JPS6310662B2 - - Google Patents

Info

Publication number
JPS6310662B2
JPS6310662B2 JP55097137A JP9713780A JPS6310662B2 JP S6310662 B2 JPS6310662 B2 JP S6310662B2 JP 55097137 A JP55097137 A JP 55097137A JP 9713780 A JP9713780 A JP 9713780A JP S6310662 B2 JPS6310662 B2 JP S6310662B2
Authority
JP
Japan
Prior art keywords
mounting shaft
coil mounting
torque tube
room temperature
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55097137A
Other languages
Japanese (ja)
Other versions
JPS5722371A (en
Inventor
Masaki Sakuyama
Koichi Okamoto
Tatsue Nomura
Susumu Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9713780A priority Critical patent/JPS5722371A/en
Publication of JPS5722371A publication Critical patent/JPS5722371A/en
Publication of JPS6310662B2 publication Critical patent/JPS6310662B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Description

【発明の詳細な説明】 この発明は超電導回転機の回転子の組立方法に
関するもので、特にトルクチユーブの組立方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for assembling a rotor of a superconducting rotating machine, and particularly to a method for assembling a torque tube.

従来の超電導回転機の回転子の構造の1例を述
べると、第1図に示すように、中央部を形成する
コイル取付軸1の両端にトルクチユーブ2が同軸
関係に取付けられ、コイル取付軸1には超電導界
磁コイル3が固定されている。コイル取付軸1及
びトルクチユーブ2を囲繞する常温ダンパ4があ
つて、この常温ダンパ4とコイル取付軸1との間
に低温ダンパ5が配設されている。常温ダンパ4
とトルクチユーブ2の両端はこれらに取付けられ
ている駆動側端部軸8及び反駆動側端部軸9で閉
鎖され、常温ダンパ4、低温ダンパ5及びトルク
チユーブ2の内部がそれぞれ真空部14を形成し
ている。コイル取付軸1のそれぞれ外周部及び側
面部にはヘリウム外筒6及びヘリウム端板7が取
付けられ、コイル取付軸1との間に液体ヘリウム
の液溜め部15を形成している。駆動側及び反駆
動側端部軸8,9をそれぞれ軸受10で支承し、
反駆動側端部軸9には界磁電流供給用のスリツプ
リング11を設けている。トルクチユーブ2には
熱交換器12を形成又は配置し、かつトルクチユ
ーブの内部に側部輻射シールド13を設けてい
る。
To describe an example of the structure of a rotor of a conventional superconducting rotating machine, as shown in FIG. A superconducting field coil 3 is fixed to 1. A room temperature damper 4 surrounds the coil mounting shaft 1 and the torque tube 2, and a low temperature damper 5 is disposed between the room temperature damper 4 and the coil mounting shaft 1. Room temperature damper 4
Both ends of the torque tube 2 are closed by the driving side end shaft 8 and the non-driving side end shaft 9 attached to these ends, and the room temperature damper 4, the low temperature damper 5, and the inside of the torque tube 2 each have a vacuum section 14. is forming. A helium outer cylinder 6 and a helium end plate 7 are attached to the outer periphery and side surface of the coil mounting shaft 1, respectively, and a liquid helium reservoir 15 is formed between the coil mounting shaft 1 and the coil mounting shaft 1. The drive side and non-drive side end shafts 8 and 9 are each supported by bearings 10,
A slip ring 11 for supplying field current is provided on the opposite end shaft 9. A heat exchanger 12 is formed or arranged in the torque tube 2, and a side radiation shield 13 is provided inside the torque tube.

以上のように構成した超電導回転機の回転子に
おいては、コイル取付軸1に配設されている超電
導界磁コイル3を極低温に冷却することにより、
電気低抗を零の状態とし、励磁損失を無くすこと
により、この超電導界磁コイル3に強力な磁界を
発生させ、固定子(図示せず)に交流電力を発生
させる。
In the rotor of the superconducting rotating machine configured as described above, by cooling the superconducting field coil 3 disposed on the coil mounting shaft 1 to an extremely low temperature,
By setting the electric resistance to zero and eliminating excitation loss, a strong magnetic field is generated in the superconducting field coil 3, and AC power is generated in the stator (not shown).

