JPH0360873B2 - - Google Patents

Info

Publication number
JPH0360873B2
JPH0360873B2 JP61242526A JP24252686A JPH0360873B2 JP H0360873 B2 JPH0360873 B2 JP H0360873B2 JP 61242526 A JP61242526 A JP 61242526A JP 24252686 A JP24252686 A JP 24252686A JP H0360873 B2 JPH0360873 B2 JP H0360873B2
Authority
JP
Japan
Prior art keywords
powder
pyrrole
monomer
resin
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61242526A
Other languages
Japanese (ja)
Other versions
JPS6310685A (en
Inventor
Mamoru Ito
Ikuo Mizoguchi
Masanori Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Original Assignee
Achilles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp filed Critical Achilles Corp
Publication of JPS6310685A publication Critical patent/JPS6310685A/en
Publication of JPH0360873B2 publication Critical patent/JPH0360873B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は例えば電磁波シールド、帯電防止性を
必要とする電子機器部品等の包装用資材や電子機
器組立ライン等の静電気発生を嫌う場所で使用す
る床材、壁材、静電気帯電防止靴等、各種導電性
製品製造用原料として用いられる導電性複合粉粒
体及びその製造方法に関する。 〔従来の技術〕 近年、ICやLSI等の半導体部品の静電気による
破壊が大きな問題となり、さらに電磁波による電
子機器の誤動作がクローズアツプされるようにな
つており、これに伴いIC等の収納用容器や包装
用資材は勿論のこと、ICの組立工場そのものに
帯電防止性を付与することやコンピユーター等の
ハウジングに電磁波シールドを施すことが必要と
されており、かかる目的を達成するために導電性
を付与した製品が広く用いられるようになつてい
る。この種の導電性を付与した製品としてはポリ
アセチレン等の如くポリマー自体が導電性を有す
る導電性樹脂から成形したものや樹脂又はゴムに
導電性充填剤を混入した導電性樹脂組成物から成
形したものあるいは樹脂に帯電防止性を混入した
帯電防止性組成物から成形したものが知られてい
るが、一般的にはカーボン粉末、金属フレーク、
金属繊維、金属粉末、金属蒸着粒子等の導電性充
填剤や界面活性剤等の帯電防止剤を混入して導電
性を付与した樹脂又はゴムより成形した製品が用
いられている。また金、パラジウム等の金属や酸
化インジウム等の金属酸化物を蒸着する方法、あ
るいはピロールを電解酸化重合する方法等により
導電性を付与した樹脂も知られている。 〔発明が解決しようとする問題点〕 しかしながら、導電性充填剤を樹脂又はゴムに
混入させて導電性を付与する場合、導電性充填剤
を樹脂又はゴムに添加して混練する際の導電性充
填剤の分散性に問題があり、導電性が不均一とな
つたり、また導電性を向上させるために導電性充
填剤の添加量を増加させると樹脂の強度低下をき
たす等の問題があつた。また帯電防止剤を混入し
て導電性を付与する方法は、帯電防止剤が樹脂等
の中より流出して失なわれやすいために導電性低
下をきたしやすい欠点があつた。更に導電性付与
とともに製品の増量化、軽量化を行なう必要があ
る場合には、導電性充填剤や帯電防止剤とともに
合成樹脂粒子、天然高分子粒子、ゴム粉粒体、無
機粉粒体等の一般の充填剤を併用するが、これら
の充填剤を併用すると充分な導電性を付与するこ
とができない場合があるという問題があつた。一
方金属、金属酸化物を蒸着する方法やピロールを
電解酸化重合する方法では蒸着や電解を行うため
の製造コストが高くつくとともに、複雑な製造装
置を必要とするという問題があつた。 〔問題点を解決するための手段〕 本出願人は上記問題点を解決するため鋭意研究
した結果、プラスチツクフイルム、シートあるい
は成形品等の被導電処理材を処理液中に浸漬し
て、該処理液中で電子共役系ポリマーを形成し得
るモノマーと酸化重合剤とに接触せしめ、ドーパ
ントの存在下にモノマーを重合せしめて電子共役
系ポリマーと被導電処理材とからなる導電性の付
与された複合体を得る方法が優れていることを見
出し先に提案したが(特願昭60−247763号)、処
理液の使用効率を高めるべく更に鋭意研究した結
果、被導電処理材として合成樹脂粉粒体を用い、
該粉粒体を非溶媒中に分散させ、該非溶媒中でピ
ロール系モノマーと、酸化重合剤とに接触せし
め、ドーパントと存在下に前記モノマーを重合せ
しめて粉粒体表面をピロール系重合体で被覆する
か、あるいは粉粒体内にピロール系重合体の一部
又は全部が含浸された導電性複合粉粒体とする方
法によると、ピロール系モノマーの使用量がきわ
めて少なくとも、実質的に収率100%でピロール
系重合体と粉粒体とからなる導電性複合合成樹脂
粉粒体を形成することができ、更に従来の方法の
ようにピロール系重合体の析出が殆ど認められ
ず、ピロール系モノマーのむだがないとともに、
得られる導電性複合合成樹脂粉粒体は種々の形状
の製品に成形することができ、優れた導電性を有
する製品を得ることができること、しかもこれら
導電性複合粉粒体は導電性充填剤として樹脂に練
り込んで用いた場合でも、この樹脂より得られる
成形品に付与される導電性が不均一となる虞れが
ないとともに単なる導電性を付与するための充填
材としての利用のみならず、製品の増量化、軽量
化のための充填材としても有効に利用できること
を見い出し本発明を完成するに至つた。 即ち本発明の一つは、合成樹脂粉粒体表面がピ
ロール系重合体で被覆されているか、あるいは粉
粒体内にピロール系重合体の一部又は全部が含浸
されていることを特徴とする導電性複合粉粒体を
要旨とするものである。また本発明のいま一つは
合成樹脂粉粒体を非溶媒中に分散させ、該非溶媒
中でピロール系モノマーと、酸化重合剤とに接触
せしめ、ドーパントの存在下に前記モノマーを重
合せしめて合成樹脂粉粒体とピロール系重合体と
からなる導電性の付与された複合粉粒体を得るこ
とを特徴とする導電性複合粉粒体の製造方法を要
旨とするものである。 本発明の導電性複合粉粒体は粉粒体の表面がピ
ロール系重合体で被覆された構成を有するか、粉
粒体の表面がピロール系重合体で被覆されている
とともに粉粒体内に一部ピロール系重合体が含浸
された構成を有するか、あるいは粉粒体内にピロ
ール系重合体の全部が含浸された構成を有するも
のである。上記合成樹脂粉粒体としては合成樹脂
の発泡粒子や多孔質粒子も含まれる。これら粉粒
体は表面多孔性のものがピロール系重合体との複
合強度が大きくなり、この結果耐久性のある導電
性が得られるため好ましい。合成樹脂粉粒体の粒
径は、射出、圧縮、押出し、ブロー成形、ビーズ
発泡成形等の成形に用いることのできる25〜
320μmが好ましい。 本発明の製造方法は合成樹脂粉粒体を非溶媒中
に分散せしめ、該非溶媒中で粉粒体をドーパント
の存在下にピロール系モノマーと酸化重合剤と接
触せしめることによりピロール系モノマーを重合
せしめて合成樹脂粉粒体とピロール系重合体とが
複合化し、ピロール系重合体によつて導電性の付
与がされた導電性複合粉粒体を得るものである。 合成樹脂粉粒体の基材樹脂としてはポリビニル
アルコール、セロフアン、セルロールエステル、
ポリ酢酸ビニル、ポリビニルホルマール、ポリビ
ニルブチラール、ポリ塩化ビニル、ポリ塩化ビニ
リデン、ポリ弗化ビニリデン、塩素化ポリエチレ
ン、ポリエチレン、ポリプロピレン、ポリメタク
リル酸メチル、ポリカーボネート、ポリエチレン
テレフタレート、ポリブチレンテレフタレート、
6−ナイロン、11−ナイロン、12−ナイロン、66
−ナイロン、イオン電解質モノマーの重合体ある
いは該モノマーと他のモノマーとの共重合体等の
熱可塑性樹脂が単独又は混合して使用される。6
−ナイロン等の如く吸水性の高い樹脂よりなるも
のの場合、ピロール系重合体が樹脂粉粒体内に略
完全に含浸形成され易く、またポリ塩化ビニル等
の如く吸水性の低い樹脂よりなるものの場合、ピ
ロール系重合体は樹脂粉粒体の表面のみを被覆す
るように形成され易い。ピロール系モノマーとし
ては例えばピロール、3−メチルピロール、N−
メチルピロール等が挙げられる。粉粒体を分散さ
せる非溶媒としては水が用いられるが、粉粒体表
面を粗してピロール系重合体の粉粒体表面への付
着性及び/又は粉粒体内への含浸性を向上するた
めに有機溶媒を添加してもよい。有機溶媒として
は例えばメタノール、エタノール等の脂肪族アル
コール類;アセトン、メチルエチルケトン等の脂
肪族ケトン類;ジエチルエーテル、テトラヒドロ
フラン等のエーテル類;塩化メチレン、クロロホ
ルム等のハロゲン化炭化水素類;酢酸エチル、酢
酸ブチル等のエステル類;トルエン、ベンゼン等
の芳香族炭化水素類;ヘキサン等の脂肪族炭化水
素類;アセトニトリル、ベンゾニトリル等の含窒
素化合物;ジメチルホルムアミド等やこれらの混
合物が挙げられ、これら溶媒の中からモノマー、
ドーパント、酸化重合剤及び粉粒体の材質に応じ
て適宜選択して用いる。上記ドーパントとしては
一般に使用されるアクセプター性のドーパントな
ら全て使用できる。アクセプター性のドーパント
としては塩素、臭素、ヨウ素等のハロゲン類;五
弗化リン等のルイス酸;塩化水素、硫酸等のプロ
トン酸;塩化第二鉄等の遷移金属塩化物;過塩素
酸銀、弗化ホウ素銀等の遷移金属化合物等が挙げ
られる。酸化重合剤としては過マンガン酸あるい
は過マンガン酸カリウム等の過マンガン酸(塩)
類;三酸化クロム酸等のクロム酸類;硝酸銀等の
硝酸塩類;塩素、臭素、ヨウ素等のハロゲン類;
過酸化水素、過酸化ベンゾイル等の過酸化物;ペ
ルオクソ二硫酸、ペルオクソ二硫酸カリウム等の
ペルオクソ酸類、ペルオクソ酸塩類;次亜塩素
酸、次亜塩素酸カリウム等の酸素酸類、酸素酸塩
類;塩化第二鉄等の遷移金属塩化物;酸化銀等の
金属酸化物等が挙げられる。これらの酸化重合剤
のうちハロゲン類、ペルオクソ酸(塩)類、遷移
金属塩化合物等はドーパントとしての作用を有す
るため、これらを酸化重合剤として用いた場合に
は、特に他のドーパントを併用する必要はない
が、前記ドーパントと併用すると更に導電性を向
上することができる。 粉粒体を非溶媒中に分散させてドーパントの存
在下にピロール系モノマーと酸化重合剤とに接触
処理する方法としては例えばモノマーと酸化重
合剤及び必要により更にドーパントを添加した非
溶媒溶液中に、モノマーが実質的に重合する前に
粉粒体を浸漬して撹拌し分散させる方法、酸化
重合剤と必要により更にドーパントを添加した非
溶媒溶液と、モノマーを含有する非溶媒溶液とに
粉粒体を順次浸漬して撹拌し分散させる方法、
酸化重合剤と必要により更にドーパントを添加し
た非溶媒溶液に粉粒体を浸漬して撹拌し分散させ
た後、この溶液中にモノマーを添加する方法等が
挙げられる。の方法によれば処理時間を短縮す
ることができるが、ピロール系モノマー重合反応
が速いため溶液を調整した後に直ちに粉粒体を溶
液中に浸漬して分散させる必要があり、溶液調整
から粉粒体を溶液に浸漬して分散させるまでに時
間が経過すると粉粒体とピロール系重合体の複合
化が低下し導電性の低下をきたし易い。また酸化
重合剤はモノマーに比べて粉粒体への浸透性が低
いため、、の方法のようにモノマー含有溶液
による処理と酸化重合剤含有溶液による処理とを
別に行う方法を採用し、先に酸化重合剤含有溶液
中に粉粒体を20分〜1時間程度浸漬分散させた
後、ピロール系モノマーと接触させることが好ま
しく、特に低吸水性樹脂よりなる粉粒体等の場合
にはピロール系重合体の粉粒体中への含浸度が向
上することによつて、より耐久性のある導電性が
付与される。 粉粒体を非溶媒に分散させて処理する際の処理
液温度は、付与される導電性をより向上する上で
0〜40℃が好ましく、特に0〜5℃が好ましい。
また粉粒体を処理する時間は粉粒体の樹脂材質、
所望する電導度の大きさ、更にはモノマー、酸化
重合剤の濃度等によつても異なるが、通常1分〜
3時間程度である。 〔実施例〕 以下、実施例を挙げて本発明を更に詳細に説明
する。 実施例 1 5の丸底フラスコに1000gのポリ塩化ビニル
樹脂粒子(重合度800、粒径50〜100μm)を入
れ、0.2Mの塩化第二鉄水溶液2を加えて撹拌
して樹脂粒子を分散させ、温度が2〜3℃になる
まで冷却した。次いで同温度にて30分間撹拌を続
けた後、0.2Mピロールモノマー水溶液400mlを加
え、更に2〜3℃に保持して1時間激しく撹拌し
た。この分散液を濾過して蒸溜水で充分洗浄した
後、50℃で乾燥して灰色の樹脂粒子を得た。この
樹脂粒子を電子顕微鏡で観察した結果、50μm以
下の粒子が観察されず、ピロール重合体のみの生
成がないことが判明した。またこの樹脂粒子を容
積21.1mlの容器に充填し、電極間(5.85cm)の抵
抗値をテスターで測定した結果、1.6×104Ωであ
り優れた導電性を有していた。 更にこの樹脂粒子を用いて厚さ0.1mmのフイル
ムを成形し、このシートの表面抵抗値、可視光線
透過率を測定した結果、それぞれ3×103Ω/cm
(25℃、50%RH)、40%であり、所望の導電性、
透明性を有していた。尚、表面抵抗値は高抵抗計
により測定した値であり、可視光線透過率は分光
光度計により400〜800nmで測定した値の積分値
である。 実施例 2〜5 第1表に示す樹脂粒子を実施例1と同様の方法
で処理し、灰色の樹脂粒子を得た。この樹脂粒子
を電子顕微鏡で観察した結果、ピロール重合体が
樹脂粒子内に含浸していた。この樹脂粒子の抵抗
値を実施例1と同様にして測定した結果を第1表
に示す。 実施例 6 ピロールモノマー水溶液濃度を0.2Mから0.4M
とした他は実施例1と同様の樹脂粒子を、同様の
方法で処理して黒色の樹脂粒子を得た。この樹脂
粒子の抵抗値を実施例1と同様にして測定した結
果、2×103Ωであつた。またこの樹脂粒子を用
いて厚さ0.1mmのフイルムを成形し、このフイル
ムの表面抵抗値及び可視光線透過率を実施例1と
同様に測定した結果、それぞれ1.2×103Ω/cm
(25℃、50%RH)、32%であつた。 比較例 1 厚さ0.1mm×幅20cm×長さ500cmのポリ塩化ビニ
ルフイルムをロール状に巻いたものを2〜3℃に
保持した2の0.2M塩化第二鉄水溶液中に30分
間浸漬した後、この溶液中に0.2Mピロールモノ
マー水溶液400mlを加えて激しく撹拌して1時間
保持した。次いでフイルムを取出して蒸溜水で洗
浄し、50℃で乾燥した後フイルムの表面抵抗値及
び可視光線透過率を実施例1と同様に測定した結
果、それぞれ8×102Ω/cm(25℃、50%RH)、
42%であつたが、ポリ塩化ビニルフイルムへのピ
ロール重合体の取込みは1.5%であり、きわめて
悪かつた。
[Industrial Application Field] The present invention is applicable to, for example, packaging materials for electronic device parts that require electromagnetic shielding and antistatic properties, and flooring and wall materials used in places where static electricity generation is averse, such as electronic device assembly lines. The present invention relates to a conductive composite powder used as a raw material for manufacturing various conductive products such as anti-static shoes, and a method for manufacturing the same. [Prior art] In recent years, the destruction of semiconductor components such as ICs and LSIs due to static electricity has become a major problem, and malfunctions of electronic equipment due to electromagnetic waves have become a focus of attention.As a result, containers for storing ICs, etc. It is necessary to provide antistatic properties not only to IC assembly plants and packaging materials, but also to provide electromagnetic shielding to the housings of computers and other devices. Products with this effect are becoming widely used. Products with this type of conductivity include those molded from conductive resins such as polyacetylene, where the polymer itself is conductive, and those molded from conductive resin compositions in which conductive fillers are mixed into resin or rubber. Alternatively, molded products made from antistatic compositions in which antistatic properties are mixed into resin are known, but generally carbon powder, metal flakes,
Products molded from resins or rubbers that have been mixed with conductive fillers such as metal fibers, metal powders, and metallized particles, and antistatic agents such as surfactants to impart conductivity are used. Also known are resins imparted with electrical conductivity by vapor deposition of metals such as gold and palladium or metal oxides such as indium oxide, or by electrolytic oxidative polymerization of pyrrole. [Problems to be solved by the invention] However, when a conductive filler is mixed into a resin or rubber to impart conductivity, the conductive filler is added to the resin or rubber and when kneaded, the conductive filling is There were problems with the dispersibility of the agent, resulting in non-uniform conductivity, and when the amount of