JPS63107322A - Optical burst mode time division transmitter - Google Patents

Optical burst mode time division transmitter

Info

Publication number
JPS63107322A
JPS63107322A JP61252881A JP25288186A JPS63107322A JP S63107322 A JPS63107322 A JP S63107322A JP 61252881 A JP61252881 A JP 61252881A JP 25288186 A JP25288186 A JP 25288186A JP S63107322 A JPS63107322 A JP S63107322A
Authority
JP
Japan
Prior art keywords
wavelength
circuit
data
received
burst mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61252881A
Other languages
Japanese (ja)
Other versions
JPH0630472B2 (en
Inventor
Haruo Yamashita
治雄 山下
Tetsuo Soejima
哲男 副島
Kazuo Iguchi
一雄 井口
正昭 ▲高▼橋
Masaaki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61252881A priority Critical patent/JPH0630472B2/en
Publication of JPS63107322A publication Critical patent/JPS63107322A/en
Publication of JPH0630472B2 publication Critical patent/JPH0630472B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To extend the transmission range without decreasing the photodetecting sensitivity by making the self-stimulated wavelength of a photoelectric converting element equal to that of an opposite photoelectric converting element in an optical burst mode time division transmitter having a photoelectric converting element converting light into electricity and vice versa. CONSTITUTION:An optical signal sent from an optical fiber 20 is received by an LED 1, received by a reception section 9, demultiplexed into a data and a wavelength data by a demultiplexing circuit 4, the wavelength data is received by a wavelength data reception circuit 5 and inputted to a stimulated wavelength control circuit comprising a temperature data generating circuit 14, a digital/analog converter 15, an error detection circuit 16, a temperature control circuit 17, a heater 18 and a sensor 11. The stimulated wavelength control circuit controls the wavelength of the LED 1 so as to be matched with the wavelength of the set wavelength data. In using the titled device for the master station side, since it is not required to control the wavelength of the LED 1, a selection circuit 10 is provided to select the device not applying the said control. Moreover, the master station side is provided with a wavelength monitor circuit 2 monitoring the self-stimulated wavelength and a multiplexer circuit 3 multiplexing the wavelength data to be monitored.

Description

【発明の詳細な説明】 〔概要〕 1個の、光を電気に電気を光に変換する光電気変換素子
を有する光バーストモード時分割伝送装置(光ピンポン
伝送装置)において、光電気変換素子の自発光波長を相
手の光電気変換素子の自発光波長と同じくすることによ
り、受光感度を低下させず伝送距離を長く出来るように
したものである。
Detailed Description of the Invention [Summary] In an optical burst mode time division transmission device (optical ping-pong transmission device) having one photoelectric conversion element that converts light to electricity and electricity to light, By making the self-emission wavelength the same as the self-emission wavelength of the other optoelectric conversion element, the transmission distance can be increased without reducing the light receiving sensitivity.

〔産業上の利用分野〕[Industrial application field]

本発明は、1個の、光を電気に電気を光に変換する光電
気変換素子を有する光バーストモード時分割伝送装置の
改良に関する。
The present invention relates to an improvement in an optical burst mode time division transmission device having a single photoelectric conversion element that converts light to electricity and electricity to light.

上記光バーストモード時分割伝送装置では受光感度が低
下しないことが望ましい。
In the optical burst mode time division transmission device, it is desirable that the light receiving sensitivity does not decrease.

尚発光ダイオード(以下LEDと称す)、レーザダイオ
ード等の光電気変換素子の受光感度は、第7図に示す如
く、受光光波長λ1に対し、光電気変換素子である例え
ば受光LEDの発光波長をλ2と短くした場合は、光電
気変換効率が悪く、受光感度が低下することが知られて
いる。
Note that the light receiving sensitivity of a photoelectric conversion element such as a light emitting diode (hereinafter referred to as LED) or a laser diode is as shown in FIG. It is known that when it is shortened to λ2, the photoelectric conversion efficiency is poor and the light receiving sensitivity is reduced.