超電導界磁コイル3を極低温に冷却し保持する
ために、液体ヘリウムを反駆動側端部軸9の中央
部から導入管(図示せず)を通じ、ヘリウム外筒
6、ヘリウム端板7により形成される液溜め部1
5に供給する一方、回転子内部の真空部14を高
真空に保つと共に、極低温の超電導界磁コイル3
及びコイル取付軸1に回転トルクを伝えるトルク
チユーブ2を薄肉円筒とし、かつ熱交換器12を
設け、このトルクチユーブ2を通じ、極低温部に
入る熱を極力減らす構造にするのが最も一般的で
ある。更に側面から輻射により侵入する熱を低減
するために、側部輻射シールド13が設けられて
いる。
In order to cool and maintain the superconducting field coil 3 to an extremely low temperature, liquid helium is introduced from the center of the non-drive side end shaft 9 through an introduction pipe (not shown) formed by a helium outer cylinder 6 and a helium end plate 7. liquid reservoir 1
At the same time, the vacuum section 14 inside the rotor is maintained at a high vacuum, and the extremely low temperature superconducting field coil 3
The most common structure is that the torque tube 2 that transmits rotational torque to the coil mounting shaft 1 is made of a thin-walled cylinder, and a heat exchanger 12 is provided to minimize the amount of heat that enters the cryogenic area through the torque tube 2. be. Furthermore, side radiation shields 13 are provided to reduce heat that enters from the sides due to radiation.

一方常温ダンパ4及び低温ダンパ5は固定子
(図示せず)からの高調波磁界をシールドし超電
導界磁コイル3を保護すると共に、電力系統から
のじよう乱による回転子振動を減衰させる機能を
有する一方、常温ダンパ4は真空外筒としての機
能、低温ダンパ5はヘリウム収容部への輻射シー
ルドとしての機能を兼ねる方式が一般的である。
On the other hand, the room-temperature damper 4 and the low-temperature damper 5 protect the superconducting field coil 3 by shielding harmonic magnetic fields from the stator (not shown), and also have the function of damping rotor vibrations caused by disturbances from the power system. On the other hand, it is common for the room temperature damper 4 to function as a vacuum outer cylinder, and the low temperature damper 5 to function as a radiation shield to the helium storage section.

なお、第1図で回転子内部へのヘリウム導入、
排出系を構成する配管類及び回転子に接続されて
いるヘリウム導入排出装置は図示を省略してい
る。
In addition, in Figure 1, helium is introduced into the rotor,
Piping constituting the exhaust system and a helium introduction/exhaust device connected to the rotor are not shown.

回転子運転中の温度状態を述べると、運転中に
はコイル取付軸1は液体ヘリウムの温度となり、
一方常温ダンパ4は固定子(図示せず)との空隙
の温度となる。そして、一般に空隙の温度は外気
温より高いので、コイル取付軸1と常温ダンパ4
には300℃以上の大きな温度差が生じ、従つて、
常温にて常温ダンパ4、コイル取付軸1及びトル
クチユーブ2並びにその他の部分が組立てられた
場合には、 常温ダンパ4の長さ1=コイル取付軸1の長さ2
2本のトルクチユーブ2の合計長さ3 となつているが、上記運転時における温度状態に
なると、常温ダンパ4は昇温してその長さは(
+Δ1)に熱膨張して伸張し、また、コイル取
付軸1は降温してその長さは(2−Δ2)に熱
収縮し、その結果、トルクチユーブ2の長さ3
は、 3=(1+Δ1)−(2−Δ2) =(12)+(Δ1+Δ2) ∴ 3−(Δ1+Δ2)=(12) となり、従つて、常温ダンパ4とコイル取付軸1
の両者の熱膨張収縮差(Δ1+Δ2)がトルク
チユーブ2に引延し量として付加され、その結
果、高い引張荷重の熱応力が生ずる。
To describe the temperature state during rotor operation, the coil mounting shaft 1 reaches the temperature of liquid helium during operation.
On the other hand, the temperature of the normal temperature damper 4 becomes the temperature of the gap between it and the stator (not shown). Since the temperature of the air gap is generally higher than the outside temperature, the coil mounting shaft 1 and room temperature damper 4
There is a large temperature difference of more than 300℃, and therefore,
When the room temperature damper 4, coil mounting shaft 1, torque tube 2, and other parts are assembled at room temperature, the length of the room temperature damper 4 1 = the length of the coil mounting shaft 1 2 +
The total length of the two torque tubes 2 is 3 , but when the temperature reaches the temperature state during operation described above, the room temperature damper 4 rises in temperature and its length becomes (
1 + Δ 1 ), and the coil mounting shaft 1 cools and its length thermally contracts to ( 2 − Δ 2 ). As a result, the length of the torque tube 2 becomes 3
is 3 = ( 1 + Δ 1 ) − ( 2 − Δ 2 ) = ( 12 ) + ( Δ 1 + Δ 2 ) ∴ 3 − ( Δ 1 + Δ 2 ) = ( 12 ). Therefore, at room temperature Damper 4 and coil mounting shaft 1
The difference in thermal expansion/contraction (Δ 12 ) between the two is added to the torque tube 2 as an amount of elongation, resulting in a thermal stress with a high tensile load.

