JP2838013B2 - Superconducting rotating electric machine rotor - Google Patents
Superconducting rotating electric machine rotorInfo
- Publication number
- JP2838013B2 JP2838013B2 JP5064283A JP6428393A JP2838013B2 JP 2838013 B2 JP2838013 B2 JP 2838013B2 JP 5064283 A JP5064283 A JP 5064283A JP 6428393 A JP6428393 A JP 6428393A JP 2838013 B2 JP2838013 B2 JP 2838013B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- shaft
- side end
- end shaft
- discharge pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductive Dynamoelectric Machines (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、超電導回転電機の回
転子に関し、詳しくはこの回転子内に配設される冷媒供
給管および冷媒排出管の伸縮手段に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotor of a superconducting rotary electric machine, and more particularly, to a means for expanding and contracting a refrigerant supply pipe and a refrigerant discharge pipe disposed in the rotor.
【0002】[0002]
【従来の技術】図7は従来の超電導回転電機の回転子の
全体構成の概要を示す断面図、図8はこの回転子の冷媒
供給管と冷媒排出管とのベローズ周りの側面図である。2. Description of the Related Art FIG. 7 is a cross-sectional view showing an outline of the entire structure of a rotor of a conventional superconducting rotary electric machine, and FIG. 8 is a side view of a refrigerant supply pipe and a refrigerant discharge pipe of the rotor around a bellows.
【0003】図において、1は回転駆動力が伝達される
駆動側端部軸、2はこの駆動側端部軸1に対向して設け
られ、内部に貫通孔2bが設けられた反駆動側端部軸、
3はその一端部側がそれぞれ駆動側端部軸1のフランジ
部1aおよび反駆動側端部軸2のフランジ部2aに固定
されるとともに、それぞれ駆動側端部軸1側および反駆
動側端部軸2側からの入熱を除去するための熱交換器と
しての冷却器3aを有した一対の中空トルクチューブ、
4は一対のトルクチューブ3間に固定され、その内部に
冷媒である液体ヘリウムの液溜め部4aが形成された中
空のコイル取付軸、5はコイル取付軸4の液溜め部4a
の両端を密閉する端板である。In FIG. 1, reference numeral 1 denotes a drive-side end shaft to which a rotational driving force is transmitted; and 2, a counter-drive-side end provided with the drive-side end shaft 1 and having a through hole 2b provided therein. Part axis,
Reference numeral 3 denotes one end side fixed to the flange portion 1a of the driving end shaft 1 and the flange portion 2a of the non-driving end shaft 2, respectively, and the driving end shaft 1 side and the non-driving end shaft respectively. A pair of hollow torque tubes having a cooler 3a as a heat exchanger for removing heat input from two sides,
Reference numeral 4 denotes a hollow coil mounting shaft fixed between the pair of torque tubes 3 and in which a liquid reservoir 4a for liquid helium as a refrigerant is formed, and 5 denotes a liquid reservoir 4a of the coil mounting shaft 4.
Is an end plate for sealing both ends.
【0004】6はコイル取付軸4の外面に巻回される超
電導界磁コイル、7は超電導界磁コイル6を覆うように
コイル取付軸4に取り付けられたヘリウム外筒、8はコ
イル取付軸4の両端に取り付けられた保持環、9はその
両端部を一対のトルクチューブ3に支持され、ヘリウム
外筒7を覆うように設けられた低温ダンパ、10はその
両端を駆動側端部軸1のフランジ部1aと反駆動側端部
軸2のフランジ部2aとに支持され、トルクチューブ3
および低温ダンパ9を覆うように設けられた常温ダン
パ、11は駆動側端部軸1および反駆動側端部軸2を回
転自在に支持する軸受、12はトルクチューブ3の内面
側に支持され、コイル取付軸4の両側面側を覆うように
設けられた側面輻射シールド、13は真空部である。[0004] 6 is a superconducting field coil wound around the outer surface of the coil mounting shaft 4, 7 is a helium outer cylinder mounted on the coil mounting shaft 4 so as to cover the superconducting field coil 6, 8 is a coil mounting shaft 4 The holding rings 9 attached to both ends of the low temperature damper 9 are supported at both ends by a pair of torque tubes 3 and are provided to cover the helium outer cylinder 7. The torque tube 3 is supported by the flange 1a and the flange 2a of the non-drive end shaft 2.