〔従来の技術〕[Conventional technology]

以下従来例を図を用いて説明する。 A conventional example will be explained below using figures.

第6図は従来例の光バーストモード時分割伝送システム
の要部のブロック図である。
FIG. 6 is a block diagram of the main parts of a conventional optical burst mode time division transmission system.

(A)で示すマスタ側の光バーストモード時分割伝送装
置にて、バースト送信データSDIが人力すると、駆動
回路3にてLEDIが駆動され光信号となり、光ファイ
バ20を通り、(B)で示すスレーブ側の光バーストモ
ード時分割伝送装置に送られ、・LEDI’ にて受光
し電気変換され、受信部9°を介し、受信データRD2
として受信される。
When the burst transmission data SDI is input manually in the optical burst mode time division transmission device on the master side shown in (A), the LEDI is driven in the drive circuit 3 to become an optical signal, which passes through the optical fiber 20 and is transmitted as shown in (B). The received data RD2 is sent to the optical burst mode time division transmission device on the slave side, is received by the LEDI', is electrically converted, and is transmitted through the receiving section 9° to the received data RD2.
received as.

又(B)で示すスレーブ側の光バーストモード時分割伝
送装置にて、バースト送信データSD2が入力すると、
駆動回路8′にてLED 1’が駆動され光信号となり
、光ファイバ20を通り、(A)で示すマスタ側の光バ
ーストモード時分割伝送装置に送られ、LEDlにて受
光し電気変換され、受信部9を介し、受信データRDI
として受信される。
Furthermore, when the burst transmission data SD2 is input to the optical burst mode time division transmission device on the slave side shown in (B),
The drive circuit 8' drives the LED 1' to generate an optical signal, which passes through the optical fiber 20 and is sent to the optical burst mode time division transmission device on the master side shown in (A), where it is received by the LED 1 and electrically converted. Through the receiving section 9, the received data RDI
received as.

このマスタ側よりの送信と、スレーブ側よりの送信は、
(C)に示す如く、マスタ側よりのデータを受信してか
ら、ガードタイム経過後、送信するように時分割で行わ
れる。
The transmission from the master side and the transmission from the slave side are
As shown in (C), data is received from the master side and transmitted in a time-sharing manner after the guard time has elapsed.

このようにして1本の光ファイバ20を用い所謂ピンポ
ン伝送を行うことで通信を行っている。
In this way, communication is performed by performing so-called ping-pong transmission using one optical fiber 20.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、マスタ側0LEDIとスレーブ側0LE
DI’ との発光波長はかならずしも一致していない。
However, the master side 0LEDI and the slave side 0LE
The emission wavelength of DI' does not necessarily match.

