JPS63107479A - Regenerative control system - Google Patents

Regenerative control system

Info

Publication number
JPS63107479A
JPS63107479A JP15584086A JP15584086A JPS63107479A JP S63107479 A JPS63107479 A JP S63107479A JP 15584086 A JP15584086 A JP 15584086A JP 15584086 A JP15584086 A JP 15584086A JP S63107479 A JPS63107479 A JP S63107479A
Authority
JP
Japan
Prior art keywords
phase
voltage
input
sine curve
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15584086A
Other languages
Japanese (ja)
Inventor
Yoshimoto Fujioka
藤岡 良基
Mitsuhiko Hirota
広田 光彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP15584086A priority Critical patent/JPS63107479A/en
Publication of JPS63107479A publication Critical patent/JPS63107479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stopping Of Electric Motors (AREA)

Abstract

PURPOSE:To eliminate a transformer in a regenerative control system thereby to be able to reduce the size of control equipment by digitally obtaining a sine curve having the same phase as a voltage between the phases of an input AC line by a processor. CONSTITUTION:A zero-cross signal is input from an edge detector 2 to a processor 3. The processor 3 reads out the value of a U-phase counter of counters 5. Then, the processor 3 reads out the pattern of a corresponding sine curve from the sine curve table of an ROM 6, and writes the value in a port 7. Similar operation is executed in a V phase. Thus, the processor 3 reads out the value of the sine curve table of the ROM 6 each time the counter 5 counts, and D/A- converts the output to obtain a sine curve having the same phase as an input AC line. In a W phase, it can be obtained by combining them from the U and V phases by a W-phase composite circuit 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はサーボモータの回生制御方式に関し、特に、回
生電圧波形をディシイタル的に求めるように構成した回
生制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a regeneration control method for a servo motor, and particularly to a regeneration control method configured to digitally obtain a regenerative voltage waveform.

〔従来の技術〕[Conventional technology]

サーボモータの減速時に回生制御を行うことは広く知ら
れており、特に、回生効率を上げるために、回生電圧波
形を入力ACラインの相間電圧と同位相にすることが特
願昭61−57900号によって出願されている。
It is widely known that regeneration control is performed during deceleration of a servo motor, and in particular, in order to increase regeneration efficiency, it is proposed in Japanese Patent Application No. 61-57900 that the regenerative voltage waveform be made in phase with the phase-to-phase voltage of the input AC line. The application has been filed by.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このような方式においては入力ACラインの相
間電圧を得るために、専用のトランスを用意してアナロ
グ的にその正弦波を得ている。このために、特別のトラ
ンスを必要とし、トランス自身のコストも無視できず、
又、そのための配線を或・要とし、制御機器の小型化を
困難にする。
However, in such a system, in order to obtain the phase-to-phase voltage of the input AC line, a dedicated transformer is prepared to obtain the sine wave in an analog manner. For this purpose, a special transformer is required, and the cost of the transformer itself cannot be ignored.
Further, wiring for this purpose is required, making it difficult to miniaturize the control equipment.

本発明の目的は上記問題点を解決し、回生電圧波形をデ
ィシイタル的に求めるように構成した回生制御方式を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a regeneration control system configured to digitally obtain a regenerative voltage waveform.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では上記の問題点を解決するために、入力ACラ
インの相関電圧とサーボモータの回生帰還電圧とを比較
し、その差電圧と入力ACラインの相間電圧の積をとっ
て回生電流とするように構成した回生制御方式において
、 入力ACラインの相間電圧の零クロス点を検出する零ク
ロス点検出回路と、 一定周波数の発振器によって一定時間毎にカウント動作
を実行するカウンタと、 入力ACラインの相間電圧に対応したサインカーブを有
するテーブルを記憶したサインカーブ記憶手段とを有し
、 前記零クロス点信号から前記カウンタがカウントする毎
に前記サインカーブ記憶手段からその値を読出し、 該値をAD変換して入力ACラインの相間電圧相当の電
圧波形を求め、 該電圧波形と前記差電圧の積をとり、 該積によって得られた信号によって回生電流を制御する
ように構成したことを特徴とする回生制御方式を、 採用した。
In order to solve the above problems, the present invention compares the correlation voltage of the input AC line and the regenerative feedback voltage of the servo motor, and calculates the product of the difference voltage and the phase-to-phase voltage of the input AC line to obtain the regenerative current. In the regeneration control system configured as above, a zero-crossing point detection circuit detects the zero-crossing point of the phase-to-phase voltage of the input AC line, a counter that performs a counting operation at fixed time intervals using an oscillator of a fixed frequency, and a sine curve storage means storing a table having a sine curve corresponding to the phase-to-phase voltage; each time the counter counts from the zero-crossing point signal, the value is read from the sine curve storage means; A voltage waveform equivalent to the phase-to-phase voltage of the input AC line is obtained by converting the voltage waveform, the product of the voltage waveform and the difference voltage is calculated, and the regenerative current is controlled by the signal obtained by the product. A regenerative control method was adopted.