And a normal temperature damper provided so as to cover the low temperature damper 9, a bearing 11 for rotatably supporting the driving side end shaft 1 and the non-driving side end shaft 2, 12 being supported on the inner surface side of the torque tube 3, A side surface radiation shield 13 provided to cover both side surfaces of the coil mounting shaft 4 is a vacuum section.
【0005】14は反駆動側端部軸2に設けられた界磁
電流供給用のスリップリングであり、このスリップリン
グ14は電流リード(図示せず)を介して超電導界磁コ
イル6に電気的に接続されている。15は反駆動側端部
軸2の軸端に取り付けられた冷媒給排用回転部材、16
は冷媒給排用回転部材15を囲むように設けられた冷媒
給排用固定部材、17は冷媒給排用固定部材16を介し
て外部から供給された冷媒をコイル取付軸4内に形成さ
れた液溜め部4aに供給する冷媒供給管であり、この冷
媒供給管17は反駆動側端部軸2の貫通孔2b内を通っ
て、冷媒給排用回転部材15とコイル取付軸4の一側に
設けられた一方の端板5との間に配設されている。A slip ring 14 is provided on the non-drive end shaft 2 for supplying a field current. The slip ring 14 is electrically connected to the superconducting field coil 6 via a current lead (not shown). It is connected to the. Reference numeral 15 denotes a refrigerant supply / discharge rotating member attached to the shaft end of the non-drive-side end shaft 2.
Is a refrigerant supply / discharge fixing member provided so as to surround the refrigerant supply / discharge rotary member 15, and 17 is a refrigerant supplied from the outside via the refrigerant supply / discharge fixing member 16 formed in the coil mounting shaft 4. The refrigerant supply pipe 17 supplies the liquid to the liquid reservoir 4a. The refrigerant supply pipe 17 passes through the through hole 2b of the non-drive end shaft 2 and is connected to the refrigerant supply / discharge rotary member 15 and one side of the coil mounting shaft 4. And one of the end plates 5 provided at the end.
【0006】18はコイル取付軸4の液溜め部4a内の
冷媒をトルクチューブ3の冷却器3aを経由した後、外
部に排出する冷媒排出管であり、この冷媒排出管18は
コイル取付軸4に取り付けられた端板5とトルクチュー
ブ3の冷却器3aとの間に配設される上流部18aと、
トルクチューブ3の冷却器3aと反駆動側端部軸2の貫
通孔2b内を通って、またはこの貫通孔2bとコイル取
付軸4の液溜め部4a内を通って冷媒給排用回転部材1
5との間に配設される下流部18bとから構成されてい
る。19は冷媒供給管17中と冷媒排出管18の下流部
18b中に取り付けられ、これらの管17,18bの軸
方向伸縮量を調整する伸縮手段としてのベローズであ
る。20は駆動側端部軸1と反駆動側端部軸2の中心軸
を結んで形成されるこの回転子の回転中心軸である。Reference numeral 18 denotes a refrigerant discharge pipe for discharging the refrigerant in the liquid reservoir 4a of the coil mounting shaft 4 to the outside after passing through the cooler 3a of the torque tube 3. An upstream portion 18a disposed between the end plate 5 attached to the cooling device 3 and the cooler 3a of the torque tube 3;
The cooling member supply / discharge rotating member 1 passes through the cooler 3a of the torque tube 3 and the through hole 2b of the non-drive-side end shaft 2 or through the through hole 2b and the liquid reservoir 4a of the coil mounting shaft 4.
5 and a downstream portion 18b disposed between the first and second components. A bellows 19 is mounted in the refrigerant supply pipe 17 and in the downstream portion 18b of the refrigerant discharge pipe 18, and is a bellows as expansion / contraction means for adjusting the amount of expansion / contraction of these pipes 17, 18b in the axial direction. Reference numeral 20 denotes a rotation center axis of the rotor formed by connecting the center axes of the drive side end shaft 1 and the non-drive side end shaft 2.
