JPS63182306A - Polymerization of alpha-olefin - Google Patents

Polymerization of alpha-olefin

Info

Publication number
JPS63182306A
JPS63182306A JP1226387A JP1226387A JPS63182306A JP S63182306 A JPS63182306 A JP S63182306A JP 1226387 A JP1226387 A JP 1226387A JP 1226387 A JP1226387 A JP 1226387A JP S63182306 A JPS63182306 A JP S63182306A
Authority
JP
Japan
Prior art keywords
polymerization
catalyst component
solid catalyst
solid
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1226387A
Other languages
Japanese (ja)
Other versions
JPH0832740B2 (en
Inventor
Minoru Terano
稔 寺野
Hirokazu Soga
弘和 曽我
Masuo Inoue
益男 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP1226387A priority Critical patent/JPH0832740B2/en
Publication of JPS63182306A publication Critical patent/JPS63182306A/en
Publication of JPH0832740B2 publication Critical patent/JPH0832740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To produce an alpha-olefin polymer superior in stereoregularity at a relatively low temperature, by supplying specific solid catalyst component to heated system, in which an organic A1 compound and an alpha-olefin are present, to polymerize the monomer. CONSTITUTION:A solid material obtained by adding, to a suspension of 1g of dialkoxymagnesium in an aromatic hydrocarbon at ordinary temperatures, 0.1g or more of TiCl4 and 0.01-2g of an aromatic dicarboxylic diester to react at 80-135 deg.C, is reacted with TiCl4 of 100hr. or less to produce a solid product. 1g of the solid product is then contacted with 0.1-10g of a Si compound of the formula [wherein R is (cyclo)alkyl, vinyl or aryl; R' is alkyl; and 0<=m<=4] followed by contact with 0.1-10g of an organic A1 compound to produce a solid catalyst component. Subsequently, to a reaction system maintained at 70-90 deg.C in which at least an organic A1 compound and an alpha-olefin monomer are present, the solid catalyst component to polymerize the alpha-olefin monomer is supplied.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は新規な触媒を用いてα−オレフィン類の重合を
行なう方法に関するらのである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for polymerizing α-olefins using a novel catalyst.

〔従来技術とその問題点〕[Prior art and its problems]

近時、プロピレンをはじめとするα−オレフィン類の重
合用触媒として従来周知の三塩化チタンを有機アルミニ
ウム化合物と組合せたものに代り、活性成分であるチタ
ン化合物を塩化マグネシウムに電子供与体と共に担持し
、有機アルミニウム化合物および電子供与体と組合せて
用いる触媒など、新しい型のいわゆる担持型触媒を用い
る方法が開発され提案されている。
Recently, instead of the conventionally well-known combination of titanium trichloride and an organoaluminum compound as a catalyst for the polymerization of α-olefins such as propylene, the active ingredient titanium compound is supported on magnesium chloride together with an electron donor. Methods have been developed and proposed using new types of so-called supported catalysts, such as catalysts used in combination with organoaluminum compounds and electron donors.

しかし、これ等新しい型のいわゆる担詩型触媒は通常工
業的なα−オレフィン類の重合においては触媒やα−オ
レフィン単重体を連続的に反応系に供給して重合を行な
う、いわゆる連続重合法が主として用いられているが、
この方法に前記担持型触媒を適用した場合バッヂ式に適
用した場合と比較してその性能が著しく低下するという
欠点を仔していた。この欠点を補うために従来、該触媒
を重合反応系に供給する前に重合反応系の温度よりも比
較的低温とした反応系において予備重合を行なった後、
上記の重合反応系に供給するということが行なわれてい
る。
However, these new types of so-called supported polymer catalysts are usually used in the industrial polymerization of α-olefins using the so-called continuous polymerization method, in which catalysts and α-olefin monopolymers are continuously supplied to the reaction system. is mainly used, but
When the supported catalyst is applied to this method, its performance is significantly lower than when the badge type catalyst is applied. In order to compensate for this drawback, conventionally, before the catalyst is supplied to the polymerization reaction system, prepolymerization is carried out in a reaction system that is kept at a temperature relatively lower than that of the polymerization reaction system.
The method is to supply it to the above polymerization reaction system.

すなわち、従来の担持型触媒にあっては、それを連続重
合法に適用する場合には、すでに重合反応が行なわれて
いる高温域に直接供給すると、その性能が低下するので
、比較的低温域での予備重合を行なうことにより、性能
の低下を防いでいる。上記の予備重合は、特にスラリー
重合法においては必須の手段とされており、このような
方法は非常に煩雑な操作を必要とする上、特別な装置を
設置しなければならないなど幾つかの問題点を有してい
た。
In other words, when conventional supported catalysts are applied to continuous polymerization methods, their performance deteriorates if they are directly supplied to the high temperature range where the polymerization reaction is already taking place; By carrying out prepolymerization at , a decrease in performance is prevented. The above-mentioned prepolymerization is considered to be an essential means, especially in slurry polymerization, and such a method requires very complicated operations and has several problems, such as the need to install special equipment. It had a point.