例えばスレーブ側のLEDI’ の発光波長がマスタ側
のLEDIの発光波長より短いと、スレーブ側0LED
I’ は第7図に示す如く受光感度が低下し、伝送距離
が短くなる問題点がある。
For example, if the emission wavelength of the slave side LEDI' is shorter than the emission wavelength of the master side LEDI, the slave side LED
As shown in FIG. 7, I' has a problem in that the light receiving sensitivity decreases and the transmission distance becomes short.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、第1図の原理ブロック図(A)に示す如
(、送信側に、自発光波長をモニタする波長モニタ回路
2及びこのモニタした波長データを多重化する多重化回
路3を備え、 受信側に受信データから波長データを分離する分離回路
4及び分離された波長データを受信する波長データ受信
回路5及びこの受信した波長データに基づき自発光波長
をこの受信した波長に等しいように制御する発光波長制
御回路6及び自発光波長の制御を行うか否かの選択をす
る選択回路7を備えるか、 又はマスタ側として使用する時は、(B)に示す如く、
送信側に、自発光波長をモニタする波長モニタ回路2及
びこのモニタした波長データを多重化する多重化回路3
を備え、 スレーブ側として使用する時は、(C)に示す如く、受
信側に受信データから波長データを分離する分離回路4
及び分離された波長データを受信する波長データ受信回
路5及びこの受信した波長データに基づき自発光波長を
この受信した波長に等しいように1b制御する発光波長
制御回路6を備えるようにした本発明の光バーストモー
ド時分割伝送装置により解決される。
The above problem can be solved as shown in the principle block diagram (A) in FIG. , on the receiving side, a separation circuit 4 that separates wavelength data from received data, a wavelength data reception circuit 5 that receives the separated wavelength data, and a self-emission wavelength controlled based on the received wavelength data to be equal to the received wavelength. When the self-emission wavelength control circuit 6 is used to control the self-emission wavelength and the selection circuit 7 is used to select whether or not to control the self-emission wavelength, or when used as a master side, as shown in (B),
On the transmitting side, there is a wavelength monitor circuit 2 that monitors the self-emission wavelength and a multiplexer circuit 3 that multiplexes this monitored wavelength data.
When used as a slave side, as shown in (C), a separation circuit 4 is provided on the receiving side to separate wavelength data from received data.
and a wavelength data receiving circuit 5 that receives the separated wavelength data, and an emission wavelength control circuit 6 that controls the self-emission wavelength to be equal to the received wavelength based on the received wavelength data. The solution is an optical burst mode time division transmission device.

C作用〕 第1図(A)の選択回路7はスレーブ側となる時は自発
光波長の制御を行う方を選択し、マスタ側となる時は自
発光波長の制御を行なわない方を選択するようにするの
で、本発明によれば、(A)に示す光バーストモード時
分割伝送装置をマスタ側、スレーブ側に用いても、(B
)に示す光バーストモード時分割伝送装置をマスタ側に
、(C)に示す光バーストモード時分割伝送装置をスレ
ーブ側に用いても、スレーブ側の光電気変換素子の波長
は、送られてきたマスタ側の光電気変換素子の波長と等
しくなるように、発光波長制御回路6にて制御されるの
で、マスタ側とスレーブ側との光電気変換素子の発光波
長は等しくなり、受光感度は低下することはなく、伝送
距離が短くなることはなくなる。
C action] When the selection circuit 7 in FIG. 1(A) is on the slave side, it selects the one that controls the self-emission wavelength, and when it is on the master side, it selects the one that does not control the self-emission wavelength. Therefore, according to the present invention, even if the optical burst mode time division transmission device shown in (A) is used on the master side and the slave side, (B
Even if the optical burst mode time division transmission device shown in (C) is used on the master side and the optical burst mode time division transmission device shown in (C) is used on the slave side, the wavelength of the photoelectric conversion element on the slave side will not be transmitted. Since the emission wavelength control circuit 6 controls the wavelength of the photoelectric conversion element on the master side to be equal to that of the photoelectric conversion element on the master side, the emission wavelength of the photoelectric conversion element on the master side and the slave side becomes equal, and the light receiving sensitivity decreases. This will prevent the transmission distance from becoming shorter.

〔実施例〕〔Example〕

以下本発明の実施例に付き図に従って説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

第2図は本発明の実施例の光バーストモード時分割伝送
装置の要部のブロック図、第3図は第2図の場合のフレ
ームフォーマットを示す図である。
FIG. 2 is a block diagram of a main part of an optical burst mode time division transmission apparatus according to an embodiment of the present invention, and FIG. 3 is a diagram showing a frame format in the case of FIG. 2.

第2図は光バーストモード時分割伝送装置をマスタ側ス
レーブ側何れにも使用出来るものを示したものであり、
又LEDIの発光波長を制御する方法としては、雰囲気
温度を変化させる方法やバイアス電流を変化させる方法
等があるが、第2図は雰囲気温度を変化させ発光波長を
制御する場合の例を示している。
Figure 2 shows an optical burst mode time division transmission device that can be used on either the master or slave side.
In addition, there are methods to control the emission wavelength of LEDI, such as changing the ambient temperature and changing the bias current. Figure 2 shows an example of controlling the emission wavelength by changing the ambient temperature. There is.

第2図では、LEDl用の恒温槽10の温度をセンサ1
1にて検出し、アナログ・ディジタル変換器12にてデ
ィジタル信号に変換し、波長データ作成回路13にて、
この温度より換算した波長データを作成し、多重化回路
3にて、バーストデータと多重化され、第3図に示すフ
レームパターン、波長データ、データよりなるフレーム
フォーマットの信号となり、駆動回路8にてLEDIを
駆動し、光信号とし、光ファイバ20を通して送信され
る。
In Fig. 2, the temperature of the constant temperature bath 10 for LEDl is measured by the sensor 1.
1, the analog/digital converter 12 converts the signal into a digital signal, and the wavelength data creation circuit 13 generates the signal.
Wavelength data converted from this temperature is created and multiplexed with burst data in the multiplexing circuit 3, resulting in a frame format signal consisting of the frame pattern, wavelength data, and data shown in FIG. The LEDI is driven and an optical signal is transmitted through the optical fiber 20.

光ファイバ20より送られてきた光信号はLEDlにて
受光し、受信部9にて受信され、分離回路4にてデータ
と波長データに分離され、波長データは波長データ受信
回路5にて受信され、温度データ作成回路14にて、こ
の波長データに、恒温槽10内のLEDlの波長を合致
するのには温度を何度にすればよいかのデータを作成し
、ディジタル・アナログ変換器15にてアナログ値に変
換し、誤差検出回路16に送られる。
The optical signal sent from the optical fiber 20 is received by the LED 1, received by the receiver 9, separated into data and wavelength data by the separation circuit 4, and the wavelength data is received by the wavelength data receiver circuit 5. , the temperature data creation circuit 14 creates data on what temperature should be set to match this wavelength data with the wavelength of the LED 1 in the constant temperature oven 10, and sends it to the digital-to-analog converter 15. is converted into an analog value and sent to the error detection circuit 16.

誤差検出回路16には、センサ11よりの温度のアナロ
グ値が入力しており、これとディジタル・アナログ変換
器15の出力との誤差が検出され、温度制御回路17を
介して、誤差がOになるように、ヒータ18に流す電流
が制御され、LEDIの波長を、送られて来た波長デー
タの波長に合致するように制御される。
The analog temperature value from the sensor 11 is input to the error detection circuit 16, the error between this value and the output of the digital-to-analog converter 15 is detected, and the error is reduced to O via the temperature control circuit 17. The current flowing through the heater 18 is controlled so that the wavelength of the LEDI matches the wavelength of the transmitted wavelength data.

従って、LEDlの波長は相手側のLEDの波長に合致
するので、受信感度は低下せず、伝送距離が短くなるこ
とはない。
Therefore, since the wavelength of LEDl matches the wavelength of the LED on the other side, the receiving sensitivity does not decrease and the transmission distance does not become short.

しかしこの光バーストモード時分割伝送装置はマスタ側
に使用する場合は、LEDIの波長を制御する必要はな
いので、この制御を行なわない方を選択する為に選択回
路10を設けである。
However, when this optical burst mode time-division transmission device is used on the master side, there is no need to control the wavelength of the LEDI, so a selection circuit 10 is provided to select the one not to perform this control.

尚、温度データ作成回路14.ディジタル・アナログ変
換器15.誤差検出回路16.温度制御回路17.ヒー
タ18.センサ11にて第1図に示す発光波長制御回路
6を構成し、又センサ11゜アナログ・ディジタル変換
器12.波長データ作成回路13にて波長モニタ回路2
を構成している。
Note that the temperature data creation circuit 14. Digital to analog converter 15. Error detection circuit 16. Temperature control circuit 17. Heater 18. The sensor 11 constitutes the emission wavelength control circuit 6 shown in FIG. 1, and the sensor 11 and the analog/digital converter 12. Wavelength monitor circuit 2 in wavelength data creation circuit 13
It consists of

次は、マスタ側、スレーブ側のみに使用する場合の、光
バーストモード時分割伝送装置の構成に付いて第4図、
第5図を用いて説明する。
Next, Figure 4 shows the configuration of an optical burst mode time division transmission device when used only on the master side and slave side.
This will be explained using FIG.

第4図は本発明の実施例のマスタ側の光バーストモード
時分割伝送装置の要部のブロック図、第5図は、本発明
の実施例のスレーブ側の光バーストモード時分割伝送装
置の要部のブロック図である。
FIG. 4 is a block diagram of the main parts of the optical burst mode time division transmission device on the master side according to the embodiment of the present invention, and FIG. 5 shows the main parts of the optical burst mode time division transmission device on the slave side according to the embodiment of the present invention. FIG.

受信感度を低下させず、伝送距離を短くしない為には、
マスタ側よりLEDの波長データを送り、スレーブ側の
LEDの波長を、マスタ側のLEDの波長に合致するよ
うにすればよいので、マスタ側は、LEDlの波長デー
タを、バーストデータと多重化して送信する必要がある
が、LEDlの波長を制御する必要はないので、第4図
に示す如く、第2図の多重化回路3.センサ11.アナ
ログ・ディジタル変換器12.波長データ作成回路13
を送信側に備え、スレーブ側は、マスタ側のLEDlの
波長に合致するようLEDI’ の波長を制御しな(で
はならないが、LED 1’ の波長を送信しな(ても
よいので、第5図に示す如く、受信側に、第2図に示す
、分離回路4.波長データ受信回路5.温度データ作成
回路14.ディジタル・アナログ変換器15.誤差検出
回路16゜温度制御回路17.ヒータ18.センサ11
゛を備えるようにすればよいことになる。
In order not to reduce reception sensitivity or shorten transmission distance,
All you have to do is send the wavelength data of the LED from the master side and make the wavelength of the LED on the slave side match the wavelength of the LED on the master side, so the master side multiplexes the wavelength data of LED1 with the burst data. Although it is necessary to transmit, there is no need to control the wavelength of LED1, so as shown in FIG. 4, multiplexing circuit 3. of FIG. 2 is used. Sensor 11. Analog-to-digital converter 12. Wavelength data creation circuit 13
is provided on the transmitting side, and the slave side controls the wavelength of LEDI' to match the wavelength of LED1 on the master side (although it is not allowed to transmit the wavelength of LED1', the fifth As shown in the figure, on the receiving side, as shown in FIG. .Sensor 11
All you have to do is prepare for it.

各部の動作は第2図にて説明したと同様であり、L E
 D 1とLEDI’ の波長は同じになるので、受信
感度は低下せず、伝送距離は短くならない。
The operation of each part is the same as that explained in Fig. 2, and L E
Since the wavelengths of D 1 and LEDI' are the same, the reception sensitivity does not decrease and the transmission distance does not become short.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明せる如く本発明によれば、LEDの波長
は、相手側と同じになるので、受信感度は低下させず、
伝送距離は短くならない効果がある。
As explained in detail above, according to the present invention, the wavelength of the LED is the same as that of the other party, so the reception sensitivity is not reduced.
This has the effect of not shortening the transmission distance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理ブロック図、 第2図は本発明の実施例の光バーストモード時分割伝送
装置の要部のブロック図、 第3図は第2図の場合のフレームフォーマットを示す図
、 第4図は本発明の実施例のマスタ側の光バーストモード
時分割伝送装置の要部のブロック図、第5図は、本発明
の実施例のスレーブ側の光バーストモード時分割伝送装
置の要部のブロック図、第6図は従来例の光バーストモ
ード時分割伝送システムの要部のブロック図、 第7図は受光光波長λ1に対し受光LEDの発光波長を
変化した場合の受光感度を示す図である。 図において、 1.1”は光電気変換素子2発光ダイオード、2は波長
モニタ回路、 3は多重化回路、 4は分離回路、 5は波長データ受信回路、 6は発光波長制御回路、 7は選択回路、 8.8′ は駆動回路、 9.9′ は受信部、 10.10’ は恒温槽、 11.11’  はセンサ、 12はアナログ・ディジタル変換器、 13は波長データ作成回路、 14は温度データ作成回路、 15はディジタル・アナログ変換器、 16は誤差検出回路、 17は温度制御回路、 ¥2恨りの功をNリフし−47オー?・ント乏ホすGコ
不  3  口 51 7   ば)
FIG. 1 is a block diagram of the principle of the present invention. FIG. 2 is a block diagram of the main parts of an optical burst mode time division transmission apparatus according to an embodiment of the present invention. FIG. 3 is a diagram showing the frame format in the case of FIG. , FIG. 4 is a block diagram of the main parts of the optical burst mode time division transmission device on the master side according to the embodiment of the present invention, and FIG. 5 is a block diagram of the main part of the optical burst mode time division transmission device on the slave side according to the embodiment of the present invention. Figure 6 is a block diagram of the main parts of a conventional optical burst mode time division transmission system, and Figure 7 shows the light receiving sensitivity when the light emitting wavelength of the light receiving LED is changed with respect to the light receiving wavelength λ1. FIG. In the figure, 1.1" is a photoelectric conversion element 2 light emitting diode, 2 is a wavelength monitor circuit, 3 is a multiplexing circuit, 4 is a separation circuit, 5 is a wavelength data receiving circuit, 6 is an emission wavelength control circuit, and 7 is a selection circuit. circuit, 8.8' is a drive circuit, 9.9' is a receiver, 10.10' is a constant temperature chamber, 11.11' is a sensor, 12 is an analog-to-digital converter, 13 is a wavelength data creation circuit, 14 is a Temperature data creation circuit, 15 is a digital-to-analog converter, 16 is an error detection circuit, 17 is a temperature control circuit, 7)

Claims (1)

【特許請求の範囲】 1、)1個の、光を電気に電気を光に変換する光電気変
換素子(1)を有する光バーストモード時分割伝送装置
において、 送信側に、自発光波長をモニタする波長モニタ回路(2
)及びこのモニタした波長データを多重化する多重化回
路(3)を備え、 受信側に受信データから波長データを分離する分離回路
(4)及び分離された波長データを受信する波長データ
受信回路(5)及びこの受信した波長データに基づき自
発光波長をこの受信した波長に等しいように制御する発
光波長制御回路(6)及び自発光波長の制御を行うか否
かの選択をする選択回路(7)を備えたことを特徴とす
る光バーストモード時分割伝送装置。 2、)1個の、光を電気に電気を光に変換する光電気変
換素子(1)を有する光バーストモード時分割伝送装置
において、 マスタ側として使用する時は、送信側に、自発光波長を
モニタする波長モニタ回路(2)及びこのモニタした波
長データを多重化する多重化回路(3)を備え、 スレーブ側として使用する時は、受信側に受信データか
ら波長データを分離する分離回路(4)及び分離された
波長データを受信する波長データ受信回路(5)及びこ
の受信した波長データに基づき自発光波長をこの受信し
た波長に等しいように制御する発光波長制御回路(6)
を備えるようにしたことを特徴とする光バーストモード
時分割伝送装置。
[Claims] 1.) In an optical burst mode time-division transmission device having one photoelectric conversion element (1) that converts light to electricity and electricity to light, the transmitting side monitors the self-emission wavelength. Wavelength monitor circuit (2)
) and a multiplexing circuit (3) for multiplexing this monitored wavelength data, and the receiving side is equipped with a demultiplexing circuit (4) for demultiplexing the wavelength data from the received data and a wavelength data receiving circuit (4) for receiving the demultiplexed wavelength data. 5), an emission wavelength control circuit (6) that controls the self-emission wavelength to be equal to the received wavelength based on the received wavelength data, and a selection circuit (7) that selects whether or not to control the self-emission wavelength. ) An optical burst mode time division transmission device characterized by comprising: 2.) In an optical burst mode time division transmission device having one photoelectric conversion element (1) that converts light to electricity and electricity to light, when used as a master side, the self-emission wavelength is set on the transmitting side. It is equipped with a wavelength monitor circuit (2) that monitors wavelength data and a multiplexing circuit (3) that multiplexes this monitored wavelength data. When used as a slave side, a separation circuit ( 4) and a wavelength data receiving circuit (5) that receives the separated wavelength data, and an emission wavelength control circuit (6) that controls the self-emission wavelength to be equal to the received wavelength based on the received wavelength data.
What is claimed is: 1. An optical burst mode time division transmission device comprising:
JP61252881A 1986-10-24 1986-10-24 Optical burst mode time division transmission equipment Expired - Lifetime JPH0630472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61252881A JPH0630472B2 (en) 1986-10-24 1986-10-24 Optical burst mode time division transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61252881A JPH0630472B2 (en) 1986-10-24 1986-10-24 Optical burst mode time division transmission equipment

Publications (2)

Publication Number Publication Date
JPS63107322A true JPS63107322A (en) 1988-05-12
JPH0630472B2 JPH0630472B2 (en) 1994-04-20

Family

ID=17243460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61252881A Expired - Lifetime JPH0630472B2 (en) 1986-10-24 1986-10-24 Optical burst mode time division transmission equipment

Country Status (1)

Country Link
JP (1) JPH0630472B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10224324A (en) * 1997-01-24 1998-08-21 Gpt Ltd Burst mode wavelength measurement system
WO2000027055A1 (en) * 1998-10-30 2000-05-11 Fujitsu Limited System suitable for monitoring control in optical transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10224324A (en) * 1997-01-24 1998-08-21 Gpt Ltd Burst mode wavelength measurement system
WO2000027055A1 (en) * 1998-10-30 2000-05-11 Fujitsu Limited System suitable for monitoring control in optical transmission

Also Published As

Publication number Publication date
JPH0630472B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
JP3132638B2 (en) Optical WDM transmission system
US7546038B2 (en) Method for wireless optical transmission of data and wireless optical data transmission system
JPH088878A (en) Optical information signal communication system and its method
EP1855396A1 (en) An equipment for collectively monitoring a wavelength in dwdm system and a method thereof
KR100272709B1 (en) Apparatus and method transmission control in a optical wdm
KR20060077517A (en) Wavelength division multiplexing passive optical network
JP2006166446A (en) Wavelength-division multiplexing passive optical network
US10790907B2 (en) Optical transmitter, optical receiver and optical link
JPH09116982A (en) Remote light signal controller and light signal level control method therefor, and light signal transmission device and monitor signal light level control method therein
CN110114989A (en) Optical transmitting set, optical transceiver and the method for manufacturing optical transmitting set
JPH04150628A (en) Wavelength stabilizing method for optical communication system and its circuit
JPS63107322A (en) Optical burst mode time division transmitter
US7917033B2 (en) Wavelength-multiplexing optical transmission system and wavelength-multiplexing optical transmission method
JPS62159533A (en) Two-way optical transmitter
US5140451A (en) Aircraft signal distribution system
JP4234065B2 (en) Multi-channel optical transmitter
JPH05292033A (en) Monitor control system for optical transmission line
CN1659818B (en) Method and device for controlling signal transmission power of optical signal in optical communication networks
JPH089477A (en) Optical transmission system
JPH01103331A (en) Optical transmission system
JP2642478B2 (en) Optical multiplex transmission system
JPH01303819A (en) Optical data transmission equipment
JPH06318928A (en) Optical wavelength multiplex transmission system using light emitting element and light receiving element with multiple wavelengths
JPS568933A (en) Data transmission system with time-division multiplex and wavelength-division multiplex combined
JPH02131640A (en) Electric signal multiplexing circuit for optical module