【0007】つぎにこの超電導回転電機の回転子の動作
について説明する。冷媒である液体ヘリウムが冷媒給排
用固定部材16、冷媒給排用回転部材15よび冷媒供給
管17を介してコイル取付軸4の液溜め部4aに供給さ
れると、超電導界磁コイル6はコイル取付軸4を介して
液溜め部4a内の液体ヘリウムにより極低温まで冷却さ
れ、その電気抵抗が零の状態となる。そして、スリップ
リング14を介して超電導界磁コイル6に界磁電流が供
給され、この超電導界磁コイル6が励磁されると、電気
抵抗が零の状態なっているこの超電導界磁コイル6には
励磁損失のない強力な磁界が発生する。Next, the operation of the rotor of the superconducting rotating electric machine will be described. When liquid helium, which is a refrigerant, is supplied to the liquid reservoir 4a of the coil mounting shaft 4 via the refrigerant supply / discharge fixing member 16, the refrigerant supply / discharge rotation member 15, and the refrigerant supply pipe 17, the superconducting field coil 6 becomes The liquid helium in the liquid reservoir 4a is cooled down to a very low temperature via the coil mounting shaft 4 and its electric resistance becomes zero. Then, a field current is supplied to the superconducting field coil 6 via the slip ring 14, and when the superconducting field coil 6 is excited, the superconducting field coil 6 in which the electric resistance is zero is applied to the superconducting field coil 6. A strong magnetic field without excitation loss is generated.
【0008】この状態で、駆動側端部軸1側にタービン
(図示せず)等からの回転力が伝えられると、常温ダン
パ10等を介してこの回転力が反駆動側端部軸2側にも
伝えられ、軸受11に支持される駆動側端部軸1および
反駆動側端部軸2は回転中心軸20を中心として所定方
向に回転する。そして、この駆動側端部軸1および反駆
動側端部軸2の回転力はトルクチューブ3,3を介して
コイル取付軸4に伝えられ、超電導界磁コイル6を一定
速度で回転させる。したがって、所定向きに磁界を発生
しつつ回転するこの回転子によって、この回転子の外方
に設けられた固定子(図示せず)側に交流電力が発生さ
れる。In this state, when a rotational force from a turbine (not shown) or the like is transmitted to the drive-side end shaft 1 side, the rotational force is transmitted to the non-drive-side end shaft 2 via the room temperature damper 10 or the like. The drive-side end shaft 1 and the non-drive-side end shaft 2 supported by the bearing 11 rotate in a predetermined direction about the rotation center shaft 20. Then, the torque of the drive-side end shaft 1 and the non-drive-side end shaft 2 is transmitted to the coil mounting shaft 4 via the torque tubes 3 and 3 to rotate the superconducting field coil 6 at a constant speed. Therefore, the rotor that rotates while generating a magnetic field in a predetermined direction generates AC power on the side of a stator (not shown) provided outside the rotor.
【0009】ここで、トルクチューブ3を介して駆動側
端部軸1および反駆動側端部軸2からコイル取付軸4側
に熱伝導により伝えられる熱は、冷却器3aを介して冷
媒排出管18内の液体ヘリウム(場合によっては一部ガ
ス化されている)側に吸収される。また、駆動側端部軸
1、反駆動側端部軸2、常温ダンパ10側から超電導界
磁コイル6側へ対流伝熱により伝えられようとする熱は
真空部13によって遮断されるとともに、これらから超
電導界磁コイル6側へ輻射伝熱により伝えられようとす
る熱も側面輻射シールド12や低温ダンパ9によって遮
断される。Here, the heat transmitted from the driving end shaft 1 and the non-driving end shaft 2 to the coil mounting shaft 4 through the torque tube 3 by heat conduction is transmitted through the cooler 3a to the refrigerant discharge pipe. It is absorbed on the liquid helium (partially gasified in some cases) side in 18. Further, the heat that is to be transmitted by convective heat transfer from the drive-side end shaft 1, the non-drive-side end shaft 2, and the normal temperature damper 10 to the superconducting field coil 6 is cut off by the vacuum unit 13. The heat that is to be transmitted by the radiant heat transfer from the radiator to the superconducting field coil 6 is also blocked by the side surface radiation shield 12 and the low-temperature damper 9.