conductive filler added to improve conductivity was increased, the strength of the resin decreased. Furthermore, the method of imparting conductivity by incorporating an antistatic agent has the disadvantage that the antistatic agent tends to flow out of the resin and be lost, resulting in a decrease in conductivity. Furthermore, if it is necessary to increase the volume or reduce the weight of the product as well as impart conductivity, synthetic resin particles, natural polymer particles, rubber powder, inorganic powder, etc. may be used in addition to conductive fillers and antistatic agents. Although general fillers are used in combination, there is a problem in that when these fillers are used in combination, sufficient conductivity may not be imparted. On the other hand, the methods of vapor depositing metals and metal oxides and the electrolytic oxidative polymerization of pyrrole have problems in that the manufacturing costs for vapor deposition and electrolysis are high and that they require complicated manufacturing equipment. [Means for Solving the Problems] As a result of intensive research in order to solve the above-mentioned problems, the present applicant immersed materials to be conductively treated, such as plastic films, sheets, or molded products, in a treatment liquid and performed the treatment. A conductive composite consisting of an electronically conjugated polymer and a conductive material is produced by bringing a monomer capable of forming an electronically conjugated polymer into contact with an oxidative polymerization agent in a liquid, and polymerizing the monomer in the presence of a dopant. However, as a result of further intensive research in order to increase the efficiency of using the processing liquid, we found that synthetic resin powder and granules were used as the conductive material. using
The powder or granules are dispersed in a non-solvent, brought into contact with a pyrrole-based monomer and an oxidative polymerization agent in the non-solvent, and the monomers are polymerized in the presence of a dopant to form a pyrrole-based polymer on the surface of the powder or granules. According to the method of forming a conductive composite powder by coating or impregnating part or all of the pyrrole-based polymer in the powder, the amount of the pyrrole-based monomer used is extremely minimal, and the yield is substantially 100%. %, a conductive composite synthetic resin powder consisting of a pyrrole polymer and a powder can be formed, and furthermore, unlike the conventional method, precipitation of the pyrrole polymer is hardly observed, and the pyrrole monomer With no waste,
The resulting conductive composite synthetic resin powder can be molded into products of various shapes, and products with excellent conductivity can be obtained.Moreover, these conductive composite resin powders can be used as conductive fillers. Even when it is kneaded into a resin and used, there is no risk that the conductivity imparted to the molded product obtained from this resin will be uneven, and it can be used not only as a filler for simply imparting conductivity. They have discovered that it can be effectively used as a filler to increase the weight and weight of products, and have completed the present invention. Specifically, one aspect of the present invention is a conductive material characterized in that the surface of the synthetic resin powder is coated with a pyrrole-based polymer, or the powder or granule is partially or entirely impregnated with a pyrrole-based polymer. This paper focuses on composite powder and granular materials. Another aspect of the present invention is to disperse synthetic resin powder in a non-solvent, bring it into contact with a pyrrole monomer and an oxidative polymerization agent in the non-solvent, and polymerize the monomer in the presence of a dopant. The gist of the present invention is a method for producing a conductive composite powder, which is characterized by obtaining a conductive composite powder consisting of a resin powder and a pyrrole polymer. The conductive composite powder of the present invention has a structure in which the surface of the powder is coated with a pyrrole polymer, or the surface of the powder is coated with a pyrrole polymer and the powder is coated with a pyrrole polymer. It has a structure in which part of the pyrrole-based polymer is impregnated, or it has a structure in which the pyrrole-based polymer is entirely impregnated in the powder body. The synthetic resin powder particles also include foamed particles and porous particles of synthetic resin. It is preferable that these powders and granules have surface porosity because the composite strength with the pyrrole polymer is increased and, as a result, durable conductivity can be obtained. The particle size of the synthetic resin powder is between 25 and 25, which can be used for molding such as injection, compression, extrusion, blow molding, and bead foam molding.