また、重合反応は発熱反応であるため、その温度を制御
するために熱除去を必要とし、したがって、より高温で
重合を行なう方が好ましいのであるが、従来のいわゆる
担持型触媒では70℃付近を限度として、それより高温
の重合ではその性能が低下してしまうという欠点を有し
ていた。
Furthermore, since the polymerization reaction is an exothermic reaction, heat removal is required to control the temperature. Therefore, it is preferable to carry out the polymerization at a higher temperature, but with conventional supported catalysts, temperatures around 70°C are required. As a limit, polymerization at a higher temperature than this has the disadvantage that its performance deteriorates.

〔発明の開示〕[Disclosure of the invention]

本発明者らは前記した従来技術における問題点を解決す
ることを目的として研究を進めた結果、本発明により新
規な固体触媒成分を特定の方法で用いることによるα−
オレフィン類の新規な重合方法を提供することに成功し
た。
The present inventors have carried out research aimed at solving the problems in the prior art described above, and as a result of the present invention, the α-
We have succeeded in providing a new method for polymerizing olefins.

すなわち、本発明は 少なくとも (1)有機アルミニウム化合物および (りα−オレフィン単量体が存在しており、かつ約70
〜90℃の温度に保持された反応系に、下記(III)
の固体触媒成分を供給して該α−オレフィン単量体の重
合を行わせることを特徴とするα−オレフィン類の重合
方法を提供するものである。
That is, in the present invention, at least (1) an organoaluminum compound and an α-olefin monomer are present, and about 70%
The following (III) was added to the reaction system maintained at a temperature of ~90°C.
The present invention provides a method for polymerizing α-olefins, which comprises supplying a solid catalyst component to polymerize the α-olefin monomer.

(1)ジアルコキシマグネシウム(a)を常温で液体の
芳香族炭化水素(b)中に懸副させ、しかる後に四塩化
チタン(c)および芳香族ジカルボン酸のジエステル(
d)と80〜135℃の温度域で反応させて得られた固
体物質を分離して、これにさらに四塩化チタン(c)を
反応させて固体生成物を得、該固体生成物に一般式Si
R,(OR’)、。
(1) Dialkoxymagnesium (a) is suspended in a liquid aromatic hydrocarbon (b) at room temperature, and then titanium tetrachloride (c) and a diester of aromatic dicarboxylic acid (
The solid substance obtained by reacting with d) in a temperature range of 80 to 135°C is separated and further reacted with titanium tetrachloride (c) to obtain a solid product, which has the general formula Si
R, (OR'),.

(式中Rはアルキル基、シクロアルキル基、ビニル基ま
たはアリール基であり、R′はアルキル基である。Rが
アルキル基の場合はそのアルキル基はR′と同一であっ
てもよい。lは0≦m<4である。)で表わされるケイ
素化合物(e)を接触させ、次いで有機アルミニウム化
合物(f)を接触させることによって得られる固体触媒
成分。
(In the formula, R is an alkyl group, a cycloalkyl group, a vinyl group, or an aryl group, and R' is an alkyl group. When R is an alkyl group, the alkyl group may be the same as R'. is 0≦m<4.) A solid catalyst component obtained by contacting a silicon compound (e) represented by the formula (0≦m<4) and then contacting an organoaluminum compound (f).

以下に本発明の詳細な説明するが、先ず本発明の重合方
法において使用する上記の固体触媒成分について説明す
る。
The present invention will be described in detail below, but first, the above-mentioned solid catalyst component used in the polymerization method of the present invention will be explained.

前記(a)のジアルコキシマグネシウム(以下単に(a
)物質という。)としては、ジェトキシマグネシウム、
ジブトキシマグネシウム、ジフェノキシマグネシウム、
ジプロポキシマグネシウム、ジイソブトキシマグネシウ
ム、ジイソプロポキシマグネシウム等があげられるが中
でもジェトキシマグネシウム、ジプロポキシマグネシウ
ムが好ましい。
The dialkoxymagnesium of (a) (hereinafter simply referred to as (a)
) called substance. ) as jetoxymagnesium,
dibutoxymagnesium, diphenoxymagnesium,
Examples include dipropoxymagnesium, diisobutoxymagnesium, diisopropoxymagnesium, etc., among which jetoxymagnesium and dipropoxymagnesium are preferred.

本発明で用いられる前記(b)の常温で液体の芳香族炭
化水素(以下単に(b)物質という)としてはトルエン
、キシレン、エチルベンゼン、プロピルベンゼン、ブチ
ルベンゼンなどがあげられる。
Examples of the aromatic hydrocarbon (b) that is liquid at room temperature (hereinafter simply referred to as (b) substance) used in the present invention include toluene, xylene, ethylbenzene, propylbenzene, and butylbenzene.