【0010】さらに、常温ダンパ10および低温ダンパ
9は、固定子からの高周波磁界をシールドして超電導界
磁コイル6を保護するとともに、電力系統の擾乱による
回転子振動を減衰させる機能を有している。また、ベロ
ーズ19は低温の冷媒供給管17や冷媒排出管18の下
流部18bが常温の反駆動側端部軸2等の回転子構成部
品との温度差によって生じる熱伸縮量を吸収するが、こ
の冷媒供給管17や冷媒排出管18の下流部18bが回
転中心軸20よりずれた位置(実公昭57ー57488
号公報)にあるため、このベローズ19にはこの回転子
の回転にともない外方への遠心力が作用する。Further, the normal temperature damper 10 and the low temperature damper 9 have a function of shielding a high frequency magnetic field from the stator to protect the superconducting field coil 6, and attenuating a rotor vibration caused by disturbance of the power system. I have. Further, the bellows 19 absorbs the thermal expansion and contraction caused by the temperature difference between the low-temperature refrigerant supply pipe 17 and the downstream portion 18b of the refrigerant discharge pipe 18 with the rotor components such as the non-drive end shaft 2 at normal temperature. The position where the downstream portion 18b of the refrigerant supply pipe 17 and the refrigerant discharge pipe 18 is shifted from the rotation center axis 20 (Japanese Utility Model Publication No. 57-48788).
No. 2, the centrifugal force acts outward on the bellows 19 as the rotor rotates.
【0011】[0011]
【発明が解決しようとする課題】従来の超電導回転電機
の回転子は以上のように構成されているので、ベローズ
19はこれに作用する遠心力によって異常な変形を生じ
てしまい、その伸縮機能が阻害されたり、最終的にはこ
のベローズ19が破壊されてしまうという課題があっ
た。そして、このベローズ19が破壊されれば冷媒であ
る液体へリウムが真空部13内に流出し、コイル取付軸
4側への熱の侵入が増大して、この超電導回転電機自体
の運転が困難になってしまう。Since the rotor of the conventional superconducting rotary electric machine is constituted as described above, the bellows 19 is abnormally deformed by the centrifugal force acting on the same, and the bellows 19 has an expansion and contraction function. There has been a problem that the bellows 19 may be hindered or eventually destroyed. If the bellows 19 is destroyed, the liquid helium as a refrigerant flows out into the vacuum portion 13 and heat infiltration to the coil mounting shaft 4 side increases, so that the operation of the superconducting rotary electric machine itself becomes difficult. turn into.
【0012】この発明は上記のような課題を解決するた
めになされたものであり、冷媒供給管や冷媒排出管中に
設けられた伸縮手段のその回転による異常な変形等が有
効に防止された超電導回転電機の回転子を提供すること
を目的とするものである。SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and abnormal deformation of expansion and contraction means provided in a refrigerant supply pipe and a refrigerant discharge pipe due to its rotation is effectively prevented. It is an object of the present invention to provide a rotor of a superconducting rotating electric machine.
【0013】[0013]
【課題を解決するための手段】この発明の第1の発明
は、駆動側端部軸と、この駆動側端部軸に対向して設け
られた反駆動側端部軸と、一方の一端側がこの反駆動側
端部軸に、他方の一端側が駆動側端部軸にそれぞれ固定
されるとともに、この反駆動側端部軸およびこの駆動側
端部軸側からの入熱を除去する冷却器を有した一対のト
ルクチューブと、この一対のトルクチューブ間に固定さ
れ、その内部に冷媒の液溜め部を有するコイル取付軸
と、このコイル取付軸外面に巻回される超電導界磁コイ
ルと、外部から供給される冷媒を反駆動側端部軸内を通
ってコイル取付軸の液溜め部に供給する冷媒供給管と、
コイル取付軸の液溜め部内の冷媒をトルクチューブの前
記冷却器を経由した後、反駆動側端部軸内を通って外部
に排出する冷媒排出管と、この冷媒排出管中および冷媒
供給管中にそれぞれ取り付けられ、これらの管の軸方向
伸縮量を調整する伸縮手段とを備え、駆動側端部軸への
回転力の伝達により、この駆動側端部軸と反駆動側端部
軸との中心軸を結んだ回転中心軸を中心として回転され
る超電導回転電機の回転子において、冷媒供給管および
前記冷媒排出管を曲げて、これらの管の一部を回転中心
軸の位置またはその近傍の位置に配設し、この位置に冷
媒供給管と冷媒排出管との伸縮手段をそれぞれ配設した
ことである。According to a first aspect of the present invention, there is provided a driving-side end shaft, a non-driving-side end shaft provided opposite to the driving-side end shaft, and one end of the driving-side end shaft. The other end is fixed to the drive-side end shaft and the other end is fixed to the drive-side end shaft, and a cooler that removes heat input from the counter-drive-side end shaft and the drive-side end shaft. A pair of torque tubes, a coil mounting shaft fixed between the pair of torque tubes and having a liquid reservoir for refrigerant therein, a superconducting field coil wound around the outer surface of the coil mounting shaft, A refrigerant supply pipe that supplies the refrigerant supplied from the anti-drive side end shaft to the liquid reservoir of the coil mounting shaft,