このトルクチユーブ2の熱応力を吸収・緩和す
る目的で、従来、種々の方法が提案されている。
第2図は、従来提案された熱応力吸収方法の一例
を示したもので、図示のように、たとえばベロー
16のような可とう体を端部軸9と常温ダンパ4
との間に設け、コイル取付軸1と常温ダンパ4と
の間の熱膨張収縮差(Δ1+Δ2)を、ベロー
16の常温時の長さ4を〔4−(Δ1+Δ
)〕に収縮させることによつて吸収させ、トルク
チユーブ2に熱応力による負荷を与えないように
した方法である。
Various methods have been proposed in the past for the purpose of absorbing and relaxing this thermal stress in the torque tube 2.
FIG. 2 shows an example of a conventionally proposed method for absorbing thermal stress.
The difference in thermal expansion and contraction (Δ 12 ) between the coil mounting shaft 1 and the damper 4 at room temperature is determined by the length 4 of the bellows 16 at room temperature [ 4 − (Δ 1
2 )] is absorbed by shrinking the torque tube 2 to avoid applying a load due to thermal stress to the torque tube 2.

図示しないが第2図に示したものの他にも、例
えば、トルクチユーブ2に直列に可とう体を設け
る案や、常温ダンパ4の一端が端部軸8又は9の
接続部で軸方向に滑ることができるようにする案
が提案されており、上記可とう体や接続部によつ
て、上記ベロー16の例と同様に、熱膨張収縮差
(Δ1+Δ2)を吸収するようにしている。
In addition to what is shown in FIG. 2 (not shown), for example, a flexible body may be provided in series with the torque tube 2, or one end of the room-temperature damper 4 may slide in the axial direction at the connection portion of the end shaft 8 or 9. A plan has been proposed in which the flexible body and the connecting portion absorb the difference in thermal expansion and contraction (Δ 12 ), similar to the example of the bellows 16. .

しかし、以上述べたような従来提案された方
法、装置では、いずれもベローや可とう体あるい
は滑る接続部のためにその両側間が強固に固定さ
れないために回転子の軸振動特性を劣化させる
か、あるいは振動特性の劣化を防ぐ為に、設計上
の細かい配慮を要するものであつた。
However, in all of the conventionally proposed methods and devices as described above, the shaft vibration characteristics of the rotor deteriorate because the bellows, flexible bodies, or sliding connections do not firmly fix the two sides. Otherwise, careful consideration in design was required to prevent deterioration of vibration characteristics.

ベローのような可とう体を設けて熱膨張収縮差
を吸収する構造は、回転子の構振動共振周波数
(危険速度)を低下させる可能性が強く、又、常
温ダンパ4を軸方向に滑り得る構造とする案で
は、滑り面の摩擦による回転子の自励的な振れま
わりを生ずる可能性があつた。
A structure in which a flexible body such as a bellows is provided to absorb differences in thermal expansion and contraction has a strong possibility of lowering the structural vibration resonance frequency (critical speed) of the rotor, and also may cause the room temperature damper 4 to slip in the axial direction. In the proposed structure, there was a possibility that self-excited whirling of the rotor would occur due to friction on the sliding surface.

この発明は従来技術による以上のような欠点に
かんがみてなされたもので、回転子の振動特性を
悪化させることなしに、しかも複雑な構造とする
ことなく、トルクチユーブ2の熱応力を緩和する
回転子の組立方法を提供することを目的としてい
る。
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and is a rotation method that alleviates the thermal stress of the torque tube 2 without deteriorating the vibration characteristics of the rotor and without creating a complicated structure. The purpose is to provide a child assembly method.

以上の目的を達成するために、この発明では、
常温ダンパ4と、端部軸8又は9とを組立てる際
に、コイル取付軸1と常温ダンパ4との間に温度
差を与えて組立て、組立完了後の常温において
は、トルクチユーブ2に圧縮応力が生じるように
することにより、運転時の温度状態によつてトル
クチユーブ2に生ずる引張応力を上記圧縮応力と
相殺させることにより緩和することを企図するも
のである。
In order to achieve the above objectives, this invention
When assembling the room-temperature damper 4 and the end shaft 8 or 9, a temperature difference is applied between the coil mounting shaft 1 and the room-temperature damper 4. This is intended to relieve the tensile stress generated in the torque tube 2 due to the temperature state during operation by offsetting the compressive stress.

以下、図示する実施例に関してこの発明を説明
する。第3図に示すように、組立時に常温ダンパ
4の外周に管20を巻きつけておき、管20内に
は例えば蒸気のような高温流体を流しうるものと
する。常温ダンパ4と端部軸8又は9との組立て
に際して、管20に例えば、蒸気のような高温流
体を流すと、常温ダンパ4は膨張し、この膨張し
た状態によつて延びたコイル取付軸1と端部軸と
の間の間隔に等しい長さを有するトルクチユーブ
2を組合せた状態で組立てられることになるの
で、組立完了後に、管20を除去し、常温に帰る
と、常温ダンパ4の膨張した量も消失して元の長
さに帰るため、その収縮量はトルクチユーブ2の
圧縮量となつて表われ、従つて、トルクチユーブ
2には圧縮応力が加わつている。次にヘリウム溜
め15に液体ヘリウムを注入して運転を開始する
と、トルクチユーブ2には常温ダンパ4とコイル
取付軸1の温度差による引張応力が生じようとす
るが、前述のようにトルクチユーブ2には前もつ
て圧縮応力が加えてあるので、運転中にトルクチ
ユーブ2に生じる引張応力はこの圧縮応力分に相
当する引張応力が相殺され、従つて、引張応力は
緩和される。
The invention will now be described with reference to illustrative embodiments. As shown in FIG. 3, a tube 20 is wound around the outer periphery of the normal temperature damper 4 during assembly, and a high temperature fluid such as steam can flow inside the tube 20. When assembling the room-temperature damper 4 and the end shaft 8 or 9, for example, when a high-temperature fluid such as steam is flowed through the pipe 20, the room-temperature damper 4 expands, and this expanded state causes the coil mounting shaft 1 to extend. Since the torque tube 2 having a length equal to the distance between the end shaft and the end shaft is assembled, the tube 20 is removed after the assembly is completed, and when the temperature returns to room temperature, the room temperature damper 4 expands. The amount of contraction also disappears and returns to the original length, so the amount of contraction appears as the amount of compression of the torque tube 2, and therefore, compressive stress is applied to the torque tube 2. Next, when liquid helium is injected into the helium reservoir 15 and operation is started, tensile stress is generated in the torque tube 2 due to the temperature difference between the room temperature damper 4 and the coil mounting shaft 1. Since a compressive stress is previously applied to the torque tube 2, the tensile stress generated in the torque tube 2 during operation is canceled out by the tensile stress corresponding to this compressive stress, and therefore, the tensile stress is relaxed.

なお、上記組立後の常温時におけるトルクチユ
ーブに加えられる圧縮応力の大きさは、常温ダン
パやコイル取付軸やトルクチユーブの強度及び運
転時に生ずる温度差によつて定められ、相殺され
た後になお、圧縮応力が残るようにしてもよく、
又は、全く圧縮応力も引張応力も残存しないよう
にしてもよく、あるいは、引張応力が残るように
してもよく、これらによつて加熱又は冷却温度が
定められる。
The magnitude of the compressive stress applied to the torque tube at room temperature after assembly is determined by the strength of the room temperature damper, coil mounting shaft, and torque tube, and the temperature difference that occurs during operation. Compressive stress may remain,
Alternatively, neither compressive stress nor tensile stress may remain at all, or tensile stress may remain, and the heating or cooling temperature is determined by these.

第3図では、常温ダンパ4の外周に管20を巻
き、管20内に蒸気等の高温流体を流す場合を示
したが、要するに常温ダンパ4と端部軸8又は9
を組立ての際に、常温ダンパ4を加熱して膨張さ
せれば目的を達するのであるから、高周波加熱等
の手段によつても良い。
In FIG. 3, a case is shown in which the pipe 20 is wound around the outer periphery of the room temperature damper 4 and high temperature fluid such as steam is caused to flow inside the pipe 20, but in short, the room temperature damper 4 and the end shaft 8 or 9
Since the purpose can be achieved by heating and expanding the damper 4 at room temperature during assembly, means such as high-frequency heating may also be used.

或いは、逆に、常温ダンパ4と端部軸8又は9
を組立てる際に、コイル取付軸1を冷却して収縮
させても同等の効果が得られる。即ち、例えば、
回転子内に組込まれた液体ヘリウム供給管を通し
て、ヘリウム溜め15に液体チツ素や液体ヘリウ
ム等の低温液体を供給することによつて、コイル
取付軸を冷却収縮させ、その状態におけるコイル
取付軸と端部軸との間の間隔に等しくトルクチユ
ーブの長さをすればよく、この場合も、常温に復
帰した場合にはコイル取付軸も延びて元に帰り、
従つて、この延びた量だけトルクチユーブを圧縮
して圧縮応力を付与する。
Or, conversely, the normal temperature damper 4 and the end shaft 8 or 9
When assembling the coil mounting shaft 1, the same effect can be obtained even if the coil mounting shaft 1 is cooled and contracted. That is, for example,
By supplying a low-temperature liquid such as liquid nitrogen or liquid helium to the helium reservoir 15 through a liquid helium supply pipe built into the rotor, the coil mounting shaft is cooled and contracted, and the coil mounting shaft in that state is The length of the torque tube should be equal to the distance between the end shaft and the end shaft.In this case, when the temperature returns to room temperature, the coil mounting shaft will also extend and return to its original position.
Therefore, the torque tube is compressed by this extended amount to apply compressive stress.

以上の説明で明らかなように、この発明では、
可とう体を設けるとか滑り構造にするような特殊
な構造とすることなく常温ダンパと端部軸とを組
立てる際に、常温ダンパを加熱するか、或いは逆
にコイル取付軸を冷却するようにして、組立完了
後に、トルクチユーブに圧縮応力が加わるように
したので、コイル取付軸を冷却して運転する際
に、トルクチユーブに生じる引張応力を回転子の
振動特性を悪化させることなく、緩和することが
でき、しかも構造の簡略化と価格の低減が達成で
きる。
As is clear from the above explanation, in this invention,
When assembling the room-temperature damper and the end shaft without using a special structure such as providing a flexible body or a sliding structure, the room-temperature damper can be heated, or conversely, the coil mounting shaft can be cooled. Since compressive stress is applied to the torque tube after assembly is completed, the tensile stress generated in the torque tube during operation with the coil mounting shaft cooled can be alleviated without deteriorating the vibration characteristics of the rotor. Moreover, the structure can be simplified and the price can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超電導回転機の回転子の従来の構造の
1例を示す縦断面図、第2図はトルクチユーブ生
ずる高い熱応力に対する従来の構造を示す第1図
と同様の断面図、第3図はこの発明による組立方
法を説明する第1図と同様の断面図である。 1…コイル取付軸、2…トルクチユーブ、3…
超電導界磁コイル、4…常温ダンパ、5…低温ダ
ンパ、6…ヘリウム外筒、7…ヘリウム端板、8
…駆動側端部軸、9…反駆動側端部軸、10…軸
受、11…スリツプリング、12…熱交換器、1
3…側部輻射シールド、14…真空部、15…ヘ
リウム液溜め部、16…ベロー、20…蒸気等の
高温流体を通す管。
Fig. 1 is a longitudinal sectional view showing an example of a conventional structure of a rotor of a superconducting rotating machine, Fig. 2 is a sectional view similar to Fig. 1 showing a conventional structure against high thermal stress caused by a torque tube, and Fig. 3 The figure is a sectional view similar to FIG. 1 for explaining the assembly method according to the present invention. 1...Coil mounting shaft, 2...Torque tube, 3...
Superconducting field coil, 4... normal temperature damper, 5... low temperature damper, 6... helium outer cylinder, 7... helium end plate, 8
...Drive side end shaft, 9...Non-drive side end shaft, 10...Bearing, 11...Slip ring, 12...Heat exchanger, 1
3... Side radiation shield, 14... Vacuum section, 15... Helium reservoir section, 16... Bellows, 20... Tube for passing high temperature fluid such as steam.

Claims (1)

【特許請求の範囲】[Claims] 1 コイルを取付けた中空のコイル取付軸と、前
記コイル取付軸の両端にそれぞれ取付けられてい
る中空のトルクチユーブと、このトルクチユーブ
のコイル取付軸と反対側にそれぞれ取付けられて
おりかつ回転子全体を支えている端部軸と、コイ
ル取付軸及びトルクチユーブの外周であつて端部
軸間に挾まれて設けられている常温ダンパとを備
えている回転子の組立方法において、下記所定温
度に常温ダンパを加熱した場合又はコイル取付軸
を冷却した場合の端部軸とコイル取付軸との間の
間隔に相当する長さにトルクチユーブを構成し、
次いで、端部軸間に、所定温度に加熱した常温ダ
ンパ、常温のコイル取付軸、トルクチユーブ及び
他の収納部材、又は、所定温度に冷却したコイル
取付軸、常温の常温ダンパ、トルクチユーブ及び
他の収納部材を組合せて構成することを特徴とす
る超電動回転機の回転子の組立方法。
1. A hollow coil mounting shaft to which a coil is attached, a hollow torque tube attached to each end of the coil mounting shaft, and a hollow torque tube attached to the opposite side of the coil mounting shaft, and the entire rotor. In the method for assembling a rotor, the rotor is equipped with an end shaft that supports the coil mounting shaft and a room temperature damper that is sandwiched between the end shafts on the outer periphery of the coil mounting shaft and the torque tube. Configuring the torque tube to have a length corresponding to the distance between the end shaft and the coil mounting shaft when the normal temperature damper is heated or when the coil mounting shaft is cooled,
Next, between the end shafts, a room temperature damper heated to a predetermined temperature, a coil mounting shaft at room temperature, a torque tube and other housing members, or a coil mounting shaft cooled to a predetermined temperature, a room temperature damper at room temperature, a torque tube and others are placed. A method for assembling a rotor of a super-electric rotating machine, characterized in that the rotor is constructed by combining storage members of.
JP9713780A 1980-07-15 1980-07-15 Assembling method of rotor of superconductive rotary machine Granted JPS5722371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9713780A JPS5722371A (en) 1980-07-15 1980-07-15 Assembling method of rotor of superconductive rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9713780A JPS5722371A (en) 1980-07-15 1980-07-15 Assembling method of rotor of superconductive rotary machine

Publications (2)

Publication Number Publication Date
JPS5722371A JPS5722371A (en) 1982-02-05
JPS6310662B2 true JPS6310662B2 (en) 1988-03-08

Family

ID=14184175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9713780A Granted JPS5722371A (en) 1980-07-15 1980-07-15 Assembling method of rotor of superconductive rotary machine

Country Status (1)

Country Link
JP (1) JPS5722371A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111923456A (en) * 2020-06-30 2020-11-13 恒诺微电子(嘉兴)有限公司 Method for preventing assembled plastic shell part from cracking

Also Published As

Publication number Publication date
JPS5722371A (en) 1982-02-05

Similar Documents

Publication Publication Date Title
US4076988A (en) Superconducting dynamoelectric machine having a liquid metal shield
EP1407529B1 (en) Torque transmission assembly for use in superconducting rotating machines
US5530413A (en) Superconducting magnet with re-entrant tube suspension resistant to buckling
US4291997A (en) Flexible support for superconducting machine rotor
JPS6310662B2 (en)
JPS6118349A (en) Rotor of superconductive rotary electric machine
JP6013867B2 (en) Superconducting rotating machine field rotor
US4329602A (en) Superconducting rotor
JP3857649B2 (en) Machine comprising superconducting windings arranged on a winding support and holding means for holding the winding support
JPH0810983B2 (en) Superconducting rotating electric machine rotor
JP2667063B2 (en) Superconducting rotating electric machine rotor
JP2672894B2 (en) Superconducting rotating electric machine rotor
JPS61196762A (en) Rotor of superconductive rotary machine
JP2838013B2 (en) Superconducting rotating electric machine rotor
JPS5855739B2 (en) Dynamic balancing method for superconducting rotor
JP2529382B2 (en) Insertion molding method of superconducting field coil in rotor of superconducting rotating electric machine
JPS596770A (en) Superconductor rotor
JPS60148370A (en) Rotor of superconductive rotary electric machine
JPH08242573A (en) Rotor of superconductive dynamo-electric machine
JPH03128663A (en) Rotor of superconductive electrical rotating machine
JPH03284162A (en) Rotor of superconductive revolving armature
JPH01129762A (en) Rotor for superconducting rotary electric machine
JPH01129763A (en) Rotor for supercondcuting rotary electric machine
JPH03128662A (en) Rotor of superconductive electrical rotating machine
JPH06327234A (en) Rotor of superconducting rotary electric device