320 μm is preferred. The production method of the present invention involves dispersing synthetic resin powder in a non-solvent, and polymerizing the pyrrole monomer by bringing the powder into contact with a pyrrole monomer and an oxidative polymerization agent in the presence of a dopant in the non-solvent. The synthetic resin powder and the pyrrole polymer are composited together to obtain a conductive composite powder which is imparted with conductivity by the pyrrole polymer. Base resins for synthetic resin powder include polyvinyl alcohol, cellophane, cellulose ester,
Polyvinyl acetate, polyvinyl formal, polyvinyl butyral, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, chlorinated polyethylene, polyethylene, polypropylene, polymethyl methacrylate, polycarbonate, polyethylene terephthalate, polybutylene terephthalate,
6-nylon, 11-nylon, 12-nylon, 66
- Thermoplastic resins such as nylon, polymers of ionic electrolyte monomers, or copolymers of these monomers and other monomers are used alone or in combination. 6
- In the case of resins with high water absorption such as nylon, the pyrrole polymer tends to be almost completely impregnated into the resin particles, and in the case of resins with low water absorption such as polyvinyl chloride, The pyrrole polymer is likely to be formed so as to cover only the surface of the resin powder. Examples of pyrrole monomers include pyrrole, 3-methylpyrrole, N-
Examples include methylpyrrole. Water is used as a non-solvent to disperse the powder, but the surface of the powder is roughened to improve the adhesion of the pyrrole polymer to the surface of the powder and/or the impregnation into the powder. An organic solvent may be added for this purpose. Examples of organic solvents include aliphatic alcohols such as methanol and ethanol; aliphatic ketones such as acetone and methyl ethyl ketone; ethers such as diethyl ether and tetrahydrofuran; halogenated hydrocarbons such as methylene chloride and chloroform; ethyl acetate and acetic acid. Esters such as butyl; aromatic hydrocarbons such as toluene and benzene; aliphatic hydrocarbons such as hexane; nitrogen-containing compounds such as acetonitrile and benzonitrile; dimethylformamide and mixtures thereof; Monomer from inside,
They are appropriately selected and used depending on the dopant, the oxidative polymerization agent, and the material of the powder. As the above-mentioned dopant, all commonly used acceptor dopants can be used. Acceptor dopants include halogens such as chlorine, bromine, and iodine; Lewis acids such as phosphorus pentafluoride; protonic acids such as hydrogen chloride and sulfuric acid; transition metal chlorides such as ferric chloride; silver perchlorate; Examples include transition metal compounds such as silver boron fluoride. As an oxidative polymerization agent, permanganic acid (salt) such as permanganic acid or potassium permanganate is used.
Chromic acids such as chromic trioxide; Nitrates such as silver nitrate; Halogens such as chlorine, bromine, and iodine;
Peroxides such as hydrogen peroxide and benzoyl peroxide; Peroxo acids and peroxo acid salts such as peroxodisulfuric acid and potassium peroxodisulfate; Oxygen acids and acid salts such as hypochlorous acid and potassium hypochlorite; Chloride Examples include transition metal chlorides such as ferric iron; metal oxides such as silver oxide. Among these oxidative polymerization agents, halogens, peroxo acids (salts), transition metal salt compounds, etc. act as dopants, so when these are used as oxidative polymerization agents, it is especially important to use other dopants together. Although not necessary, when used in combination with the above dopants, the conductivity can be further improved. An example of a method of dispersing the powder in a non-solvent and contacting it with a pyrrole monomer and an oxidative polymerization agent in the presence of a dopant is to disperse it in a non-solvent solution containing the monomer, an oxidative polymerization agent, and if necessary, a dopant. , a method of immersing, stirring and dispersing the powder before the monomer is substantially polymerized, and adding the powder to a non-solvent solution containing an oxidative polymerization agent and, if necessary, a dopant, and a non-solvent solution containing the monomer. A method of sequentially immersing the body and stirring and dispersing it,