A refrigerant discharge pipe for discharging the refrigerant in the liquid reservoir of the coil mounting shaft after passing through the cooler of the torque tube and then to the outside through the non-drive end shaft; and in the refrigerant discharge pipe and the refrigerant supply pipe And expansion and contraction means for adjusting the amount of expansion and contraction of these pipes in the axial direction. The transmission of the rotational force to the drive side end axis allows the drive side end axis and the non-drive side end axis to be connected to each other. In a rotor of a superconducting rotary electric machine rotated around a rotation center axis connecting the center axes, a refrigerant supply pipe and the refrigerant discharge pipe are bent, and a part of these pipes is positioned at or near the rotation center axis. And the expansion and contraction means of the refrigerant supply pipe and the refrigerant discharge pipe are respectively disposed at this position.
【0014】[0014]
【0015】[0015]
【0016】[0016]
【作用】超電導回転電機の回転子においては、外部から
冷媒供給管を介してコイル取付軸の液溜め部に冷媒(液
体ヘリウム)が供給されると、このコイル取付軸を介し
てこれに巻回される超電導界磁コイルが冷却され、その
電気抵抗が零の状態(超電導状態)に維持される。そし
て、この超電導界磁コイルに電流が流されると、これに
強い磁界が発生する。一方、駆動側端部軸側からタービ
ン等を介して回転力が伝達されると、駆動側端部軸およ
び反駆動側端部軸はその回転中心軸を中心に回転し、ト
ルクチューブを介して、コイル取付軸に巻回された超電
導界磁コイルも回転する。そして、この回転子外方の固
定子側に電力が発生する。In the rotor of the superconducting rotary electric machine, when refrigerant (liquid helium) is supplied to the liquid reservoir of the coil mounting shaft from the outside via the refrigerant supply pipe, it is wound around the coil mounting shaft. The superconducting field coil to be cooled is cooled, and its electric resistance is maintained in a state of zero (superconducting state). When a current flows through the superconducting field coil, a strong magnetic field is generated. On the other hand, when a rotational force is transmitted from the drive-side end shaft side via a turbine or the like, the drive-side end shaft and the non-drive-side end shaft rotate around the rotation center axis, and are transmitted through the torque tube. The superconducting field coil wound on the coil mounting shaft also rotates. Then, electric power is generated on the stator side outside the rotor.
【0017】この場合、駆動側端部軸側からトルクチュ
ーブを介してコイル取付軸に熱伝導等により熱が伝わろ
うとするが、この熱は冷却器を経由して外部に排出され
る冷媒排出管中の冷媒側に吸収される。また、冷媒供給
管や冷媒排出管は冷媒によって冷却されるため他の部材
等に対しその軸方向に熱収縮するが、この熱収縮量は伸
縮手段によって調整されるため、これらの管には熱応力
は作用しない。なお、冷媒供給管や冷媒排出管はこの回
転子の回転とともに回転されるため、伸縮手段も回転さ
れる。In this case, heat tends to be transmitted from the drive-side end shaft side to the coil mounting shaft via the torque tube by heat conduction or the like, and this heat is discharged to the outside via the cooler. It is absorbed by the refrigerant inside. In addition, the refrigerant supply pipe and the refrigerant discharge pipe are thermally cooled by the refrigerant, and therefore thermally contract with other members in the axial direction. No stress is applied. Since the refrigerant supply pipe and the refrigerant discharge pipe are rotated with the rotation of the rotor, the expansion / contraction means is also rotated.