本発明で用いられる前記(d)の芳香族ジカルボン酸の
ジエステル(以下単に(d)物質という。)としては、
フタル酸のジエステルが好ましく、例えば、ジメチルフ
タレート、ジエチルフタレート、ジプロピルフタレート
、ジイソプロピルフタレート、ジブチルフタレート、ジ
イソブチルフタレート、シアミルフタレート、ジオクチ
ルフタレート、ジイソオクチルフタレート、ジイソアミ
ルフタレート、エチルブチルフタレート、エチルイソブ
チルフタレート、エチルプロピルフタレートなどがあげ
られる。
The aromatic dicarboxylic acid diester (d) used in the present invention (hereinafter simply referred to as (d) substance) is as follows:
Diesters of phthalic acid are preferred, such as dimethyl phthalate, diethyl phthalate, dipropyl phthalate, diisopropyl phthalate, dibutyl phthalate, diisobutyl phthalate, cyamyl phthalate, dioctyl phthalate, diisooctyl phthalate, diisoamyl phthalate, ethylbutyl phthalate, ethyl isobutyl. Examples include phthalate and ethylpropyl phthalate.

本発明において使用される前記(e)のケイ素化合物(
以下単に(e)物質という。)としてはアルコキシシラ
ン、フェニルアルコキシシラン、アルキルアルコキシシ
ラン、ビニルアルコキシシランなどがあげられるが具体
例としてテトラメトキシシラン、テトラエトキシシラン
、フェニルアルコキシシラン、フェニルトリエトキシシ
ラン、フェニルトリプロポキシシラン、フエ ・ニルト
リイソプロポキシシラン、ジフェニルジメトキシシラン
、ジフェニルジェトキシシラン、エチルトリメトキシシ
ラン、メチルトリメトキシシラン、メチルトリエトキシ
シラン、エチルトリエトキシシラン、エチルトリイソプ
ロポキシシラン、ビニルトリメトキシシラン、ビニルト
リエトキシシランなどをあげることができる。
The silicon compound (e) used in the present invention (
Hereinafter, it will simply be referred to as (e) substance. ) include alkoxysilane, phenylalkoxysilane, alkylalkoxysilane, vinylalkoxysilane, etc. Specific examples include tetramethoxysilane, tetraethoxysilane, phenylalkoxysilane, phenyltriethoxysilane, phenyltripropoxysilane, and phenyltriethoxysilane. Triisopropoxysilane, diphenyldimethoxysilane, diphenyljethoxysilane, ethyltrimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, ethyltriisopropoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, etc. can be given.

本発明において用いられる前記(r)または(III)
の(r機アルミニウム化合物としては、トリアルキルア
ルミニウム、ジアルキルアルミニウムハライド、アルキ
ルアルミニウムシバライド、アルキルアルミニウムセス
キハライドおよびこれらの混合物があげられる。
(r) or (III) used in the present invention
Examples of the aluminum compounds include trialkylaluminum, dialkylaluminum halide, alkylaluminum civalide, alkylaluminum sesquihalide, and mixtures thereof.

上記の固体触媒成分の調製にあたって、前記の固体生成
物を得る際の第1の好ましい態様としては、(a)物質
を(b)物質中に懸濁させ、しかる後に四塩化チタンを
加え、80℃以上に昇温した後(d)物質を添加して8
0℃〜!35℃の温度域で反応させる方法があげられる
。また、第2の好ましい態様としては、四塩化チタンと
(d)物質を室温で添加した後、80℃〜135℃の温
度域で反応させる方法があげられる。なお、四塩化チタ
ンを常温で液体の芳香族炭化水素で希釈して用いる方法
もあげることができる。
In preparing the above solid catalyst component, a first preferred embodiment for obtaining the above solid product is to suspend (a) the substance in the (b) substance, then add titanium tetrachloride, After raising the temperature to above ℃, (d) adding the substance to 8
0℃~! An example is a method of reacting in a temperature range of 35°C. A second preferred embodiment is a method in which titanium tetrachloride and the substance (d) are added at room temperature and then reacted in a temperature range of 80°C to 135°C. In addition, a method of diluting titanium tetrachloride with an aromatic hydrocarbon which is liquid at room temperature and using it can also be mentioned.

上記の固体触媒成分の調製における各物質の使用割合は
通常(a)物質1gに対し、(d)物質は0.01〜2
g、好ましくは0.1〜1gの範囲であり、四塩化チタ
ンは0.1g以上、好ましくは19以上の範囲である。
The ratio of each substance used in the preparation of the above solid catalyst component is usually 0.01 to 2 g of (d) substance per 1 g of (a) substance.
g, preferably in the range of 0.1 to 1 g, and titanium tetrachloride in the range of 0.1 g or more, preferably 19 or more.

また、(b)物質は、任意の割合で用いられるが、懸濁
液を形成し得る量であることが必要である。
Further, the substance (b) may be used in any proportion, but it is necessary that the amount is such that a suspension can be formed.

さらに、各原料物質の反応および接触は通常θ℃から用
いられるチタンハロゲン化物の沸点までの温度で100
時間以下、好ましくは10時間以下の範囲で行なわれる
Furthermore, the reaction and contact of each raw material is usually carried out at a temperature between θ°C and the boiling point of the titanium halide used for 100°C.
It is carried out within a range of 10 hours or less, preferably 10 hours or less.