Examples include a method in which the powder is immersed in a non-solvent solution containing an oxidative polymerization agent and, if necessary, a dopant, and then stirred and dispersed, and then the monomer is added to this solution. According to the method described above, the processing time can be shortened, but since the polymerization reaction of the pyrrole monomer is fast, it is necessary to immediately immerse the powder into the solution and disperse it after preparing the solution. If time elapses between immersing the body in the solution and dispersing it, the compositing of the powder and the pyrrole polymer tends to deteriorate, resulting in a decrease in conductivity. In addition, since oxidative polymerization agents have lower permeability into powder and granules than monomers, we adopt a method in which the treatment with a monomer-containing solution and the treatment with an oxidative polymerization agent-containing solution are performed separately, as in the method of . After immersing and dispersing the powder in a solution containing an oxidative polymerization agent for about 20 minutes to 1 hour, it is preferable to contact it with a pyrrole-based monomer. By improving the degree of impregnation of the polymer into the powder, more durable conductivity is imparted. The temperature of the treatment liquid when dispersing the powder in a non-solvent is preferably from 0 to 40°C, particularly preferably from 0 to 5°C, in order to further improve the imparted conductivity.
In addition, the processing time for powder and granules depends on the resin material of the powder and granules.
Although it varies depending on the desired degree of conductivity and the concentration of monomer and oxidative polymerization agent, it is usually 1 minute to
It takes about 3 hours. [Example] Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 1000 g of polyvinyl chloride resin particles (degree of polymerization 800, particle size 50 to 100 μm) was placed in the round bottom flask of Example 1 5, and 0.2 M ferric chloride aqueous solution 2 was added and stirred to disperse the resin particles. , and cooled until the temperature reached 2-3°C. Next, stirring was continued for 30 minutes at the same temperature, and then 400 ml of a 0.2M pyrrole monomer aqueous solution was added, and the mixture was further maintained at 2 to 3°C and vigorously stirred for 1 hour. This dispersion was filtered, thoroughly washed with distilled water, and then dried at 50°C to obtain gray resin particles. As a result of observing the resin particles using an electron microscope, it was found that no particles with a size of 50 μm or less were observed, and that only pyrrole polymer was not produced. Furthermore, the resin particles were filled into a container with a volume of 21.1 ml, and the resistance value between the electrodes (5.85 cm) was measured with a tester, and the result was 1.6×10 4 Ω, indicating excellent conductivity. Furthermore, a film with a thickness of 0.1 mm was formed using these resin particles, and the surface resistance value and visible light transmittance of this sheet were measured, and the results were 3 x 10 3 Ω/cm.
(25℃, 50%RH), the desired conductivity is 40%,
It had transparency. Note that the surface resistance value is a value measured using a high resistance meter, and the visible light transmittance is an integral value of a value measured at 400 to 800 nm using a spectrophotometer. Examples 2 to 5 The resin particles shown in Table 1 were treated in the same manner as in Example 1 to obtain gray resin particles. As a result of observing the resin particles using an electron microscope, it was found that the pyrrole polymer was impregnated into the resin particles. The resistance value of the resin particles was measured in the same manner as in Example 1, and the results are shown in Table 1. Example 6 Pyrrole monomer aqueous solution concentration from 0.2M to 0.4M
The same resin particles as in Example 1 were treated in the same manner except that black resin particles were obtained. The resistance value of the resin particles was measured in the same manner as in Example 1 and was found to be 2×10 3 Ω. In addition, a film with a thickness of 0.1 mm was formed using these resin particles, and the surface resistance value and visible light transmittance of this film were measured in the same manner as in Example 1. As a result, they were each 1.2 × 10 3 Ω/cm.