〔作用〕    □ 入力ACラインの零クロス点から、一定時間毎にカウン
タがサインカーブテーブルからその値を読出し、この値
をDA変換して入力ACラインの相間電圧と同相のサイ
ンカーブを求め、このサインカーブとサーボモータの回
生帰還電圧と入力ACラインの相間電圧との差電圧との
積をとり、その波形で回生電流波形を制御する。
[Function] □ The counter reads the value from the sine curve table at regular intervals from the zero-crossing point of the input AC line, converts this value from DA to obtain a sine curve that is in phase with the phase-to-phase voltage of the input AC line, and converts this value to the sine curve. The product of the sine curve and the difference voltage between the regenerative feedback voltage of the servo motor and the phase-to-phase voltage of the input AC line is calculated, and the regenerative current waveform is controlled by that waveform.

〔実施例〕〔Example〕

以下本発明の一実施例を図面に基ずいて説明する。 An embodiment of the present invention will be described below based on the drawings.

第1図に本発明の一実施例のブロック図を示す。図にお
いて、1は零クロス点検出回路であり、入力ACライン
の零クロス点を検出する。2はエツジ検出回路であり、
零クロス点検出回路1の零クロス点をパルス波形に成形
する。3はプロセッサであり、サーボモータの制御を行
うがここでは、本実施例に関連する制御についてのみ述
べる。
FIG. 1 shows a block diagram of an embodiment of the present invention. In the figure, 1 is a zero cross point detection circuit, which detects the zero cross point of the input AC line. 2 is an edge detection circuit;
The zero cross point of the zero cross point detection circuit 1 is shaped into a pulse waveform. A processor 3 controls the servo motor, but only the control related to this embodiment will be described here.

即ち、エツジ検出回路2からのパルス信号を受けて、後
述する制御を行う。
That is, in response to a pulse signal from the edge detection circuit 2, control described below is performed.

4は一定周波数の発振器であり、その出力がカウンタ5
に接続されている。5はカウンタであり、発振器4の一
定周波数毎にカウント動作を行い、U相、■相、W相の
3個のカウンタから構成されている。6はROMであり
、サインカーブのテーブルが記憶されている。7はボー
トであり、プロセッサ3からの出力データが書込まれる
4 is an oscillator with a constant frequency, and its output is sent to counter 5.
It is connected to the. A counter 5 performs a counting operation at every fixed frequency of the oscillator 4, and is composed of three counters: U phase, ■ phase, and W phase. 6 is a ROM in which a sine curve table is stored. 7 is a port, into which output data from the processor 3 is written.

8は偏差増幅器であり、サーボモータの回生帰還電圧と
入力ACラインの偏差を求め、その出力は乗算形DA変
換器9及び10に接続されている。9及び10は乗算形
DA変換器であり、プロセッサ3によってROM6から
読出されたサインカーブのテーブルの値をDA変換する
と同時に偏差増幅器8の出力ERとの乗算を行う。乗算
形DA変換器9はU相用であり、乗算形DA変換器10
はV相用であり、W相はDA変換器9とDA変換器10
の出力からW和合成回路によって合成される。
Reference numeral 8 denotes a deviation amplifier, which determines the deviation between the regenerative feedback voltage of the servo motor and the input AC line, and its output is connected to multiplication type DA converters 9 and 10. Numerals 9 and 10 are multiplication type DA converters, which DA convert the values of the sine curve table read from the ROM 6 by the processor 3 and simultaneously perform multiplication with the output ER of the deviation amplifier 8. The multiplication type DA converter 9 is for the U phase, and the multiplication type DA converter 10
is for V phase, and W phase is for DA converter 9 and DA converter 10.
are synthesized from the outputs of by a W-sum synthesis circuit.

21.22及び23は演算器であり、各相の回生電流指
令値と実際の電流値との差分をとる631、はU相電流
アンプ、32は■相電流アンプ、33はW相電流アンプ
であり、それぞれ、演算器21.22及び23の指令に
よって回生電流を制御出力する。CTI、C70は電流
検出器であり、その検出値は演算器21及び22に帰還
さる。但しW相は、U相と■相の電流検出器の出力から
合成回路34によって合成される。
21, 22 and 23 are computing units, 631 is a U-phase current amplifier, 32 is a ■-phase current amplifier, and 33 is a W-phase current amplifier, which calculates the difference between the regenerative current command value and the actual current value of each phase. The regenerative current is controlled and output according to the commands from the computing units 21, 22 and 23, respectively. CTI, C70 is a current detector, and its detected value is fed back to computing units 21 and 22. However, the W phase is synthesized by the synthesis circuit 34 from the outputs of the U phase and ■ phase current detectors.

次に本実施例の動作について述べる。第2図に本実施例
の動作の部分フローチャート図を示す。
Next, the operation of this embodiment will be described. FIG. 2 shows a partial flowchart of the operation of this embodiment.

図の81〜S13はかくステップを示す。81 to S13 in the figure indicate these steps.

エツジ検出回路2からの零クロス点信号がプロセッサ3
に入力されると以下の動作を行う。
The zero cross point signal from the edge detection circuit 2 is sent to the processor 3.
When input to , the following operations are performed.

〔ステップエ〕[Step E]

プロセッサ3はカウンタ5のうちのU相カウンタの値を
読込む。
The processor 3 reads the value of the U-phase counter of the counters 5.

〔ステップ2〕 プロセッサ3は対応するサインカーブのパターンをRO
M6のサインカーブテーブルから読出す〔ステップ3〕 プロセッサ3はその値をボート7へ書込む。
[Step 2] The processor 3 converts the corresponding sine curve pattern into RO
Read from the sine curve table of M6 [Step 3] The processor 3 writes the value to the boat 7.

〔ステップ11〜ステツプ13〕 上記ステップ1〜ステツプ3と同様の動作をV相につい
て行う。
[Steps 11 to 13] The same operations as steps 1 to 3 above are performed for the V phase.

このようにして、ROM6のサインカーブテーブルの値
をカウンタ5がカウントする毎に行い、ボート7に書込
み、その出力をDA変換することにより、入力ACライ
ンと同相のサインカーブが得られるのである。但し、W
相については、このように求めずU相および■相からW
和合成回路11によって合成することができる。
In this way, each time the counter 5 counts the value of the sine curve table in the ROM 6, it is written to the port 7 and the output is DA-converted, thereby obtaining a sine curve that is in phase with the input AC line. However, W
Regarding the phase, do not calculate it in this way, but from the U phase and ■ phase to W
The combination can be performed by the summation circuit 11.

そして、DA変換と同時に偏差増幅器の出力、即ち、サ
ーボモータの回生帰還電圧と入力ACラインの相間電圧
の差との積を求め、この信号により入力AC,ラインの
相間電圧と同相の回生電流を得ることができる。
Then, at the same time as the DA conversion, the output of the deviation amplifier, that is, the product of the difference between the regenerative feedback voltage of the servo motor and the phase-to-phase voltage of the input AC line, is calculated, and this signal is used to calculate the regenerative current that is in phase with the phase-to-phase voltage of the input AC and line. Obtainable.

上記実施例では、DA変換と乗算を同時におこなったが
、勿論、偏差増幅器8の出力を一旦AD変換して、プロ
セッサ3で乗算を行い、その後にDA変換することもで
きる。
In the above embodiment, DA conversion and multiplication were performed simultaneously, but of course, it is also possible to first perform AD conversion on the output of the deviation amplifier 8, perform multiplication in the processor 3, and then perform DA conversion.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明では入力ACラインの相間電
圧と同相のサインカーブをプロセッサをもちいてディシ
イタル的に求めるように構成したので専用のトランスを
必要とせず、さらに電源ラインのノイズ等の形容も少な
い。
As explained above, the present invention is configured to digitally obtain the sine curve in phase with the phase-to-phase voltage of the input AC line using a processor, so there is no need for a dedicated transformer, and furthermore, noise in the power supply line can be reduced. few.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック図、第2図は本発
明の一実施例の部分フローチャート図である。 1−−−一−・・零クロス点検出回路 3−・・・−プロセッサ 5−・・・カウンタ 6−・−・−ROM 8・−・・・偏差増幅器 9−−−−−− D A変換器
FIG. 1 is a block diagram of one embodiment of the present invention, and FIG. 2 is a partial flowchart of one embodiment of the present invention. 1---1--Zero cross point detection circuit 3--Processor 5--Counter 6--ROM 8--Deviation amplifier 9-- D A converter

Claims (2)

【特許請求の範囲】[Claims] (1)入力ACラインの相間電圧とサーボモータの回生
帰還電圧とを比較し、その差電圧と入力ACラインの相
間電圧の積をとって回生電流とするように構成した回生
制御方式において、 入力ACラインの相間電圧の零クロス点を検出する零ク
ロス点検出回路と、 一定周波数の発振器によって一定時間毎にカウント動作
を実行するカウンタと、 入力ACラインの相間電圧に対応したサインカーブを有
するテーブルを記憶したサインカーブ記憶手段とを有し
、 前記零クロス点信号から前記カウンタがカウントする毎
に前記サインカーブ記憶手段からその値を読出し、 該値をAD変換して入力ACラインの相間電圧相当の電
圧波形を求め、 該電圧波形と前記差電圧の積をとり、 該積によって得られた信号によって回生電流を制御する
ように構成したことを特徴とする回生制御方式。
(1) In a regenerative control method configured to compare the phase-to-phase voltage of the input AC line and the regenerative feedback voltage of the servo motor, and calculate the product of the difference voltage and the phase-to-phase voltage of the input AC line to obtain the regenerative current, the input A zero-crossing point detection circuit that detects the zero-crossing point of the phase-to-phase voltage of the AC line, a counter that performs counting at fixed time intervals using an oscillator with a constant frequency, and a table that has a sine curve corresponding to the phase-to-phase voltage of the input AC line. and a sine curve storage means that stores a sine curve storage means, each time the counter counts from the zero cross point signal, reads the value from the sine curve storage means, converts the value into an AD converter, and converts the value into a value corresponding to the phase-to-phase voltage of the input AC line. 1. A regeneration control method, comprising: determining a voltage waveform of the voltage waveform, calculating the product of the voltage waveform and the differential voltage, and controlling a regeneration current using a signal obtained by the product.
(2)前記電流波形と前記差電圧の積はDA変換と同時
に行うように構成したことを特徴とする特許請求の範囲
第1項記載の回生制御方式。
(2) The regeneration control method according to claim 1, wherein the product of the current waveform and the differential voltage is configured to be performed simultaneously with DA conversion.
JP15584086A 1986-07-02 1986-07-02 Regenerative control system Pending JPS63107479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15584086A JPS63107479A (en) 1986-07-02 1986-07-02 Regenerative control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15584086A JPS63107479A (en) 1986-07-02 1986-07-02 Regenerative control system

Publications (1)

Publication Number Publication Date
JPS63107479A true JPS63107479A (en) 1988-05-12

Family

ID=15614643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15584086A Pending JPS63107479A (en) 1986-07-02 1986-07-02 Regenerative control system

Country Status (1)

Country Link
JP (1) JPS63107479A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667853B2 (en) 2000-09-13 2003-12-23 Funai Electric Co., Ltd. Holding structure of indicating display device for recording medium drive, and recording medium drive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667853B2 (en) 2000-09-13 2003-12-23 Funai Electric Co., Ltd. Holding structure of indicating display device for recording medium drive, and recording medium drive

Similar Documents

Publication Publication Date Title
JPH0681514B2 (en) Power converter and control method thereof
JPH0783615B2 (en) Three-phase converter
JPS63107479A (en) Regenerative control system
JP2924601B2 (en) Power converter
JP3623626B2 (en) Three-phase voltage type current control inverter
EP0353715B1 (en) Frequency changer
JP2943323B2 (en) Method for detecting output current of PWM inverter
JP3598308B2 (en) PWM controller for self-excited power converter
JPH08266059A (en) Power converter
JP2607488B2 (en) Inverter control device
JPS6249836B2 (en)
JPS5819169A (en) Controlling method for pwm control converter
JP2774246B2 (en) Control device for current source converter
JP2827484B2 (en) Inverter control circuit
JPS58198165A (en) Detecting method for current of pwm converter
JP2960569B2 (en) Control device for PWM converter
WO2021124521A1 (en) Power conversion device and current detection method for same
JPH0521999Y2 (en)
JP2924589B2 (en) Power converter
JPH07112152B2 (en) Signal pattern generator
JPH0321926B2 (en)
JPS60176486A (en) Ac servo system
JPH09285128A (en) Electronic power converter
JPH0937554A (en) Control device of pwm converter and uninterruptible power supply device using the control device
JPH0844447A (en) Self-excited static type reactive power compensating device