以下の如くして得られた固体生成物に(e)物質を接触
させ、次いで有機アルミニウム化合物(f)を接触させ
て固体触媒成分を得るがこの際通常該固体生成物1gに
対し、(e)物質はQ、1〜5g、有機アルミニウム化
合物(f)ハ0.1−109の範囲で用いられる。上記
の(e)物質との接触あるいは有機アルミニウム化合物
(f)との接触はいずれも100℃以下の温度で100
時間以内、好ましくは10時間以内行なわれる。
A solid catalyst component is obtained by contacting the solid product obtained in the following manner with the substance (e) and then with an organoaluminum compound (f). ) The substance Q is used in the range of 1 to 5 g, and the organic aluminum compound (f) C is used in the range of 0.1 to 109 g. Contact with the substance (e) above or contact with the organoaluminum compound (f) must be carried out at a temperature of 100°C or less.
This is done within hours, preferably within 10 hours.

上記の固体生成物は(e)物質との接触に先だち、適当
な有機溶媒を用いて洗浄する。
The solid product described above is washed with a suitable organic solvent prior to contact with (e) the substance.

また、上記の(d)物質、(b)物質、四塩化チタンお
よび(d)物質より得られる固体物質および上記の固体
触媒成分はいずれら必要に応じて適時適当な有機溶媒を
用いて洗浄することが好ましい。
In addition, the above-mentioned (d) substance, (b) substance, titanium tetrachloride, the solid substance obtained from the (d) substance, and the above-mentioned solid catalyst component are all washed with an appropriate organic solvent as needed. It is preferable.

本発明におけるこれ等の操作は酸素および水分等の不存
在下に行なわれることが好ましい。
These operations in the present invention are preferably carried out in the absence of oxygen, moisture, and the like.

以上の如くして調製された固体触媒成分は、有機アルミ
ニウム化合物およびα−オレフィン単量体の存在下で約
70〜90℃の温度に保持された反応系に供給されてα
−オレフィン単量体の重合が行なわれる。
The solid catalyst component prepared as described above is supplied to a reaction system maintained at a temperature of about 70 to 90°C in the presence of an organoaluminum compound and an α-olefin monomer.
- Polymerization of olefin monomers takes place.

この際、該固体触媒成分と有機アルミニウム化合物を同
時にα−オレフィン単量体の存在下で約70〜90℃の
温度に保持された反応系に供給してα−オレフィン単量
体の重合を行なうことも可能であり、また、予め該固体
触媒成分と有機アルミニウム化合物とを混合した後、α
−オレフィン単量体の存在下で約70〜90 ’Cの温
度に保持された反応系に供給してα−オレフィン単量体
の重合を行うことも可能である。
At this time, the solid catalyst component and the organoaluminum compound are simultaneously supplied to a reaction system maintained at a temperature of about 70 to 90°C in the presence of the α-olefin monomer to polymerize the α-olefin monomer. It is also possible to mix the solid catalyst component and the organoaluminum compound in advance, and then
It is also possible to carry out the polymerization of α-olefin monomers by feeding them into a reaction system maintained at a temperature of about 70-90'C in the presence of -olefin monomers.

また、生成重合体の立体規則性を改善するため、従来の
いわゆる担持型触媒を工業的に用いる際には重合時に何
らかの第三成分、特に電子供与性化合物を共存させるこ
とが必須となっている。しかし、本発明による重合方法
を実施する際には重合時に電子供与性化合物を共存させ
ずに生成重合体の立体規則性において実用上十分な値が
得られるが、特に高い立体規則性が要求される場合には
前記(e)物質を適当量共存させろことも可能である。
In addition, in order to improve the stereoregularity of the resulting polymer, when using conventional supported catalysts industrially, it is essential to coexist some kind of third component, especially an electron-donating compound, during polymerization. . However, when carrying out the polymerization method according to the present invention, a practically sufficient stereoregularity of the resulting polymer can be obtained without the coexistence of an electron-donating compound during polymerization, but particularly high stereoregularity is required. In such a case, an appropriate amount of the above-mentioned substance (e) may be present.

 使用される有機アルミニウム化合物量は特に限定され
るものではないが通常触媒成分中のチタン原子のモル当
たりモル比で1〜50の範囲で用いられる。ただし十分
な性能を得られる範囲であれば、概略上記モル比を満足
していればよい。また、この際重合が行なわれる反応系
において、必要に応じて前述の(e)物質の中から適当
なものを選択して使用することも可能である。
The amount of the organoaluminum compound used is not particularly limited, but is usually used in a molar ratio of 1 to 50 per mole of titanium atoms in the catalyst component. However, as long as sufficient performance can be obtained, approximately the above molar ratio may be satisfied. In addition, in the reaction system in which the polymerization is carried out, it is also possible to select and use a suitable one from the above-mentioned substances (e), if necessary.

重合は有機溶媒の存在下でも或いは不存在下でも行なう
ことができ、またオレフィン単量体は気体および液体の
いずれの状態でも用いることがてきる。重合圧力は10
0kg/cry、’・G以下、好ましくは50kg/c
m″・G以下である。
Polymerization can be carried out in the presence or absence of an organic solvent, and the olefin monomer can be used in either gas or liquid state. Polymerization pressure is 10
0kg/cry, '・G or less, preferably 50kg/c
m″・G or less.

本発明に係る重合方法を用いて単独重合または共重合さ
れるα−オレフィン類はプロピレン、l−ブテン等であ
る。
α-olefins that are homopolymerized or copolymerized using the polymerization method according to the present invention include propylene, l-butene, and the like.

〔発明の効果〕〔Effect of the invention〕

従来、いイつゆる担持型触媒を用いる工業的なα−オレ
フィン類の重合においては触媒やα−オレフィン単量体
を連続的に反応系に供給して重合を行なう連続重合法が
主として用いられているが、この場合バッチ式に適用し
た場合と比較してその性能が著しく低下するという欠点
を有していた。そのため、該触媒を重合反応系に供給す
る前に重合反応系の温度よりも比較的低温とした反応系
において予備重合を行なった後、上記の重合反応系に供
給するという方法が一般的に行なわれている。この方法
は特にスラリー重合法においては必須の手段とされてい
るが、斯かる手段は非常に煩雑な操作や特別な装置を必
要とする。しかし、本発明に係る重合方法においては上
記の如き性能の低下は起こらず、予備重合等の手段□を
用いることなく、通常の重合反応の温度域以上にあって
も極めて優れた性能を得ることができる。また、重合反
応は発熱反応であるため、より高温で重合を行なう方が
熱除去などの観点から考慮して好ましいが、従来のいわ
ゆる担持型触媒を用いての重合方法においては70℃付
近の温度を限度として、それを越える温度域ではその触
媒性能が低下するというのが実情であった。しかし、本
発明に係る重合方法は前述の如く、約70〜90℃の重
合温度で重合を行なうことにより、むしろ、優れた触媒
性能を発揮するという利点を有するために上記のような
問題点を完全に解決したものといえる。さらに、このこ
とは、通常、上記の熱除去に必要とされる装置や操作を
簡略化できるとともに、エネルギー面においても大きな
節約を果すことができるという利点をもたらす。
Conventionally, in the industrial polymerization of α-olefins using so-called supported catalysts, continuous polymerization methods have been mainly used in which catalysts and α-olefin monomers are continuously supplied to the reaction system to carry out polymerization. However, this method has the disadvantage that its performance is significantly lower than when it is applied in a batch manner. Therefore, before supplying the catalyst to the polymerization reaction system, a method is generally carried out in which prepolymerization is performed in a reaction system that is kept at a temperature relatively lower than that of the polymerization reaction system, and then the catalyst is supplied to the above polymerization reaction system. It is. This method is considered to be an essential means, especially in slurry polymerization, but such a method requires extremely complicated operations and special equipment. However, in the polymerization method according to the present invention, the performance degradation as described above does not occur, and extremely excellent performance can be obtained even at temperatures above the normal polymerization reaction temperature range without using means □ such as prepolymerization. Can be done. Furthermore, since the polymerization reaction is an exothermic reaction, it is preferable to carry out the polymerization at a higher temperature from the viewpoint of heat removal, etc. However, in the conventional polymerization method using a so-called supported catalyst, the temperature is around 70°C. The actual situation was that the catalyst performance deteriorated in the temperature range exceeding this limit. However, as mentioned above, the polymerization method according to the present invention has the advantage of exhibiting excellent catalytic performance by carrying out the polymerization at a polymerization temperature of about 70 to 90°C, so it does not have the above problems. It can be said that the problem has been completely resolved. Furthermore, this has the advantage of simplifying the equipment and operations normally required for the heat removal, as well as providing significant energy savings.

さらに本発明に係る重合方法によれば従来の技術と比較
して重合時の有機アルミニウム化合物および必要に応じ
て用いられるケイ素化合物の使用量を著しく減少さ仕る
ことができる。このことはポリオレフィンの製造コスト
を低減できるという大きな利点をもたらし、また、有機
アルミニウム化合物や必要に応じて用いられるケイ素化
合物に起因する生成重合体中の残渣を少なくできるとい
う利点をももたらす。
Furthermore, according to the polymerization method of the present invention, the amount of organoaluminum compound and optionally used silicon compound used during polymerization can be significantly reduced compared to conventional techniques. This brings about the great advantage of being able to reduce the production cost of polyolefins, and also brings about the advantage of reducing the amount of residue in the produced polymer that is caused by the organoaluminum compound and the silicon compound used if necessary.

また、本発明に係る重合方法によれば重合時に電子供与
体を添加しないか、あるいは添加する場合においてもそ
の使用量を大巾に減少することができることにより、生
成重合体における臭気の問題をも解決することができ、
このことは特にバルク重合や気相重合において大きな利
点となる。
Furthermore, according to the polymerization method of the present invention, an electron donor is not added during polymerization, or even if it is added, the amount used can be greatly reduced, thereby eliminating the problem of odor in the resulting polymer. can be solved,
This is a great advantage especially in bulk polymerization and gas phase polymerization.

しかも、本発明に係る重合方法によれば生成重合体の立
体規則性という点においてもすぐれた効果を有する。
Moreover, the polymerization method according to the present invention has excellent effects in terms of the stereoregularity of the produced polymer.

〔実施例および比較例〕[Examples and comparative examples]

以下本発明方法を実施例および比較例により更に具体的
に説明する。
The method of the present invention will be explained in more detail below using Examples and Comparative Examples.

実施例 1 (固体触媒成分の調製) 窒素ガスで充分に置換され、撹拌機を具備した容!n 
200 mO,の丸底フラスコにジェトキシマグネシウ
ム10gおよびトルエン80mQを装入してF%G状態
とした。次いでこの懸濁液にTiC(!+20頬を加え
100°Cに昇温してジブチルフタレート2.5雌を加
えた。次いで115℃に昇温しで2時間撹拌しながら反
応させ固体物質を得た。反応該固体物質を60℃のトル
エン100祿で3回洗浄し、新たにトルエン80 d、
TiCQ+20m(lを加えて115℃で2時間撹拌し
ながら反応させた。
Example 1 (Preparation of solid catalyst component) A container sufficiently purged with nitrogen gas and equipped with a stirrer! n
A 200 mO round bottom flask was charged with 10 g of jetoxymagnesium and 80 mQ of toluene to obtain an F%G state. Next, TiC (!+20%) was added to this suspension, the temperature was raised to 100°C, and 2.5% of dibutyl phthalate was added.Then, the temperature was raised to 115°C, and the reaction was carried out with stirring for 2 hours to obtain a solid substance. The reaction solid material was washed three times with 100 yen of toluene at 60°C, and freshly washed with 80 yen of toluene,
TiCQ+20ml (l) was added and reacted at 115°C for 2 hours with stirring.

反応終了後40℃のn−へブタン200顧による洗浄を
10回行ない固体生成物を得た。この際、該固体生成物
中のチタン含有率を測定したところ2.82重量%であ
った。次に該固体生成物3gを内容積300蛯の撹拌装
置付丸底フラスコにとり、n−へブタン100 ttt
Qおよびジフェニルジメトキシシランl 、 Ottt
(lを加えて充分に撹拌した後、トリイソブチルアルミ
ニウム1.0z(lおよびジエチルアルミニウムクロラ
イド0.2吋を加えて室温で2時間撹拌下に反応させ7
二。
After the reaction was completed, washing was carried out 10 times with 200 g of n-hebutane at 40°C to obtain a solid product. At this time, the titanium content in the solid product was measured and found to be 2.82% by weight. Next, 3 g of the solid product was placed in a round bottom flask with an internal volume of 300 mm and equipped with a stirrer, and 100 ttt of n-hebutane was added.
Q and diphenyldimethoxysilane l, Ott
After adding 1.0 z (l of triisobutylaluminum) and 0.2 inch of diethylaluminium chloride and stirring thoroughly, the mixture was reacted at room temperature for 2 hours with stirring.
two.

反応終了後室温のn−へブタンI 00 mQで5回洗
浄し固体触媒成分とした。なお、この際固体触媒成分中
のチタン含有率を測定したところ2.56重量%であっ
た。
After the reaction was completed, it was washed five times with n-hebutane I 00 mQ at room temperature to obtain a solid catalyst component. At this time, the titanium content in the solid catalyst component was measured and found to be 2.56% by weight.

(重合) プロピレンガスで完全に置換された内容積2.012の
撹拌装置付オートクレーブに、室温てn−へブタン70
0 m、(l トリエチルアルミニウム50mgおよび
フェニルトリエトキシシラン101gを装入し80℃に
昇温する。次いで面記固体触媒成分を19.5zg装入
し、その後水素ガスl 50 mQを装入し、次いでプ
ロピレンガスにより6に9zcm ”・Gの圧力を維持
して2時間の重合を行なった。重合終了後得られた固体
重合体を濾別し、80℃に加温して減圧乾燥した。一方
濾液を凝縮して重合溶媒に溶存する重合体の量を(A)
とし、前記固体重合体の量を(B)とする。また得られ
だ固体重合体を沸騰n−へブタンで6時間抽出しn−/
\ブタンに不溶解の重合体を得、この量を(c)とする
(Polymerization) In an autoclave with an internal volume of 2.012 and equipped with a stirrer and completely replaced with propylene gas, 70 g of n-hebutane was added at room temperature.
0 m, (1) 50 mg of triethylaluminum and 101 g of phenyltriethoxysilane were charged, and the temperature was raised to 80°C. Next, 19.5 zg of the solid catalyst component listed above was charged, and then 150 mQ of hydrogen gas was charged, Next, polymerization was carried out for 2 hours while maintaining a pressure of 6 to 9 zcm"·G with propylene gas. After the completion of polymerization, the obtained solid polymer was filtered out, heated to 80° C., and dried under reduced pressure. Meanwhile, The amount of polymer dissolved in the polymerization solvent after condensing the filtrate is (A)
and the amount of the solid polymer is (B). The solid polymer obtained was extracted with boiling n-hebutane for 6 hours to obtain n-/
A polymer insoluble in butane is obtained, and this amount is designated as (c).

触媒成分当りの重合活性(D)を式 また結晶性重合体の収率(E)を式 で表わし、全結晶性重合体の収率(F)を式より求めた
。また生成重合体中の残留塩素を(G)、生成重合体の
Mlを(II)で表わす。得られた結果は第1表に示す
通りである。
The polymerization activity (D) per catalyst component was expressed by the formula and the yield (E) of the crystalline polymer was expressed by the formula, and the yield (F) of the total crystalline polymer was determined from the formula. Further, residual chlorine in the produced polymer is represented by (G), and Ml of the produced polymer is represented by (II). The results obtained are shown in Table 1.

実施例 2 重合時にフェニルトリエトキシシランを用いることなく
、なおかつ重合時間を1時間とした以外は実施例1と同
様にして実験を行なった。
Example 2 An experiment was conducted in the same manner as in Example 1 except that phenyltriethoxysilane was not used during polymerization and the polymerization time was 1 hour.

得られた結果は第1表に示す通りである。The results obtained are shown in Table 1.

実施例 3 固体触媒成分を得る際ジフェニルジメトキシシランの代
りに同量のフェニルトリエトキンシランを用いた以外は
実施例1と同様にして実験を行なった。なお、この際の
固体触媒成分中のチタン含有率は2.51重量%であっ
几。重合に際しては固体触媒成分を19.9IIIg使
用した以外は実施例1と同様にして実験を行なった。得
られた結果は第1表に示す通りである。
Example 3 An experiment was carried out in the same manner as in Example 1 except that the same amount of phenyltriethoxysilane was used instead of diphenyldimethoxysilane when obtaining the solid catalyst component. Note that the titanium content in the solid catalyst component at this time was 2.51% by weight. An experiment was carried out in the same manner as in Example 1 except that 19.9IIIg of the solid catalyst component was used during the polymerization. The results obtained are shown in Table 1.

実施例 4 固体触媒成分を得る際のジフェニルジメトキシシランの
量を1.5頬とした以外は実施例1と同様にして実験を
行なった。なお、この際の固体触媒成分中のチタン含有
率は2,60重量%であった。重合に際しては固体触媒
成分を19 、2 tRg使用した以外は実施例1と同
様にして実験を行なった。得られた結果は第1表に示す
通りである。
Example 4 An experiment was conducted in the same manner as in Example 1, except that the amount of diphenyldimethoxysilane used to obtain the solid catalyst component was 1.5 times. Note that the titanium content in the solid catalyst component at this time was 2.60% by weight. An experiment was carried out in the same manner as in Example 1, except that 19.2 tRg of the solid catalyst component was used during the polymerization. The results obtained are shown in Table 1.

実施例 5 重合温度を85℃とした以外は実施例1と同様にして実
験を行なった。得られた結果は第1表に示す通りである
Example 5 An experiment was conducted in the same manner as in Example 1 except that the polymerization temperature was 85°C. The results obtained are shown in Table 1.

比較例 1 プロピレンガスで完全に置換された内容積2、Of2の
撹拌装置付オートクレーブに、室温でn−へブタン70
0靜を装入し、次いでトリエチルアルミニウム50Rg
、フェニルトリエトキシシランl0mg、さらに実施例
1で得られた固体触媒成分を19 、5 mg装入した
。その後水素ガス150i(を装入し、70℃に昇温し
てプロピレンガスにより6 kg / cm ”・Gの
圧力を維持して2時間の重合を行なった。重合終了後は
実施例1と同様にして実験を行なった。得られた結果は
第1表に示す通りである。
Comparative Example 1 70 mL of n-hebutane was added at room temperature to an autoclave with an internal volume of 2 and a stirrer and completely replaced with propylene gas.
Charge 0.0m, then triethylaluminum 50Rg
, 10 mg of phenyltriethoxysilane, and 19.5 mg of the solid catalyst component obtained in Example 1 were charged. Thereafter, 150 i of hydrogen gas was charged, the temperature was raised to 70°C, and a pressure of 6 kg/cm''·G was maintained using propylene gas to conduct polymerization for 2 hours. After the polymerization was completed, the same procedure as in Example 1 was carried out. An experiment was conducted using the following methods.The results obtained are shown in Table 1.

比較例 2 比較例1において用いた固体触媒成分19.5myに替
えて実施例1で得られた固体生成物を17,7〜用い、
それ以外は比較例1と同様にして実験を行なった。得ら
れた結果は第1表に示す通りである。
Comparative Example 2 Using the solid product obtained in Example 1 in place of the solid catalyst component 19.5 my used in Comparative Example 1,
The experiment was conducted in the same manner as in Comparative Example 1 except for the above. The results obtained are shown in Table 1.

比較例 3 実施例1の重合において用いた固体触媒成分19.5m
gに替えて、実施例1の固体触媒成分の調製に際して得
られた固体生成物を17 、7 M9用い、それ以外は
実施例1と同様にして実験を行なった。得られた結果は
第1表に示す通りである。
Comparative Example 3 19.5m of solid catalyst component used in the polymerization of Example 1
An experiment was conducted in the same manner as in Example 1 except that 17,7M9 was used as the solid product obtained in the preparation of the solid catalyst component in Example 1 in place of 17,7M9. The results obtained are shown in Table 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の理解を助けるための模式的図面である
。 特許出願人 東邦チタニウム株式会社 代理人 弁理士 南 孝夫、(・− り1.謬゛
FIG. 1 is a schematic drawing to help understand the present invention. Patent applicant: Toho Titanium Co., Ltd. Representative, patent attorney: Takao Minami

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも ( I )有機アルミニウム化合物および (II)α−オレフィン単量体が存在しており、かつ約7
0〜90℃の温度に保持された反応系に、下記(III)
の固体触媒成分を供給して該α−オレフィン単量体の重
合を行なわせることを特徴とするα−オレフィン類の重
合方法。 (III)ジアルコキシマグネシウム(a)を常温で液体
の芳香族炭化水素(b)中に懸濁させ、しかる後に四塩
化チタン(c)および芳香族ジカルボン酸のジエステル
(d)と80〜135℃の温度域で反応させて得られた
固体物質を分離して、これにさらに四塩化チタン(c)
を反応させて固体生成物を得、該固体生成物に一般式S
iR_m(OR′)_4_−_m(式中Rはアルキル基
、シクロアルキル基、ビニル基またはアリール基であり
、R′はアルキル基である。Rがアルキル基の場合はそ
のアルキル基はR′と同一であってもよい。mは0≦m
<4である。)で表わされるケイ素化合物(e)を接触
させ、次いで有機アルミニウム化合物(f)を接触させ
ることによって得られる固体触媒成分。
(1) At least (I) an organoaluminum compound and (II) an α-olefin monomer are present, and about 7
The following (III) is added to the reaction system maintained at a temperature of 0 to 90°C.
A method for polymerizing α-olefins, which comprises supplying a solid catalyst component to polymerize the α-olefin monomer. (III) Dialkoxymagnesium (a) is suspended in a liquid aromatic hydrocarbon (b) at room temperature, and then mixed with titanium tetrachloride (c) and a diester of aromatic dicarboxylic acid (d) at 80 to 135°C. The solid material obtained by the reaction is separated and further added with titanium tetrachloride (c).
to obtain a solid product, which has the general formula S
iR_m(OR')_4_-_m (wherein R is an alkyl group, cycloalkyl group, vinyl group, or aryl group, and R' is an alkyl group. When R is an alkyl group, the alkyl group is R') May be the same.m is 0≦m
<4. ) A solid catalyst component obtained by contacting a silicon compound (e) represented by (e) with an organoaluminum compound (f).
JP1226387A 1987-01-23 1987-01-23 Method for polymerizing α-olefins Expired - Lifetime JPH0832740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1226387A JPH0832740B2 (en) 1987-01-23 1987-01-23 Method for polymerizing α-olefins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1226387A JPH0832740B2 (en) 1987-01-23 1987-01-23 Method for polymerizing α-olefins

Publications (2)

Publication Number Publication Date
JPS63182306A true JPS63182306A (en) 1988-07-27
JPH0832740B2 JPH0832740B2 (en) 1996-03-29

Family

ID=11800482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1226387A Expired - Lifetime JPH0832740B2 (en) 1987-01-23 1987-01-23 Method for polymerizing α-olefins

Country Status (1)

Country Link
JP (1) JPH0832740B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6420204A (en) * 1987-07-13 1989-01-24 Mitsubishi Petrochemical Co Catalyst for olefin polymerization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6420204A (en) * 1987-07-13 1989-01-24 Mitsubishi Petrochemical Co Catalyst for olefin polymerization

Also Published As

Publication number Publication date
JPH0832740B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
US4970186A (en) Solid catalyst component for the polymerization of olefins and an olefin polymerization catalyst
EP0297163B2 (en) A solid catalyst component for the polymerization of olefins and an olefin polymerization catalyst
US5652303A (en) Process for polymerizing olefins and catalyst for polymerizing olefins
US4400302A (en) Olefin polymerization catalyst compositions and a process for the polymerization of olefins employing such compositions
JP3549417B2 (en) Novel electron donor-containing composition
JPH01315406A (en) Solid catalytic component for olefin polymerization and catalyst therefrom
JPS63182306A (en) Polymerization of alpha-olefin
JP3361579B2 (en) Olefin polymerization catalyst and method for producing olefin polymer
JP2571057B2 (en) Solid catalyst component for olefin polymerization
JP2514035B2 (en) Catalyst for highly stereoregular polymerization of α-olefins
JPS62169803A (en) Catalyst for polymerization of olefin
JPS5835522B2 (en) Stereoregular polymerization method of α↓-olefin
JPS61181807A (en) Production of olefin polymer
JPH0532404B2 (en)
KR790001203B1 (en) Manufacturing method of ethylene
KR810001467B1 (en) Process for polymerization of -oleffins
JPH0832738B2 (en) Catalyst for olefin polymerization
JPH011707A (en) Catalyst for highly stereoregular polymerization of α-olefins
EP0194457B1 (en) Process for preparing polyolefins, polydienes and copolymers thereof
JPH0832739B2 (en) Catalyst for highly stereoregular polymerization of α-olefins
JPH01185305A (en) Solid catalyst component and catalyst for polymerizing olefin
JPH0532407B2 (en)
JP2614069B2 (en) Solid catalyst components and catalysts for olefins polymerization
JP2541807B2 (en) Solid catalyst component for olefin polymerization
JPH01213311A (en) Production of alpha-olefin polymer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term