(25°C, 50%RH) and 32%. Comparative Example 1 A polyvinyl chloride film wound into a roll with a thickness of 0.1 mm x width of 20 cm x length of 500 cm was immersed for 30 minutes in the 0.2 M ferric chloride aqueous solution of 2 kept at 2 to 3°C. 400 ml of 0.2M pyrrole monomer aqueous solution was added to this solution, stirred vigorously, and maintained for 1 hour. Next, the film was taken out, washed with distilled water, dried at 50°C , and the surface resistance and visible light transmittance of the film were measured in the same manner as in Example 1. 50%RH),
However, the incorporation of the pyrrole polymer into the polyvinyl chloride film was 1.5%, which was extremely poor.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の導電性複合粉粒体
は合成樹脂粉粒体の表面をピロール系重合体が被
覆しているか、あるいは粉粒体内にピロール系重
合体の一部又は全部が含浸された構成を有するこ
とにより優れた導電性を有するとともに本発明の
導電性複合粉粒体は成形することにより優れた導
電性を有する任意の形状の成形体を容易に得るこ
とができる。また本発明の導電性複合粉粒体は導
電性充填剤等として用いることができ、本発明導
電性複合粉粒体は樹脂への分散性が良いため、導
電性充填剤として樹脂に添加して用いた場合でも
均一な導電性を付与できるとともに、粉粒体の当
初の性能を損うことなく導電化されているため、
粉粒体が従来より使用されている用途にそのまま
適用でき、例えば導電性を有する増量材、軽量化
材等として有効に有利し得るため、従来のように
導電性充填剤とともに増量材、軽量化材を併用す
る必要がなく、増量材、軽量化材の併用による従
来の欠点を全て解消できる。また導電性充填剤と
して樹脂等に添加して用いる場合、充填剤を添加
すべき樹脂と相溶性のある樹脂等よりなる粉粒体
にピロール処理した導電性複合粉粒体を用いれ
ば、カーボンブラツク等を使用する場合のように
機械的強度を低下させる慮れがない。 また本発明方法は合成樹脂粉粒体を非溶媒中に
分散し、該非溶媒中でピロール系モノマーと酸化
重合剤とに接触せしめてドーパントの存在下にピ
ロール系モノマーを重合せしめてピロール系重合
体と合成樹脂粉粒体とからなる複合体を形成し、
ピロール系重合体により導電性を付与する方法を
採用したから、確実かつ容易に導電性複合粉粒体
を製造することができる。また本発明方法はピロ
ール系モノマーの使用量がきわめて少なくとも高
収率で優れた導電性複合粉粒体を得ることがで
き、しかもピロール系モノマーのむだが少なく効
率よい製造を行ない得る。更に本発明方法では粉
粒体が透明な樹脂よりなる場合でも、樹脂の透明
性をほとんど損うことなく導電性を付与すること
ができ、得られた導電性複合粉粒体を成形して得
たシート、フイルム等は透明性の高いものとなる
等の種々の効果を有する。
As explained above, in the conductive composite powder of the present invention, the surface of the synthetic resin powder is coated with a pyrrole-based polymer, or a part or all of the pyrrole-based polymer is impregnated into the powder. The conductive composite powder of the present invention can be molded to easily obtain a molded article of any shape having excellent conductivity. Furthermore, the conductive composite powder of the present invention can be used as a conductive filler, etc. Since the conductive composite powder of the present invention has good dispersibility in resin, it can be added to resin as a conductive filler. Even when used, uniform conductivity can be imparted, and it is made conductive without impairing the original performance of the powder or granule.
Powder and granules can be used as they are for conventional purposes, and can be effectively used as electrically conductive fillers, weight-reducing materials, etc. There is no need to use materials together, and all the drawbacks of the conventional methods of using bulking materials and lightweighting materials in combination can be overcome. In addition, when used as a conductive filler by adding it to a resin, etc., if a conductive composite powder made of a resin, etc. that is compatible with the resin to which the filler is added is used, and a conductive composite powder is treated with pyrrole, carbon black can be used. There is no possibility of reducing the mechanical strength as in the case of using In addition, the method of the present invention involves dispersing synthetic resin powder in a non-solvent, bringing it into contact with a pyrrole-based monomer and an oxidative polymerization agent in the non-solvent, and polymerizing the pyrrole-based monomer in the presence of a dopant to form a pyrrole-based polymer. and synthetic resin powder, forming a composite consisting of
Since the method of imparting conductivity using a pyrrole polymer is adopted, conductive composite powder can be produced reliably and easily. In addition, the method of the present invention can produce excellent conductive composite powder at a high yield even when the amount of pyrrole monomer used is extremely low, and moreover, it can be produced efficiently with less waste of the pyrrole monomer. Furthermore, in the method of the present invention, even when the powder is made of a transparent resin, conductivity can be imparted without substantially impairing the transparency of the resin, and the resulting conductive composite powder can be molded. Sheets, films, etc., obtained by this method have various effects such as being highly transparent.

Claims (1)

【特許請求の範囲】 1 合成樹脂粉粒体表面がピロール系重合体で被
覆されているか、あるいは粉粒体内にピロール系
重合体の一部又は全部が含浸されていることを特
徴とする導電性複合粉粒体。 2 合成樹脂粉粒体を非溶媒中に分散させ、該非
溶媒中でピロール系モノマーと酸化重合剤とに接
触せしめ、ドーパントの存在下に前記モノマーを
重合せしめて合成樹脂粉粒体とピロール系重合体
とからなる導電性の付与された複合粉粒体を得る
ことを特徴とする導電性複合粉粒体の製造方法。
[Scope of Claims] 1. A conductive material characterized in that the surface of the synthetic resin powder is coated with a pyrrole-based polymer, or the powder or granule is partially or entirely impregnated with a pyrrole-based polymer. Composite powder. 2 The synthetic resin powder is dispersed in a non-solvent, brought into contact with a pyrrole-based monomer and an oxidative polymerization agent in the non-solvent, and the monomer is polymerized in the presence of a dopant to form the synthetic resin powder and the pyrrole-based polymer. 1. A method for producing a conductive composite powder, the method comprising obtaining a conductive composite powder consisting of:
JP24252686A 1986-03-27 1986-10-13 Conductive composite particulate matter and production of same Granted JPS6310685A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6949086 1986-03-27
JP61-69490 1986-03-27

Publications (2)

Publication Number Publication Date
JPS6310685A JPS6310685A (en) 1988-01-18
JPH0360873B2 true JPH0360873B2 (en) 1991-09-18

Family

ID=13404199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24252686A Granted JPS6310685A (en) 1986-03-27 1986-10-13 Conductive composite particulate matter and production of same

Country Status (1)

Country Link
JP (1) JPS6310685A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757699B2 (en) * 1987-12-24 1995-06-21 株式会社リコー Method for producing composite of conductive polymer material
JPH02273407A (en) * 1989-04-14 1990-11-07 Japan Carlit Co Ltd:The Conductive grains and manufacture thereof
EP2021396B1 (en) * 2006-05-18 2011-07-27 University of Florida Research Foundation, Inc. Catalyst free polymerization of 3,4-alkylenedioxypyrrole and 3,4-alkylenedioxyfuran
CN103119088B (en) * 2010-09-28 2014-12-17 积水化成品工业株式会社 Coloring resin particles, and production method and uses therefor
JP2012072261A (en) * 2010-09-28 2012-04-12 Sekisui Plastics Co Ltd Production method for coloring resin particles, and coloring resin particles obtained by the production method
JP5603726B2 (en) * 2010-09-28 2014-10-08 積水化成品工業株式会社 Colored resin particles and uses thereof
JP6653854B1 (en) * 2019-07-10 2020-02-26 宮川ローラー株式会社 Conductive rubber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133455A (en) * 1979-02-16 1980-10-17 Eastman Kodak Co Coating composition and its manufacture
US4521450A (en) * 1982-06-22 1985-06-04 Asea Aktiebolag Method of increasing the electrical conductivity of cellulose-based materials or other impregnable materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133455A (en) * 1979-02-16 1980-10-17 Eastman Kodak Co Coating composition and its manufacture
US4521450A (en) * 1982-06-22 1985-06-04 Asea Aktiebolag Method of increasing the electrical conductivity of cellulose-based materials or other impregnable materials

Also Published As

Publication number Publication date
JPS6310685A (en) 1988-01-18

Similar Documents

Publication Publication Date Title
Bhattacharya et al. Conducting composites of polypyrrole and polyaniline a review
Poddar et al. Synthesis, characterization and applications of conductive polymers: A brief review
US5151221A (en) Conductive plastic composites
Wang et al. Preparation of conductive polypyrrole/polyurethane composite foams by in situ polymerization of pyrrole
US4617353A (en) Electrically conductive polymer blend
JPH04491B2 (en)
Tanaka et al. Electrochemical preparation and characterization of poly (2, 5‐thiophenediyl)
US5028481A (en) Electrically conductive pigmentary composites
Maiti et al. Flexible non-metallic electro-conductive textiles
JPH0360873B2 (en)
Visakh Polyaniline-based blends, composites, and nanocomposites: state of the art, new challenges, and opportunities
JPH0618083B2 (en) Method for producing conductive composite
US4764573A (en) Electrically conductive pyrrole polymers
FI86880B (en) ELLEDANDE PLASTKOMPOSIT, DESS ANVAENDNING OCH FRAMSTAELLNING.
EP0195380B1 (en) Process for manufacturing electrically conductive foam materials
Ouyang et al. Conductive polymer composites prepared by polypyrrole-coated poly (vinyl chloride) powder: relationship between conductivity and surface morphology
Yang et al. Polypyrrole—polypropylene composite films: preparation and properties
Dubitsky et al. Polypyrrole-poly (vinyl chloride) and polypyrrole-cellulose acetate conducting composite films by opposite-diffusion polymerization
US4720393A (en) Method of manufacturing a layer with electrical conductivity
US5290891A (en) Process for the preparation of polyindoles, electroconductive compositions and devices containing them and applications of the polyindoles
JPH11166049A (en) Production of electro-conductive complex
US5186861A (en) Intrinsically conductive moulding compound
CN1058031A (en) With the polyamide-polyolefin complex is the electro-conductive material of matrix
US5106690A (en) Method for producing electrically conductive pigmentary composites
AU607537B2 (en) Conductive plastic composites

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees