JPS6310685A - Conductive composite particulate matter and production of same - Google Patents

Conductive composite particulate matter and production of same

Info

Publication number
JPS6310685A
JPS6310685A JP24252686A JP24252686A JPS6310685A JP S6310685 A JPS6310685 A JP S6310685A JP 24252686 A JP24252686 A JP 24252686A JP 24252686 A JP24252686 A JP 24252686A JP S6310685 A JPS6310685 A JP S6310685A
Authority
JP
Japan
Prior art keywords
powder
particulate matter
pyrrole
polymer
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24252686A
Other languages
Japanese (ja)
Other versions
JPH0360873B2 (en
Inventor
Mamoru Ito
守 伊藤
Ikuo Mizoguchi
郁夫 溝口
Masanori Kimura
正典 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Original Assignee
Achilles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp filed Critical Achilles Corp
Publication of JPS6310685A publication Critical patent/JPS6310685A/en
Publication of JPH0360873B2 publication Critical patent/JPH0360873B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a conductive particulate matter useful as a raw material for various conductive products, by coating the surface of a particulate matter with a pyrrole polymer or impregnating the particulate matter with part or the whole of the pyrrole polymer. CONSTITUTION:The title conductive composite power comprises a particulate matter and a pyrrole polymer covering the surface of the particulate matter or part or the whole of which has been infiltrated into the particulate matter. The conductive particulate matter is prepared by the following method. A particulate matter is dispersed in a non-solvent. In the non-solvent, the particulate matter is brought into contact with a pyrrole monomer and an oxidative polymerizing agent, followed by polymerization of the pyrrole monomer in the presence of a dopant. Examples of the particulate matter include synthetic resin particulate matter, natural polymer particulate matter, and inorganic particulate matter. The dopant may be any acceptor dopant which is commonly used in the art. Examples of the oxidative polymerizing agent include halogens, peroxo acids (or their salts), and permanganic acid (or permanganate).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は例えば電磁波シールド、帯電防止性を必要とす
る電子機器部品等の包装用資材や電子機器組立ライン等
の静電気発生を嫌う場所で使用する床材、壁材、静電気
帯電防止靴等、各糧導電性〔従来の技術〕 近年、ICやLSI等の半導体部品の静電気による破壊
が大きな問題となシ、さらに電磁波による電子機器の誤
動作がクローズアップされるようになっておシ、これに
伴いIC等の収納用容器や包装用資材は勿論のこと、I
Cの組立工場そのものに帯電防止性を付与することやコ
ンビエータ−等のハウジングに電磁波シールドを施すこ
とが必要とされてお〕、かかる目的を達成するために導
電性を付与した製品が広く用いられるようになっている
。この種導電性を付与した製品としてはポリアセチレン
等の如くポリマー自体が導電性を有する導電性樹脂から
成形し+、ものや樹脂又はゴム薯こ導電性充填剤を混入
した導電性樹脂組成物から成形したものあるいは樹脂に
帯電防止剤を混入した帯11!防止性@成物から成形し
たものが知られているが、一般的にはカーボン粉末、金
属フレーク、金属繊維、金属粉末、金属蒸着粒子等の導
電性充填剤や界面活性剤等の蓄電防止剤を混入して導電
性を付与した61n又はゴムより成形した製品が用いら
れている。また金、パラジウム等の金属や酸化インジウ
ム等の金属酸化物を蒸着する方法、あるいはピロールを
電解酸化重合する方法等によプ導電性を付与した樹脂も
知られている。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention can be used, for example, in packaging materials for electronic device parts that require electromagnetic shielding and antistatic properties, and in places where generation of static electricity is averse, such as electronic device assembly lines. Conductive materials such as flooring materials, wall materials, antistatic shoes, etc. [Conventional technology] In recent years, the destruction of semiconductor components such as ICs and LSIs due to static electricity has become a major problem, and the malfunction of electronic devices due to electromagnetic waves has become a major problem. As a result, not only storage containers and packaging materials for ICs, etc., but also I
It is necessary to provide antistatic properties to the assembly factory itself and to provide electromagnetic shielding to the housings of combinators, etc.], and to achieve these purposes, products with conductivity are widely used. It looks like this. Products with this type of conductivity are molded from a conductive resin such as polyacetylene, whose polymer itself is conductive, and molded from a conductive resin composition mixed with a conductive filler such as resin or rubber gauze. Band 11 which is made by adding an antistatic agent to the resin or by mixing it with an antistatic agent! Products molded from anti-static properties are known, but generally conductive fillers such as carbon powder, metal flakes, metal fibers, metal powders, and metal vapor-deposited particles, and anti-static agents such as surfactants are used. Products molded from 61n or rubber that has been mixed with 61n to give it conductivity are used. Also known are resins that have been imparted with electrical conductivity by vapor deposition of metals such as gold and palladium or metal oxides such as indium oxide, or by electrolytic oxidative polymerization of pyrrole.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、導電性充填剤を樹脂又はゴムに混入させ
て導電性を付与する場合、導電性充填剤を樹脂又はゴム
に添加して混練する際の導電性充填剤の分散性に問題が
あシ、導電性が不均一となったシ、また導電性を向上さ
せるために導電性充填剤の添加量を増加させると樹脂の
強度低下をきたす等の問題があった。ま九帯電防止剤を
混入して導電性を付与する方法は、帯電防止剤が樹脂等
の61より流出して失なわ几やすいために導電性低下を
きたしやすい欠点があった。更iこ導電性付与とともに
製品の増量化、軽量化を行なう必要がある場合には、導
電性充填剤や帯電防止剤とともに合成樹脂粒子、天然高
分子粒子、ゴム粉粒体、無機粉粒体等の一般の充填剤を
併用するが、これらの充填剤r井用すると元号な導電住
金付与することができない場合があるこいう問題があっ
た。一方金属、金属酸化物を蒸着する方法やピロールを
電解酸化重合する方法では蒸着や電解を行うための製造
コストが高くつくとともに、複雑な製造装置を必要とす
るという問題があった。
However, when a conductive filler is mixed into a resin or rubber to impart conductivity, there are problems with the dispersibility of the conductive filler when the conductive filler is added to the resin or rubber and kneaded. There were problems such as non-uniform conductivity, and when the amount of conductive filler added to improve conductivity was increased, the strength of the resin decreased. The method of imparting conductivity by mixing an antistatic agent has the disadvantage that the antistatic agent tends to flow out of the resin or the like and is easily lost, resulting in a decrease in conductivity. If it is necessary to increase the weight or reduce the weight of the product as well as impart conductivity, synthetic resin particles, natural polymer particles, rubber powder, and inorganic powder may be used in addition to conductive fillers and antistatic agents. However, when these fillers are used in combination, there is a problem in that it may not be possible to provide the original conductive metal. On the other hand, the methods of vapor depositing metals and metal oxides and the electrolytic oxidative polymerization of pyrrole have problems in that the manufacturing costs for vapor deposition and electrolysis are high and that they require complicated manufacturing equipment.

〔問題点を解決するための手段〕[Means for solving problems]

本出願人は上記問題点を解決するため鋭意研究し九結果
、プラスチックフィルム、7−トあるいは成形品等の被
導電処理材を処理液中に浸漬して、跋処理液中で電子共
役系ポリマーを形成し得るモノマーと酸化重合剤とに接
触せしめ、ドーパントの存在下に七ツマ−を重合せしめ
て電子共役系ポリマーと被導電処理材とからなる導電性
の付与された複合体を得る方法が優れていることを見出
し先に提案したが(特願昭60−247763号)、処
理液の使用効率を高めるべく更に鋭意研究した結果、被
導電処理材として種々の粉粒体を用い、該粉粒体を非溶
媒中−こ分散させ、該非溶媒中でピロール系モノマーと
、酸化重合剤とに接触せしめ、ドーパントの存在下に前
記モノマーを重合せしめて粉粒体表面をピロール系重合
体で被覆するか、あるいは粉粒体内にピロール系重合体
の一部又は全部が含浸された導電性複合粉粒体とする方
法によると、ピロール系モノマーの使用量がきわめて少
なくとも、実質的に収率100%でピロール系重合体と
粉粒体とからなる導電性複合粉粒体を形成することがで
き、更に従来の方法のようにピロール系重合体の析出が
殆ど認められず、ピロールができ、優れた導電性を有す
る製品を得ることができること、しかもこれら導電性複
合粉粒体は導電性充填剤として樹脂に練シ込んで用いた
場合でも、この樹脂よシ得られる成形品に付与される導
電性が不均一となる慮れがないとともに単なる導電性を
付与するための充填剤としての利用のみならず、製品の
増量化、軽量化のための充填剤としても有効に利用でき
ることを見い出し本発明を完成するに至った。
In order to solve the above-mentioned problems, the present applicant conducted extensive research and found that the materials to be electrically conductively treated, such as plastic films, 7-plates, or molded products, were immersed in the treatment solution, and an electronically conjugated polymer was immersed in the treatment solution. A method for obtaining a conductive composite consisting of an electronically conjugated polymer and a material to be electrically conductively treated is obtained by bringing a monomer capable of forming Although we proposed that the powder is superior (Japanese Patent Application No. 60-247763), we conducted further intensive research to improve the efficiency of using the processing liquid. The particles are dispersed in a non-solvent, brought into contact with a pyrrole-based monomer and an oxidative polymerization agent in the non-solvent, and the monomers are polymerized in the presence of a dopant to coat the surface of the powder with the pyrrole-based polymer. Alternatively, according to the method of forming a conductive composite powder in which part or all of the pyrrole-based polymer is impregnated into the powder, the amount of the pyrrole-based monomer used is extremely minimal, and the yield is substantially 100%. It is possible to form a conductive composite powder consisting of a pyrrole-based polymer and a powder using this process, and furthermore, unlike the conventional method, precipitation of the pyrrole-based polymer is hardly observed, and pyrrole is produced, which is an excellent method. It is possible to obtain electrically conductive products, and even when these electrically conductive composite powders are kneaded into a resin as a conductive filler, the electrical conductivity imparted to the molded product obtained by the resin is low. It was discovered that there is no possibility of non-uniformity in the filler, and that it can be effectively used not only as a filler for simply imparting conductivity, but also as a filler for increasing the weight and weight of products, and has developed the present invention. It was completed.

即ち本発明の一つは、粉粒体表面がピロール系重合体で
被覆されているか、あるいは粉粒体内にピロール系重合
体の一部又は全部が含浸されていることを%徴とする導
電性複合粉粒体を要旨とするものである。また本発明の
いま一つは粉粒体を非溶媒中に分散させ、該非溶媒中で
ピロール系モノマーと、酸化重合剤とに接触せしめ、ド
ーパントの存在下に前記モノマーを重合せしめて粉粒体
とピロール系重合体とからなる導電性の付与された複合
粉粒体を得ることを特徴とする導電性複合粉粒体の製造
方法を要旨とするものである。
That is, one aspect of the present invention is to provide electrical conductivity characterized by the fact that the surface of the powder or granule is coated with a pyrrole polymer, or that the powder or granule is partially or completely impregnated with a pyrrole polymer. The main focus is on composite powder and granular materials. Another aspect of the present invention is to disperse the powder or granules in a non-solvent, bring them into contact with a pyrrole monomer and an oxidative polymerization agent in the non-solvent, and polymerize the monomers in the presence of a dopant to form the powder or granules. The gist of the present invention is a method for producing a conductive composite powder, which is characterized by obtaining a conductive composite powder consisting of a pyrrole-based polymer and a pyrrole-based polymer.

本発明の導電性複合粉粒体は粉粒体の表面がピロール系
重合体で被覆された構成を有するか、粉粒体の表面がピ
ロール系重合体で被覆されているとともに粉粒体内に一
部ピロール系重合体が含浸された構成を有するか、ある
いは粉粒体内にピロール系重合体の全部が含浸された構
成を有するものである。上記粉粒体としては合成樹脂粉
粒体、天然高分子粉粒体、天然ゴム又は合成ゴムの粉粒
体、無機粉粒体が挙げられ、これら粉粒体として合成樹
脂粉粒体の如き発泡体、セルロースパウダー等の如き粉
体や軽石粉の如き多孔質体も含まれる。こnら粉粒体は
表面多孔性のものがピロール系重合体との複合強度が大
きくなり、この結果耐久性のある導電性が得られるため
好ましい。また粉粒体の粒径は特に限定されず、例えば
合成樹脂粉粒体の場合、射出、圧縮、押出し、プロー成
形、ビーズ発泡成形等の成形に用いることのできる大き
さであれば使用可能である。
The conductive composite powder of the present invention has a structure in which the surface of the powder is coated with a pyrrole polymer, or the surface of the powder is coated with a pyrrole polymer and the powder is coated with a pyrrole polymer. It has a structure in which part of the pyrrole-based polymer is impregnated, or it has a structure in which the pyrrole-based polymer is entirely impregnated in the powder body. Examples of the above-mentioned powders include synthetic resin powders, natural polymer powders, natural rubber or synthetic rubber powders, and inorganic powders. It also includes powders such as porcelain, cellulose powder, etc., and porous materials such as pumice powder. It is preferable that these powders and granules have surface porosity because the composite strength with the pyrrole polymer is increased, and as a result, durable conductivity can be obtained. The particle size of the powder or granule is not particularly limited; for example, in the case of synthetic resin powder, it can be used as long as it has a size that can be used for molding such as injection, compression, extrusion, blow molding, bead foam molding, etc. be.

本発明の製造方法は粉粒体を非溶媒中に分散せしめ、該
非溶媒中で粉粒体をドーパントの存在下にピロール第七
ツマ−と酸化重合剤とに接触せしめるコトによ〕ピロー
ル第七ツマ−を重合せしめて粉粒体とピロール系重合体
とが複合化し、ピロール系重合体によって導電性の付与
された導電性複合粉粒体を得るものである。
The manufacturing method of the present invention involves dispersing a powder or granule in a non-solvent, and bringing the powder or granule into contact with pyrrole No. 7 and an oxidative polymerization agent in the presence of a dopant in the non-solvent. The powder and pyrrole polymer are composited by polymerizing the powder, and a conductive composite powder is obtained which is imparted with conductivity by the pyrrole polymer.

上記粉粒体のうち、合成樹脂粉粒体の基材樹脂トシテハ
ポリビニルアルコール、セロファン、セルロースエステ
ル、ポリ酢酸ビニル、ポリビニルホルマール、ポリビニ
ルブチラール、ポリ塩化ビニル、ポリ塩化ビニリゾ/、
ボッ弗化ビニリデノ、塩素化ポリエチレン、ポリエチレ
ン、ポリプロピレン、ポリメタクリル酸メチル、ポ・ツ
カ−ボネート、ポリエチレンテレフタレート、ポリブチ
レンテレフタレート、6−ナイロン、11−ナイロン、
12−ナイロン、6ローナイロン、イオン電解質モノマ
ーの重合体あるいは該モノマーと他の七ツマ−との共重
合体等の熱可塑性樹脂が単独又は混合して使用される。
Among the above powders, the base resins of the synthetic resin powders include polyvinyl alcohol, cellophane, cellulose ester, polyvinyl acetate, polyvinyl formal, polyvinyl butyral, polyvinyl chloride, polyvinyl chloride/,
Vinylidene fluoride, chlorinated polyethylene, polyethylene, polypropylene, polymethyl methacrylate, carbonate, polyethylene terephthalate, polybutylene terephthalate, 6-nylon, 11-nylon,
Thermoplastic resins such as 12-nylon, 6-row nylon, polymers of ionic electrolyte monomers, or copolymers of these monomers with other 7-mers are used alone or in combination.

6−ナイロン等の如く吸水性の高い樹脂よシなるものの
場合、ピロール系重合体が樹脂粉粒体内に略完全に含浸
形成され易く、またポリ塩化ビニル等の如く吸水性の低
い樹脂よ〕なるものの場合、ピロール系重合体は樹脂粉
粒体の表面のみを被覆するように形成され易い0合成ゴ
ム粉粒体としてはポリブタジェン、ポリクロロプレン、
8BR,シリコーンゴム、ニトリルゴム、フッ素ゴム等
の一般に使用されている合成ゴムの粉粒体であればいず
れのものでも使用することができる。ti天然高分子粉
粒体としては前記セルロースパウダーの他に皮粉、コル
ク粉末、木−粉等が挙げられ、無機粉粒体としては軽石
粉の他硫酸カルシウム、シリカ等の粒子、粉末や、クレ
ー、タルク、ケイ藻土、ケイ砂、スレート粉、雲母粉、
アスベスト、ガラス粉末、ガラス球、発泡ガラス球、フ
ライアッシェ球、シラスバルーン等が挙げられる。ピロ
ール糸上ツマ−としては例えばピロール、3−メチルピ
ロール、N−メチルピロール等が挙げられる。粉粒体を
分散させる非溶媒としては水が用いられるが、粉粒体が
合成樹脂よりなる場合、粉粒体表面を粗しでピロール系
重合体の粉粒体表面への付着性及び/又は粉粒体内への
含浸性を向上するために有機溶媒を添加してもよい。有
機溶媒としては例えばメタノール、エタノール等の脂肪
族アルコール類;アセトン、メチルエチルケトン等の脂
肪族ケトン類;ジエチルエーテル、テトラヒドロフラン
等のエーテル類;塩化メチレン、クロロホルム等のハ筒
ゲン化炭化水素類;酢酸エチル、酢酸ブチル等のエステ
ル類:トルエン、ベンゼン等の芳香族炭化水素類;ヘキ
サン等の脂肪族炭化水素類;アセトニトリル、ベンゾニ
トリル等の含窒素化合物;ジメチルホルムアミド等やこ
れらの混合物が挙げられ、これら溶媒の中からモノマー
、ドーパント、酸化重合剤及び粉粒体の材質に応じて適
宜選択して用いる。
6- In the case of resins with high water absorption such as nylon, the pyrrole polymer tends to be almost completely impregnated into the resin powder particles, and in the case of resins with low water absorption such as polyvinyl chloride etc. In the case of synthetic rubber powder, the pyrrole polymer tends to be formed so as to cover only the surface of the resin powder. Examples of synthetic rubber powder include polybutadiene, polychloroprene,
Any commonly used synthetic rubber powder such as 8BR, silicone rubber, nitrile rubber, fluororubber, etc. can be used. In addition to the above-mentioned cellulose powder, natural polymer powders include leather powder, cork powder, wood powder, etc., and inorganic powders include pumice powder, particles and powders of calcium sulfate, silica, etc. Clay, talc, diatomaceous earth, silica sand, slate powder, mica powder,
Examples include asbestos, glass powder, glass bulbs, foamed glass bulbs, fly ash bulbs, and shirasu balloons. Examples of the pyrrole thread pick include pyrrole, 3-methylpyrrole, and N-methylpyrrole. Water is used as a non-solvent to disperse the powder, but when the powder is made of synthetic resin, the surface of the powder may be roughened to improve the adhesion of the pyrrole polymer to the surface of the powder and/or An organic solvent may be added to improve impregnation into the powder body. Examples of organic solvents include aliphatic alcohols such as methanol and ethanol; aliphatic ketones such as acetone and methyl ethyl ketone; ethers such as diethyl ether and tetrahydrofuran; halide hydrocarbons such as methylene chloride and chloroform; ethyl acetate. , esters such as butyl acetate; aromatic hydrocarbons such as toluene and benzene; aliphatic hydrocarbons such as hexane; nitrogen-containing compounds such as acetonitrile and benzonitrile; dimethylformamide and mixtures thereof. The solvent is appropriately selected and used depending on the monomer, dopant, oxidative polymerization agent, and material of the powder.

上記ドーパントとしては一般に使用されるアクセプター
性のドーパントなら全て使用できる。アクセプター性の
ドーパントとしては塩素、臭素、ヨウ素等のハロゲン類
;1弗化リン等のルイス酸;塩化水素、硫酸等のプロト
ン酸:塩化第二鉄等の遷移金属塩化物:過塩素酸銀、弗
化ホウ素銀等の遷移金属化合物等が挙げられる。酸化重
合剤としては過マンガン榎あるいは過マンガン酸カリウ
ム等の過マンガン!!l(塩りに三醗化クロム酸等のク
ロム酸類;硝酸銀等の硝酸塩類;4素、臭素、ヨフ素等
の・・コゲン項:過酸化水素、過酸化ベンゾイル等の過
酸化物;ベルオクンニ硫改、ベルオクソニ硫醗カリウム
等のベルオクソ酸類、ペルオクノ識塩類;次亜塩素履、
次亜塩素酸カリウム等の懺素fi類、酸素酸塩類;塩化
薗二扶等の遷移金属塩化物;酸化銀等の金属酸化物等が
挙げられる。
As the above-mentioned dopant, all commonly used acceptor dopants can be used. Acceptor dopants include halogens such as chlorine, bromine, and iodine; Lewis acids such as phosphorus monofluoride; protonic acids such as hydrogen chloride and sulfuric acid; transition metal chlorides such as ferric chloride; silver perchlorate; Examples include transition metal compounds such as silver boron fluoride. As an oxidative polymerization agent, use permanganese such as permanganese or potassium permanganate! ! l (chromic acids such as chromic acid trifluoride; nitrates such as silver nitrate; tetrachloride, bromine, iodine, etc.) Cogen terms: peroxides such as hydrogen peroxide and benzoyl peroxide; modified, beloxo acids such as beloxoni potassium sulfate, peloxo salts; hypochlorite,
Examples include fluorine fi compounds such as potassium hypochlorite, oxyacid salts; transition metal chlorides such as Sonojifu chloride; metal oxides such as silver oxide, and the like.

これらの酸化1合剤のうちハロゲン類、ペルオクソ酸(
塩)項、遷移金属塩化物等はドーパントとしての作用を
有するため、これらを酸化重合剤として用いた場合には
、特に他のドーパントを併用する必要はないが、前記ド
ーパントと併用すると更1ど導電性を向上することがで
きる。
Among these oxidation 1 mixtures, halogens and peroxo acids (
Since salts, transition metal chlorides, etc. act as dopants, when they are used as oxidative polymerization agents, it is not necessary to use other dopants together, but when they are used in combination with the above dopants, further Conductivity can be improved.

粉粒体を非溶媒中に分散させてドーパントの存在下にピ
ロール系モノマーと酸化重合剤と喜と接触処理する方法
としては例えば■そツマ−と酸化重合剤及び必要により
更にドーパントを添加し九非溶媒溶液に、モノマーが実
質的に重合する前に粉粒体を浸漬して攪拌し分散させる
方法、■酸化重合剤と必要によシ更にドーパントを添加
した非溶媒溶液と、七ツマ−を含有する非溶媒溶液と1
こ粉粒体を順欠浸漬して攪拌し分散させる方法、■酸化
重合剤と必要によシ更にドーパントを添加した非溶媒溶
液に粉粒体を浸漬して攪拌し分散させた後、この溶液中
にモノマーを添加する方法等が挙げられる。■の方法に
:れば処理時間を短縮することができるが、ピロール系
モノマーの重合反応が速いため溶液を調整した後に直ち
に粉粒体を浴液中に浸漬して分散させる必要があシ、浴
液調整から粉粒体を溶液1ζ浸漬して分散させるまでに
時間が経過すると粉粒体とピロール系重合体の複合化が
低下し導電性の低下をきたし易い。また酸化重合剤は七
ツマ−に比べて粉粒体への浸透性が低いため、■、■の
方法のように七ツマー含有溶液による処理と酸化重合剤
含有溶液による処理とを別に行う方法を採用し、先に酸
化重合剤含有溶液中に粉粒体を20分〜1時間程度浸漬
分散させた後、ピロール系モノマーと接触させることが
好ましく、特に低吸水性樹脂よシなる粉粒体等の場合に
はピロール系重合体の粉粒体中への含浸炭が向上するこ
とによって、よシ耐久性のある導電性が付与される。
An example of a method of dispersing the powder in a non-solvent and contacting it with a pyrrole monomer and an oxidative polymerization agent in the presence of a dopant is as follows. A method of immersing powder in a non-solvent solution and stirring and dispersing it before the monomer is substantially polymerized; Containing non-solvent solution and 1
A method of sequentially dipping the powder and granules and stirring and dispersing them; ■ After immersing the powder and granules in a non-solvent solution containing an oxidative polymerization agent and, if necessary, a dopant, and stirring and dispersing, this solution Examples include a method of adding a monomer therein. Method (2): The processing time can be shortened, but since the polymerization reaction of the pyrrole monomer is fast, it is necessary to immediately immerse the powder in the bath liquid to disperse it after preparing the solution. If time elapses from the preparation of the bath liquid until the granules are immersed in the solution 1ζ and dispersed, the compositing of the granules and the pyrrole polymer is likely to deteriorate, resulting in a decrease in conductivity. In addition, since the oxidative polymerization agent has a lower permeability into powder and granules than the nanatsumar, it is recommended to perform the treatment with the nanatsumar-containing solution and the oxidative polymerization agent-containing solution separately, as in methods ① and ②. It is preferable to first immerse and disperse the powder in a solution containing an oxidative polymerization agent for about 20 minutes to 1 hour, and then contact it with the pyrrole monomer. In this case, more durable conductivity is imparted by improving the carbon impregnation into the pyrrole-based polymer powder.

粉粒体を非溶媒に分散させて処理する際の処理液温度は
、付与される導電性をよ)向上する上で0〜40℃が好
ましく、特に0〜5℃が好ましい。
The temperature of the treatment liquid when dispersing the powder in a non-solvent is preferably from 0 to 40°C, particularly preferably from 0 to 5°C, in order to improve the electrical conductivity imparted.

また粉粒体を処理する時間は粉粒体の材質、所望する電
導度の大きさ、更にはモノマー、酸化重合剤の濃度等に
よっても異なるが、通常1分〜3時間程度である。
Further, the time for treating the powder or granules varies depending on the material of the powder or granules, the desired degree of conductivity, the concentration of the monomer, the oxidative polymerization agent, etc., but is usually about 1 minute to 3 hours.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明を更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 5ノの丸底フラスコに1000Ji’のポリ塩化ビニル
樹脂粒子(重合度800、粒径5o〜Zooμm)を入
れ、0.2 Mの塩化第二鉄水溶液2Itを加えて攪拌
して樹脂粒子を分散させ、温度が2〜3℃になるまで冷
却した。次いで同温度にて30分間攪拌を続けた後、0
.2Mピロール七ツマー水m液400mを加え、更に2
〜3℃に保持して工時間激しく攪拌した。この分散液を
濾過して蒸溜水で充分洗浄した後、50℃で乾燥して灰
色の樹脂粒子を得た。この樹脂粒子を電子顕微鏡で観察
した結果、50μm以下の粒子が観察されず、ピロール
重合体のみの生成がないことが判明した。またこの樹脂
粒子を容積21.1 mの容器に充填し、電極間(&8
5tx)の抵抗値をテスターで測定した結果、tsxi
o’Ωであシ優れた導電性を有していた。
Example 1 1000Ji' of polyvinyl chloride resin particles (degree of polymerization: 800, particle size: 5o~Zooμm) were placed in a 5mm round bottom flask, 2It of 0.2M ferric chloride aqueous solution was added, and the resin was stirred. The particles were dispersed and cooled until the temperature was 2-3°C. Next, after continuing stirring at the same temperature for 30 minutes,
.. Add 400ml of 2M pyrrole 7mer water and add 2M
The temperature was maintained at ~3°C and vigorously stirred during the working time. This dispersion was filtered, thoroughly washed with distilled water, and then dried at 50°C to obtain gray resin particles. As a result of observing the resin particles with an electron microscope, it was found that no particles of 50 μm or less were observed, and no pyrrole polymer was produced. In addition, the resin particles were filled in a container with a volume of 21.1 m, and the space between the electrodes (&8
As a result of measuring the resistance value of 5tx) with a tester, tsxi
It had excellent conductivity of 0'Ω.

更にこの樹脂粒子を用いて厚さα1flのフィルムを成
形し、このシートの表面抵抗値、可視光線透過率を測定
した結果、それぞれ3X10”Ω/α(25℃、50 
%RH)、40%であシ、所望の導電性、透明性を有し
ていた。尚、表面抵抗値は高抵抗計によ〕測定した値で
あシ、可視光線透過率は分光光度計により400〜80
0nmで測定した値の積分値である。
Furthermore, a film with a thickness of α1fl was formed using these resin particles, and the surface resistance value and visible light transmittance of this sheet were measured.
%RH), 40% resin, and desired conductivity and transparency. The surface resistance value is the value measured with a high resistance meter, and the visible light transmittance is 400 to 80 measured with a spectrophotometer.
This is an integral value of the value measured at 0 nm.

実施例2〜5 第1表に示す樹脂粒子を実施例1と同様の方法で処理し
、灰色の樹脂粒子を得九。この樹脂粒子を電子顕微境で
観察した結果、ピロール1合体が禽脂粒子内に含浸して
いた。この樹脂粒子の抵抗値を実施例1と同様にして測
定した結果を第1表に示す。
Examples 2 to 5 The resin particles shown in Table 1 were treated in the same manner as in Example 1 to obtain gray resin particles. As a result of observing the resin particles under an electron microscope, it was found that pyrrole 1 coalescence was impregnated into the poultry fat particles. The resistance value of the resin particles was measured in the same manner as in Example 1, and the results are shown in Table 1.

実施例6 ピロールモノマー水溶液濃度を0.2 Mから0.4M
とした他は実施例1と同様の樹脂粒子を、同様の方法で
処理して黒色の樹脂粒子を得九〇この樹脂粒子の抵抗値
を実施例1と同様にして測定した結果、2 X 10”
Ωであった。またこの樹脂粒子を用いて厚さ0.1 f
iのフィルムを底形し、このフィルムの表面抵抗値及び
可視光線透過率を実施例1と同様に測定した結果、それ
ぞれ1.2 X I Q”Ω/cm(25℃、50%R
H)、32%であっ九。
Example 6 Pyrrole monomer aqueous solution concentration from 0.2 M to 0.4 M
The same resin particles as in Example 1 were treated in the same manner as in Example 1 to obtain black resin particles.90 The resistance value of these resin particles was measured in the same manner as in Example 1, and the result was 2 x 10 ”
It was Ω. Also, using this resin particle, a thickness of 0.1 f
The surface resistance value and visible light transmittance of this film were measured in the same manner as in Example 1.
H), 32%.

比較例1 厚さQ、 l wa X幅20 cm X長さ5003
のポリ塩化ビニルフィルムをロール状に巻いたものを2
〜3℃に保持した2Jの0.2 M塩化第二鉄水溶液中
に30分間浸漬した後、この溶液中に0.2Mピロール
モノマー水溶液4QOdを加えて激しく攪拌して1時間
保持した。次いでフィルムを取出して蒸溜水で洗浄し、
50℃で乾燥した後フィルムの表面抵抗値及び可視光線
透過率を実施例1と同様に測定した結果、それぞれ8 
X 10”Ω/ex (25℃、50%RH)、42%
であったが、ポリ塩化ピニルフ1ルムへのどコール重合
体り取込みは1.5%であり、きわめて悪かった。
Comparative example 1 Thickness Q, l wa x width 20 cm x length 5003
2 rolls of polyvinyl chloride film
After immersing for 30 minutes in 2J of 0.2M ferric chloride aqueous solution maintained at ~3°C, 0.2M pyrrole monomer aqueous solution 4QOd was added to this solution, stirred vigorously, and maintained for 1 hour. The film was then taken out and washed with distilled water.
After drying at 50°C, the surface resistance and visible light transmittance of the film were measured in the same manner as in Example 1.
X 10”Ω/ex (25℃, 50%RH), 42%
However, the uptake of throatol polymer into the polychlorinated pinylphurum was 1.5%, which was extremely poor.

実施例7〜9 第2表に示す粉粒体を実施例1と同様にして処理し、導
電性複合粉粒体を得た。この複合粉粒体の抵抗値を実施
例1と同様にして測定した結果を第2表に示す。
Examples 7 to 9 The powders shown in Table 2 were treated in the same manner as in Example 1 to obtain conductive composite powders. The resistance value of this composite powder was measured in the same manner as in Example 1, and the results are shown in Table 2.

第2表 実施例10 実施例7で得られた導電性セルロースパウダ−301i
量部を29硬化型シリコ一ンゴム100重量部に蝋り込
み室温で硬化させ、複合体を得意。
Table 2 Example 10 Conductive cellulose powder 301i obtained in Example 7
1 part by weight is brazed into 100 parts by weight of 29-curing silicone rubber and cured at room temperature, making it suitable for composites.

得られた複合体の表面抵抗値を測定したところ3、5 
X 10  であプ、シリコーンゴム単独の場合(表1
抵抗値lズ1016Ω)に比べて導電性向上効果が認め
られ之。
When the surface resistance value of the obtained composite was measured, it was 3,5
In the case of silicone rubber alone (Table 1
The effect of improving conductivity was observed compared to the resistance value (1016Ω).

実施例11 実施例5で得られた導電性ポリメチルメタクリレートパ
ウダー100i1(全部をトルエンで希釈しタクロロプ
レンゴム(トルエン:クロロプレンゴム=5:1)18
0重量部に混合しトルエンを加熱蒸発させ複合体を得た
。得られた複合体の表面抵抗値を測定したところI X
 10”Ωであシ、クロロプレンゴム単独の場合(表面
抵抗値I X 10”Ω)に比べて導電性向上効果が認
められた。
Example 11 Conductive polymethyl methacrylate powder obtained in Example 5 100i1 (all diluted with toluene and diluted with tachloroprene rubber (toluene:chloroprene rubber = 5:1)18
The mixture was mixed to 0 parts by weight, and the toluene was heated and evaporated to obtain a composite. When the surface resistance value of the obtained composite was measured, I
The conductivity was improved compared to the case of using chloroprene rubber alone (surface resistance value I x 10"Ω).

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の導電性複合粉粒体は粉粒体
の表面をピ・ロール系重合体が被覆しているか、あるい
は粉粒体内にピロール系重合体の一部又は全部が含浸さ
れ次構成を有することによシ優れ良導電性を有するとと
もに本発明の導電性複合粉粒体は粉粒体の材質が熱可塑
性樹脂等の場合には成形することにより優れ良導電性を
有する任意の形状の成形体を容易に得ることができる。
As explained above, in the conductive composite powder of the present invention, the surface of the powder or granule is coated with a pyrrole polymer, or the powder or granule is partially or entirely impregnated with a pyrrole polymer. The conductive composite powder of the present invention has excellent conductivity by having the following structure, and when the material of the powder is thermoplastic resin, etc., it can be molded into any material that has excellent conductivity. A molded article having the shape of can be easily obtained.

また不発明の導電性複合粉粒体は導電性充填剤等として
用いることがでさ、本発明導電性複合粉粒体は樹脂への
分散性が良いため、導電性充填剤として樹脂に添加して
用いた場合でも均一な導電性を付与できるとともに、粉
粒体の当初の性能を損うことなく導電化されているため
、粉粒体が従来より使用されている用途にそのまま適用
でき、例えば導電性を有する増量材、軽量化材等として
有効に有利し得るため、従来のように導電性充填剤とと
もに増量材、軽量化材を併用する必要がなく、増量材、
軽量化材の併用による従来の欠点を全て解消できる。ま
た導電性充填剤として樹脂等に添加して用いる場合、充
填剤を添加すべき樹脂と相溶性のある樹脂等よ〕なる粉
粒体にピロール処理した導電性複合粉粒体を用いれば、
カーボンブラック等を使用する場合のように機械的強度
を低下散し、該非溶媒中でピロール系モノマーと酸化重
合剤乏に接触せしめてドーパントの存在下にピロール系
重合体により導電性を付与する方法を採用したから、確
実かつ容易に導電性複合粉粒体を製造することができる
。また本発明方法はピロール系モノマーの使用量がきわ
めて少なくとも高収率で優れた導電性複合粉粒体を得る
ことができ、しかもピロール系モノマーのむだが少なく
効率よい製造を行ない得る。更に本発明方法では粉粒体
が透明な樹脂よシなる場合でも、樹脂の透明性をほとん
ど損うことなく導電性を付与することができ、得られた
導電性複合粉粒体を成形して得たシート、フィルム等は
透明性の高いものとなる等の程々の効果を有する。
In addition, the conductive composite powder of the present invention can be used as a conductive filler, etc. The conductive composite powder of the present invention has good dispersibility in resin, so it can be added to resin as a conductive filler. Uniform conductivity can be imparted even when the powder is used, and it is made conductive without impairing the original performance of the powder or granule, so it can be applied as is to the applications for which the powder or granule has traditionally been used, such as Since it can be effectively used as a conductive filler, weight-reducing material, etc., there is no need to use a filler or weight-reducing material together with a conductive filler as in the past.
All of the drawbacks of the conventional method can be overcome by using lightweight materials in combination. In addition, when used as a conductive filler by adding it to a resin, etc., if a conductive composite powder made of a resin etc. that is compatible with the resin to which the filler is added is treated with pyrrole,
A method in which the mechanical strength is reduced as in the case of using carbon black, etc., and conductivity is imparted by the pyrrole-based polymer in the presence of a dopant by bringing the pyrrole-based monomer into contact with the oxidized polymerization agent in the non-solvent. Since this method is adopted, conductive composite powder can be produced reliably and easily. In addition, the method of the present invention can produce excellent conductive composite powder at a high yield even when the amount of pyrrole monomer used is extremely low, and moreover, it can be produced efficiently with less waste of the pyrrole monomer. Furthermore, in the method of the present invention, even when the powder is made of a transparent resin, it is possible to impart conductivity without substantially impairing the transparency of the resin, and the resulting conductive composite powder can be molded. The obtained sheets, films, etc. have moderate effects such as being highly transparent.

Claims (4)

【特許請求の範囲】[Claims] (1)粉粒体表面がピロール系重合体で被覆されている
か、あるいは粉粒体内にピロール系重合体の一部又は全
部が含浸されていることを特徴とする導電性複合粉粒体
(1) A conductive composite granular material characterized in that the surface of the granular material is coated with a pyrrole-based polymer, or the granular material is partially or entirely impregnated with a pyrrole-based polymer.
(2)粉粒体が合成樹脂粉粒体、天然高分子粉粒体ある
いは無機粉粒体である特許請求の範囲第1項記載の導電
性複合粉粒体。
(2) The conductive composite powder or granule according to claim 1, wherein the powder or granule is a synthetic resin powder, a natural polymer powder, or an inorganic powder.
(3)粉粒体を非溶媒中に分散させ、該非溶媒中でピロ
ール系モノマーと、酸化重合剤とに接触せしめ、ドーパ
ントの存在下に前記モノマーを重合せしめて粉粒体とピ
ロール系重合体とからなる導電性の付与された複合粉粒
体を得ることを特徴とする導電性複合粉粒体の製造方法
(3) Powder is dispersed in a non-solvent, brought into contact with a pyrrole monomer and an oxidative polymerization agent in the non-solvent, and the monomers are polymerized in the presence of a dopant to form the powder and pyrrole polymer. A method for producing a conductive composite powder, the method comprising obtaining a conductive composite powder comprising:
(4)粉粒体が合成樹脂粉粒体、天然高分子粉粒体ある
いは無機粉粒体である特許請求の範囲第3項記載の導電
性複合粉粒体の製造方法。
(4) The method for producing a conductive composite powder or granule according to claim 3, wherein the powder or granule is a synthetic resin powder, a natural polymer powder, or an inorganic powder.
JP24252686A 1986-03-27 1986-10-13 Conductive composite particulate matter and production of same Granted JPS6310685A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-69490 1986-03-27
JP6949086 1986-03-27

Publications (2)

Publication Number Publication Date
JPS6310685A true JPS6310685A (en) 1988-01-18
JPH0360873B2 JPH0360873B2 (en) 1991-09-18

Family

ID=13404199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24252686A Granted JPS6310685A (en) 1986-03-27 1986-10-13 Conductive composite particulate matter and production of same

Country Status (1)

Country Link
JP (1) JPS6310685A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167254A (en) * 1987-12-24 1989-06-30 Ricoh Co Ltd Electrically conductive polymer material composite
JPH02273407A (en) * 1989-04-14 1990-11-07 Japan Carlit Co Ltd:The Conductive grains and manufacture thereof
US7649076B2 (en) * 2006-05-18 2010-01-19 University Of Florida Research Foundation, Inc. Catalyst free polymerization of 3,4-alkylenedioxypyrrole and 3,4-alkylenedioxyfuran
WO2012042918A1 (en) * 2010-09-28 2012-04-05 積水化成品工業株式会社 Coloring resin particles, and production method and uses therefor
JP2012072261A (en) * 2010-09-28 2012-04-12 Sekisui Plastics Co Ltd Production method for coloring resin particles, and coloring resin particles obtained by the production method
JP2012072264A (en) * 2010-09-28 2012-04-12 Sekisui Plastics Co Ltd Coloring resin particle and use thereof
JP2021014489A (en) * 2019-07-10 2021-02-12 宮川ローラー株式会社 Conductive rubber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133455A (en) * 1979-02-16 1980-10-17 Eastman Kodak Co Coating composition and its manufacture
US4521450A (en) * 1982-06-22 1985-06-04 Asea Aktiebolag Method of increasing the electrical conductivity of cellulose-based materials or other impregnable materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133455A (en) * 1979-02-16 1980-10-17 Eastman Kodak Co Coating composition and its manufacture
US4521450A (en) * 1982-06-22 1985-06-04 Asea Aktiebolag Method of increasing the electrical conductivity of cellulose-based materials or other impregnable materials

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167254A (en) * 1987-12-24 1989-06-30 Ricoh Co Ltd Electrically conductive polymer material composite
JPH02273407A (en) * 1989-04-14 1990-11-07 Japan Carlit Co Ltd:The Conductive grains and manufacture thereof
US7649076B2 (en) * 2006-05-18 2010-01-19 University Of Florida Research Foundation, Inc. Catalyst free polymerization of 3,4-alkylenedioxypyrrole and 3,4-alkylenedioxyfuran
WO2012042918A1 (en) * 2010-09-28 2012-04-05 積水化成品工業株式会社 Coloring resin particles, and production method and uses therefor
JP2012072261A (en) * 2010-09-28 2012-04-12 Sekisui Plastics Co Ltd Production method for coloring resin particles, and coloring resin particles obtained by the production method
JP2012072264A (en) * 2010-09-28 2012-04-12 Sekisui Plastics Co Ltd Coloring resin particle and use thereof
JP2021014489A (en) * 2019-07-10 2021-02-12 宮川ローラー株式会社 Conductive rubber

Also Published As

Publication number Publication date
JPH0360873B2 (en) 1991-09-18

Similar Documents

Publication Publication Date Title
JPH07734B2 (en) Conductive plastic composite
JPS6310685A (en) Conductive composite particulate matter and production of same
JPH0618083B2 (en) Method for producing conductive composite
CN105802092A (en) Fluorine-containing polymer/conductive fiber dielectric material and preparation method thereof
JPH09216952A (en) Conductive microfibrillar cellulose and composite material containing the same
CN108864622A (en) A kind of preparation method of polymer-based dielectric composite material
US4764573A (en) Electrically conductive pyrrole polymers
JPH03152110A (en) Electrically conductive plastic composite, method of its production and use thereof
Yang et al. Polypyrrole—polypropylene composite films: preparation and properties
Dubitsky et al. Polypyrrole-poly (vinyl chloride) and polypyrrole-cellulose acetate conducting composite films by opposite-diffusion polymerization
JPS63125696A (en) Method for plating electrically nonconductive substance
JPH11166049A (en) Production of electro-conductive complex
JPH02283722A (en) Manufacture of conductive polymer derived from 3-alkylthiophene, and conductive device containing said polymer
US5219492A (en) Conductive plastic composites
CN1058031A (en) With the polyamide-polyolefin complex is the electro-conductive material of matrix
JP3403430B2 (en) Method for producing highly conductive polymer molded article
JPS61123637A (en) Treatment of molded resin article
JPH061647B2 (en) Method for producing conductive composite laminate
AU607537B2 (en) Conductive plastic composites
JP3403429B2 (en) Method for producing conductive polymer molded article
JPS63308807A (en) Conductive compound film
JPH09310029A (en) Encapsulated conductive powder, its production and electroconductive resin composition
JPS62115061A (en) Carbon/resin composite composition
JPS6144953A (en) Conductive resin or rubber composition and preparation thereof
JPH05186617A (en) Conductive composite form and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees