重合温度は20
0℃以下好ましくは100℃以下であり、重合圧力は1
.0OKf/c1n2. G以下、好ましくは5Q K
g/lyn”・G以下である。
Polymerization can be carried out in the presence or absence of organic solvents, yet the olefin monomers can be used in both gaseous and liquid states. The polymerization temperature is 20
The temperature is 0°C or lower, preferably 100°C or lower, and the polymerization pressure is 1
.. 0OKf/c1n2. G or less, preferably 5Q K
g/lyn”・G or less.

本発明に係る触媒を用いて単独重合または共重合される
α−オレフィン類はプロピレン、1−ブテン等である。
The α-olefins that are homopolymerized or copolymerized using the catalyst according to the present invention include propylene, 1-butene, and the like.

〔発明の効果〕〔Effect of the invention〕

本発明に係る触媒によれば従来実用上全く得られなかっ
たよう寿高い立体規則性を持つ重合体を得ることができ
、しかも触媒の活性も高度に維持することができる。
According to the catalyst of the present invention, it is possible to obtain a polymer having a long stereoregularity that has never been practically obtained in the past, and the activity of the catalyst can also be maintained at a high level.

本発明の触媒によれば従来の技術と比較して、重合時の
有機アルミニウム化合物やケイ素化合物の使用量を著し
く減少させることができる。
According to the catalyst of the present invention, the amount of organoaluminum compounds and silicon compounds used during polymerization can be significantly reduced compared to conventional techniques.

しかも触媒活性や生成重合体の嵩比重の低下が起らない
という効果があり、このことはポリオレフィンの製造コ
ストを低減できるという大きな利点をもたらし、また、
有機アルミニウム化合物やケイ素化合物に起因する生成
重合体中の残渣を少なくできるという利点をももたらす
Moreover, it has the effect of not causing a decrease in the catalyst activity or the bulk specific gravity of the produced polymer, which has the great advantage of reducing the manufacturing cost of polyolefins, and also
Another advantage is that the amount of residue in the produced polymer due to organoaluminum compounds and silicon compounds can be reduced.

また、本発明の触媒によれば重合時に用いるケイ素化合
物量を大幅に減少することができるため生成重合体にお
ける臭気の問題を実質上解決することができ、このこと
は、特にバルク重合や気相重合においてより大きな利点
となる。
In addition, according to the catalyst of the present invention, the amount of silicon compound used during polymerization can be significantly reduced, so that the problem of odor in the resulting polymer can be substantially solved. This is a greater advantage in polymerization.

さらに、従来、触媒の単位時間当りの活性が、重合の経
過に伴なって大幅に低下するという、いわゆる高活性担
持型触媒における共通の欠点が存在したが、本発明に係
る触媒においては、重−置時間の経過に伴なう活性の低
下が、従来公知の触媒に比較し、極めて小さいため、共
重合等重合時間をより長くする場合にも有用である。
Furthermore, conventionally, there was a common drawback in so-called highly active supported catalysts that the activity per unit time of the catalyst decreased significantly as the polymerization progressed, but in the catalyst according to the present invention, - Since the decrease in activity with the elapse of the standing time is extremely small compared to conventionally known catalysts, it is also useful in cases where the polymerization time is longer, such as in copolymerization.

さらに付言すると、工業的なオレフィン重合体の製造に
おいては重合時に水素を共存させることがMI制御など
の点から一般的とされているが、従来の塩化マグネシウ
ムを担体とし、有機−13= カルボン酸エステルを用いた触媒は水素共存下では活性
および立体規則性が大幅に低下するという欠点を有して
いた。しかし、本発明に係る触媒を用いて水素共存下に
オレフィンの重合を行なった場合、特に生成1重合体の
MIが極めて高い場合においても、活性および立体規則
性は低下しない。工業的なポリオレフィンの製造におい
ては重合装置の能力、後処理工程の能力などの点で生成
重合体の嵩比重が非常に大きな問題となるが、本発明に
係る触媒は、この点においても、極めて優れた特性を有
している。
Furthermore, in the production of industrial olefin polymers, it is common to allow hydrogen to coexist during polymerization from the point of view of MI control. Catalysts using esters have the disadvantage that their activity and stereoregularity are significantly reduced in the presence of hydrogen. However, when olefin polymerization is carried out in the presence of hydrogen using the catalyst according to the present invention, the activity and stereoregularity do not decrease, especially even when the MI of the product 1 polymer is extremely high. In the industrial production of polyolefins, the bulk specific gravity of the produced polymer is a very big problem in terms of the capacity of the polymerization equipment, the capacity of the post-treatment process, etc., but the catalyst according to the present invention is extremely effective in this respect as well. It has excellent properties.

〔実施例、比較例゛〕[Example, Comparative Example]

以下に、本発明を実施例および比較例によりさらに具体
的に説明する。
The present invention will be explained in more detail below using Examples and Comparative Examples.

実施例1 〈固体触媒成分の調製〉 窒素ガスで充分に置換され、攪拌機を具備した容量20
0m1の丸底フラスコにジェトキシマグネシウム10り
およびトルエン80 mlを装入して懸濁状態としだ。
Example 1 Preparation of solid catalyst component
A 0 ml round bottom flask was charged with 10 g of jetoxymagnesium and 80 ml of toluene to form a suspension.

次いでこの懸濁液に’ricz、 20 ml!−14
= を加え100℃に昇温しでジブチルフタレート2.5m
lを加えた。次いで115℃に昇温して2時間攪拌しな
がら反応させ固体物質を得た。該固体物質を60℃のト
ルエン100mA’で3回洗浄し、新たにl−ルxン8
0 me 1TiCAa 20 ynlを加えて115
℃で2時間攪拌しながら反応させた。
Then add 20 ml of this suspension! -14
= was added and the temperature was raised to 100℃, and 2.5 m of dibutyl phthalate was added.
Added l. Next, the temperature was raised to 115°C, and the mixture was reacted with stirring for 2 hours to obtain a solid substance. The solid material was washed three times with 100 mA' of toluene at 60°C and freshly washed with 100 mA' of toluene at 60°C.
Add 0 me 1TiCAa 20 ynl and make 115
The reaction was allowed to proceed at a temperature of 2 hours with stirring.

反応終了後40℃のn−ヘプタン200−による洗浄を
10回回行−1固体生成物を得た。この際、該固体生成
物中のチタン含有率を測定したところ2.82重量%で
あった次に該固体生成物37を内容積300r/Leの
攪拌装置付丸底フラスコにとり、n−ヘプタン100m
Jおよびジフェニルジメトキシシラン1.0mlを加え
て充分に攪拌した後、トリイソブチルアルミニウム1.
0罰およびジエチルアルミニウムクロライド0.2ml
を加えて室温で2時間攪拌下に反応させた。反応終了後
室温のn−へブタン100mgで5回洗浄し固体触媒成
分とした。なお、この際固体触媒成分中のチタン含有率
を測定したところ2.56重量%であった。
After completion of the reaction, washing with 200°C of n-heptane at 40°C was carried out 10 times to obtain a solid product-1. At this time, the titanium content in the solid product was measured and found to be 2.82% by weight.Next, the solid product 37 was placed in a round bottom flask with an internal volume of 300 r/Le equipped with a stirrer, and 100ml of n-heptane was added.
After adding 1.0 ml of J and diphenyldimethoxysilane and stirring thoroughly, 1.0 ml of triisobutylaluminum was added.
0 punishment and diethyl aluminum chloride 0.2ml
was added and reacted at room temperature for 2 hours with stirring. After the reaction was completed, it was washed five times with 100 mg of n-hebutane at room temperature to obtain a solid catalyst component. At this time, the titanium content in the solid catalyst component was measured and found to be 2.56% by weight.

〈重 合〉 窒素ガスで完全に置換された内容積2.Otの攪拌装置
付オートクレーブに、n−ヘプタン700罰を装入し、
窒素ガス雰囲気を保ちつつトリエチルアルミニウムso
 my 、フェニルトリエトキシシラン10rn?、次
いで前記固体触媒成分19.5m7を装入した。その後
水素がス150罰を装入し70℃に昇温しでプロピレン
ガスを導入しつつ6Kg/crn”・Gの圧力を維持し
て2時間の重合を行々つだ。重合終了後得られた固体重
合体を沢別し、80℃に加温して減圧乾燥した。一方、
r液を凝縮して重合溶媒に溶存す、る重合体の量を(A
)とし、固体重合体の量を(B)とする。また得られた
固体重合体を沸騰n−へブタンで6時間抽出しn−ヘプ
タンに不溶解の重合体を得、この量を(c)とする。
<Polymerization> Internal volume completely replaced with nitrogen gas2. Charge 700 grams of n-heptane into an autoclave with a stirrer,
triethylaluminum so while maintaining a nitrogen gas atmosphere
my, phenyltriethoxysilane 10rn? Then, 19.5 m7 of the solid catalyst component was charged. Thereafter, 150% of hydrogen gas was charged, the temperature was raised to 70°C, and propylene gas was introduced while maintaining a pressure of 6 kg/crn''・G to carry out polymerization for 2 hours. After the polymerization was completed, the obtained The solid polymer was separated, heated to 80°C and dried under reduced pressure.
The amount of polymer dissolved in the polymerization solvent by condensing the r liquid is (A
), and the amount of solid polymer is (B). Further, the obtained solid polymer was extracted with boiling n-heptane for 6 hours to obtain a polymer insoluble in n-heptane, and this amount was designated as (c).

固体触媒成分中シの重合活性(D+を式また結晶性重合
体の収率(E)を式 で表わし、全結晶性重合体の収率(F)を式より求めた
。また生成重合体中の残留塩素を(G)、生成重合体の
MIを(H)、嵩比重を(1)で表わす。得られた結果
は第1表に示す通りである。
The polymerization activity (D+) in the solid catalyst component was expressed by the formula and the yield (E) of the crystalline polymer was expressed by the formula, and the yield (F) of the total crystalline polymer was determined from the formula. The residual chlorine is represented by (G), the MI of the produced polymer is represented by (H), and the bulk specific gravity is represented by (1).The obtained results are shown in Table 1.

実施例2 ジフェニルジメトキシシランの代シにフェニルトリエト
キシシランを用いた以外は実施例1と同様にして実験を
行なった。なお、この際の固体触媒成分中のチタン含有
率は2.51重量%であった。重合に際しては固体触媒
成分19.9■を用いた以外は実施例1と同様にして実
験を行った。得られた結果は、第1表に示す通シである
Example 2 An experiment was conducted in the same manner as in Example 1 except that phenyltriethoxysilane was used in place of diphenyldimethoxysilane. Note that the titanium content in the solid catalyst component at this time was 2.51% by weight. An experiment was carried out in the same manner as in Example 1, except that 19.9 cm of the solid catalyst component was used during the polymerization. The results obtained are as shown in Table 1.

実施例3 ジフェニルジメトキシシランの量を1.5mlとした以
外は実施例1と同様にして実験を行なつた。なお、この
際の固体触媒成分中のチタン含有率は2.60重量%で
あった。重合に際しては固体触媒成分19.21ngを
用いた以外は、実施例1と同様にして実験を行なった。
Example 3 An experiment was carried out in the same manner as in Example 1 except that the amount of diphenyldimethoxysilane was changed to 1.5 ml. Note that the titanium content in the solid catalyst component at this time was 2.60% by weight. An experiment was conducted in the same manner as in Example 1, except that 19.21 ng of the solid catalyst component was used during the polymerization.

得られた結果は第1表に示す通シである。The results obtained are as shown in Table 1.

比較例1 重合時にフェニルトリエトキシシランを使用することな
く、他は、実施例1と同様にして実験を行なった。得ら
れた結果は第1表に示す通りである。
Comparative Example 1 An experiment was conducted in the same manner as in Example 1, except that phenyltriethoxysilane was not used during polymerization. The results obtained are shown in Table 1.

第   1   表Chapter 1 Table

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の理解を助けるだめの模式的図面である
FIG. 1 is a schematic drawing to aid in understanding the invention.

Claims (1)

【特許請求の範囲】 1)( I )ジアルコキシマグネシウム(a)を常温で
液体の芳香族炭化水素(b)中に懸濁させ、しかる後に
、四塩化チタン(c)および芳香族ジカルボン酸のジエ
ステル(d)と80℃ないし135℃の温度域で反応さ
せて得られた固体物質を分離して、これにさらに四塩化
チタン(c)を反応させて固体生成物を得、該固体生成
物に一般式SiRm(OR′)_4_−_m(式中Rは
アルキル基、シクロアルキル基、ビニル基またはアリー
ル基であり、R′はアルキル基である。Rがアルキル基
である場合はそのアルキル基はR′と同一であつてもよ
い。mは0≦m<4である。)で表わされるケイ素化合
物(e)を接触させ、次いで有機アルミニウム化合物(
f)を接触させることによつて得られる固体触媒成分; (II)一般式SiRm(OR′)_4_−_m(式中R
はアルキル基、シクロアルキル基、ビニル基またはアリ
ール基であり、R′はアルキル基である。Rがアルキル
基である場合は、そのアルキル基はR′と同一であつて
もよい。mは0≦m<4である。)で表わされるケイ素
化合物 および (III)有機アルミニウム化合物 よりなることを特徴とするα−オレフィン類の高立体規
則性重合用触媒。 2)上記の固体物質を得る際、ジアルコキシマグネシウ
ム(a)を常温で液体の芳香族炭化水素(b)中に懸濁
させ、しかる後に四塩化チタン(c)を加え、80℃以
上に昇温した後芳香族ジカルボン酸のジエステル(d)
を添加して80℃ないし135℃の温度域で反応させる
ことよりなる特許請求の範囲第1項記載のα−オレフィ
ン類の高立体規則性重合用触媒。 3)前記の固体物質を得る際、四塩化チタン(c)と芳
香族ジカルボン酸のジエステル(d)を室温で添加した
後、80℃ないし135℃の温度域で反応させることよ
りなる特許請求の範囲第1項記載のα−オレフィン類の
高立体規則性重合用触媒。 4)前記の四塩化チタン(c)を常温で液体の芳香族炭
化水素で希釈して用いる特許請求の範囲第1項ないし第
3項のいずれかに記載のα−オレフィン類の高立体規則
性重合用触媒。
[Claims] 1) (I) Dialkoxymagnesium (a) is suspended in a liquid aromatic hydrocarbon (b) at room temperature, and then titanium tetrachloride (c) and an aromatic dicarboxylic acid are suspended in a liquid aromatic hydrocarbon (b). A solid material obtained by reacting with diester (d) at a temperature range of 80° C. to 135° C. is separated, and this is further reacted with titanium tetrachloride (c) to obtain a solid product, and the solid product is to the general formula SiRm(OR')_4_-_m (wherein R is an alkyl group, cycloalkyl group, vinyl group, or aryl group, and R' is an alkyl group. When R is an alkyl group, the alkyl group may be the same as R'; m is 0≦m<4), and then the organoaluminum compound (
f) Solid catalyst component obtained by contacting; (II) general formula SiRm(OR')_4_-_m (in the formula R
is an alkyl group, a cycloalkyl group, a vinyl group or an aryl group, and R' is an alkyl group. When R is an alkyl group, the alkyl group may be the same as R'. m is 0≦m<4. 1. A catalyst for highly stereoregular polymerization of α-olefins, comprising a silicon compound represented by (III) and an organoaluminum compound (III). 2) When obtaining the above solid substance, dialkoxymagnesium (a) is suspended in liquid aromatic hydrocarbon (b) at room temperature, then titanium tetrachloride (c) is added, and the temperature is raised to 80°C or higher. Diesters of aromatic dicarboxylic acids (d) after warming
The catalyst for highly stereoregular polymerization of α-olefins according to claim 1, which comprises adding and reacting at a temperature range of 80°C to 135°C. 3) When obtaining the solid substance, titanium tetrachloride (c) and diester of aromatic dicarboxylic acid (d) are added at room temperature and then reacted at a temperature range of 80°C to 135°C. A catalyst for highly stereoregular polymerization of α-olefins according to item 1. 4) High stereoregularity of α-olefins according to any one of claims 1 to 3, in which the titanium tetrachloride (c) is diluted with an aromatic hydrocarbon that is liquid at room temperature. Polymerization catalyst.
JP25076986A 1986-10-23 1986-10-23 Catalyst for highly stereoregular polymerization of α-olefins Expired - Lifetime JPH0832739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25076986A JPH0832739B2 (en) 1986-10-23 1986-10-23 Catalyst for highly stereoregular polymerization of α-olefins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25076986A JPH0832739B2 (en) 1986-10-23 1986-10-23 Catalyst for highly stereoregular polymerization of α-olefins

Publications (2)

Publication Number Publication Date
JPS63108005A true JPS63108005A (en) 1988-05-12
JPH0832739B2 JPH0832739B2 (en) 1996-03-29

Family

ID=17212771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25076986A Expired - Lifetime JPH0832739B2 (en) 1986-10-23 1986-10-23 Catalyst for highly stereoregular polymerization of α-olefins

Country Status (1)

Country Link
JP (1) JPH0832739B2 (en)

Also Published As

Publication number Publication date
JPH0832739B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
JPH0417206B2 (en)
JP2764286B2 (en) Solid catalyst components and catalysts for olefins polymerization
JPS63108005A (en) Catalyst for highly stereoregular polymerization of alpha-olefins
JP2514035B2 (en) Catalyst for highly stereoregular polymerization of α-olefins
JPS62169803A (en) Catalyst for polymerization of olefin
JP2571057B2 (en) Solid catalyst component for olefin polymerization
JPH01139601A (en) Solid catalyst component and catalyst for polymerizing olefins
JPS6397604A (en) Catalyst for olefin polymerization
JP2587243B2 (en) Catalyst components and catalysts for olefins polymerization
JPH011707A (en) Catalyst for highly stereoregular polymerization of α-olefins
JPH03212406A (en) Solid catalyst component and catalyst for polymerization of olefins
JPH03210306A (en) Solid catalyst component and catalyst for polymerization of olefin
JPS63182306A (en) Polymerization of alpha-olefin
JP3074045B2 (en) Solid catalyst components and catalysts for olefin polymerization
JPH01185305A (en) Solid catalyst component and catalyst for polymerizing olefin
JPH03221507A (en) Solid catalyst ingredient and catalyst for olefin polymerization
JPS63301A (en) Catalyst for polymerization of olefin
JP2614069B2 (en) Solid catalyst components and catalysts for olefins polymerization
JPS6357610A (en) Catalyst for polymerization of olefin
JP2652548B2 (en) Solid catalyst components and catalysts for olefins polymerization
JPH03259904A (en) Solid catalyst component and catalyst for polymerization of olefin
JPS63308004A (en) Catalyst for polymerizing olefins
JPH03212407A (en) Solid catalyst component and catalyst for polymerization of olefins
JPS63230709A (en) Olefin polymerization catalyst
JPH01229006A (en) Catalyst for polymerization of olefins

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term