【0018】この発明の第1の発明では、冷媒供給管と
冷媒排出管を曲げて、これらの管の一部を回転中心軸ま
たはその近傍に配設し、これらの管のこの部分に伸縮手
段を配設しているため、伸縮手段に作用する回転中心軸
からの偏位による遠心力は大幅に低減され、この伸縮手
段に異常変形等は生じない。According to the first aspect of the present invention, the refrigerant supply pipe and the refrigerant discharge pipe are bent, and a part of these pipes is disposed at or near the rotation center axis. Is provided, the centrifugal force acting on the expansion and contraction means from the rotation center axis is greatly reduced, and abnormal expansion and the like do not occur in the expansion and contraction means.
【0019】[0019]
【0020】[0020]
【0021】[0021]
【実施例】以下にこの発明の実施例を図について説明す
る。 実施例1.図1はこの発明の第1の発明の一実施例に係
る超電導回転電機の回転子内に配設される冷媒供給管お
よび冷媒排出管のベローズ周りの側面図である。なお、
冷媒供給管および冷媒排出管の位置関係を除き、この実
施例1の超電導回転電機の回転子の構成は図7で示され
た超電導回転電機の回転子の構成と同一である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. Embodiment 1 FIG. FIG. 1 is a side view of a refrigerant supply pipe and a refrigerant discharge pipe disposed around a bellows disposed in a rotor of a superconducting rotary electric machine according to an embodiment of the first invention of the present invention. In addition,
Except for the positional relationship between the refrigerant supply pipe and the refrigerant discharge pipe, the configuration of the rotor of the superconducting rotary electric machine of the first embodiment is the same as the configuration of the rotor of the superconducting rotary electric machine shown in FIG.
【0022】ここで、実施例1によるベローズ19の取
付位置について説明する。反駆動側端部軸2の貫通孔2
bを通って、冷媒給排用回転部材15とコイル取付軸4
に取り付けられた端板5との間に配置される冷媒供給管
17を曲げ、その一部をこの回転子の回転中心軸20の
位置またはその近傍に位置させる。そして、この回転中
心軸20の位置またはその近傍に位置させた冷媒供給管
17中に、この冷媒供給管17の軸方向の伸縮量を調整
するベローズ19を配設する。また、反駆動側端部軸2
の貫通孔2bを通って、またはこの貫通孔2bとコイル
取付軸4の液溜め部4aを通って、冷媒給排用回転部材
15とコイル取付軸4に取り付けられた端板5との間に
配置される冷媒排出管18の下流部18b(以下これを
下流側冷媒排出管18bという)を曲げ、その一部をこ
の回転子の回転中心軸20の位置またはその近傍に位置
させる。そして、この回転中心軸20の位置またはその
近傍に位置させた下流側冷媒排出管18b中に、この下
流側冷媒排出管18bの軸方向の伸縮量を調整するベロ
ーズ19を配設する。この時、冷媒供給管17と下流側
冷媒排出管18bとにそれぞれ配設されるベローズ19
は、その軸方向位置をずらして互いに干渉しないように
配置されている。Here, the mounting position of the bellows 19 according to the first embodiment will be described. Through-hole 2 of non-drive-side end shaft 2
b, the refrigerant supply / discharge rotary member 15 and the coil mounting shaft 4
The refrigerant supply pipe 17 disposed between the end plate 5 and the end plate 5 is bent, and a part thereof is positioned at or near the rotation center axis 20 of the rotor. A bellows 19 for adjusting the amount of expansion and contraction of the refrigerant supply pipe 17 in the axial direction is disposed in the refrigerant supply pipe 17 located at or near the rotation center shaft 20. In addition, the non-drive side end shaft 2
Between the coolant supply / discharge rotary member 15 and the end plate 5 attached to the coil mounting shaft 4 through the through hole 2b or through the through hole 2b and the liquid reservoir 4a of the coil mounting shaft 4. The downstream portion 18b of the disposed refrigerant discharge pipe 18 (hereinafter referred to as the downstream refrigerant discharge pipe 18b) is bent, and a part thereof is positioned at or near the rotation center axis 20 of the rotor. A bellows 19 for adjusting the amount of expansion and contraction of the downstream refrigerant discharge pipe 18b in the axial direction is provided in the downstream refrigerant discharge pipe 18b located at or near the position of the rotation center shaft 20. At this time, the bellows 19 provided in the refrigerant supply pipe 17 and the downstream refrigerant discharge pipe 18b respectively.
Are arranged so as not to interfere with each other by shifting their axial positions.
【0023】つぎに回転中心軸20の位置またはその近
傍に配設されたベローズ19の動作について説明する。
この超電導回転電機の回転子等の運転が開始されると、
冷媒供給管17や下流側冷媒排出管18bは、その内部
に冷媒である極低温の液体ヘリウムまたは一部ガス化し
た液体ヘリウムが流されるため、反駆動側端部軸2や常
温ダンパ10に対して熱収縮するが、この場合、ベロー
ズ19が伸びて冷媒供給管17や下流側冷媒排出管18
bに熱応力が生じないようにする。Next, the operation of the bellows 19 provided at or near the position of the rotation center shaft 20 will be described.
When the operation of the rotor of the superconducting rotating electric machine is started,
The refrigerant supply pipe 17 and the downstream-side refrigerant discharge pipe 18b allow the cryogenic liquid helium or the partially gasified liquid helium as a refrigerant to flow therein, so that the refrigerant is supplied to the non-drive end shaft 2 and the room temperature damper 10. In this case, the bellows 19 expands and the refrigerant supply pipe 17 and the downstream refrigerant discharge pipe 18
b should be free from thermal stress.
【0024】また、回転子が回転すると、内部の冷媒供
給管17や下流側冷媒排出管18bも回転するため、こ
れらに取り付けられたベローズ19も回転する。この場
合、ベローズ19は回転中心軸20の位置またはその近
傍に配設されているため、このベローズ19に作用する
回転中心軸20からの偏位によって生じる遠心力は大幅
に低減される。したがって、このベローズ19には、前
記遠心力による異常変形は生じず、この異常変形によっ
て生じるその伸縮機能の阻害やその破壊は生じない。ま
た、ベローズ19の破壊によってコイル取付軸4や超電
導界磁コイル6側に熱が伝わり、この超電導回転電機の
運転が困難になることもない。When the rotor rotates, the internal refrigerant supply pipe 17 and the downstream refrigerant discharge pipe 18b also rotate, so that the bellows 19 attached to these also rotate. In this case, since the bellows 19 is disposed at or near the position of the rotation center shaft 20, the centrifugal force acting on the bellows 19 due to the deviation from the rotation center shaft 20 is greatly reduced. Therefore, the bellows 19 does not undergo abnormal deformation due to the centrifugal force, and does not hinder its expansion and contraction function and its destruction caused by the abnormal deformation. Further, heat is transmitted to the coil mounting shaft 4 and the superconducting field coil 6 side due to the destruction of the bellows 19, so that the operation of the superconducting rotary electric machine does not become difficult.
【0025】なお、この実施例1では下流側冷媒排出管
18bは1本しか示していないが、他の下流側冷媒排出
管18bについても、そのベローズ19を同様に配設す
ればよい。Although only one downstream-side refrigerant discharge pipe 18b is shown in the first embodiment, the bellows 19 may be similarly provided for the other downstream-side refrigerant discharge pipes 18b.
【0026】実施例2.図2はこの発明の第2の発明の
一実施例に係る超電導回転電機の回転子内に配設される
冷媒供給管および冷媒排出管のベローズ周りの断面図で
ある。図において、30は冷媒供給管17と下流側冷媒
排出管18bとの一部を2重管構造とし、これを回転中
心軸20の位置またはその近傍に配設した多重管として
の冷媒管であり、例えばその外管が下流側冷媒排出管1
8bとなっており、その内管が冷媒供給管17となって
いるものである。そして、この冷媒管30の内外管には
それぞれ冷媒供給管17用および下流側冷媒排出管18
b用のベローズ19が取り付けられている。なお、他の
構成は上記実施例1の超電導回転電機の回転子と同一で
ある。Embodiment 2 FIG. FIG. 2 is a cross-sectional view around a bellows of a refrigerant supply pipe and a refrigerant discharge pipe disposed in a rotor of a superconducting rotary electric machine according to one embodiment of the second invention of the present invention. In the drawing, reference numeral 30 denotes a refrigerant pipe as a multiple pipe in which a part of the refrigerant supply pipe 17 and the downstream-side refrigerant discharge pipe 18b has a double-pipe structure, which is disposed at or near the rotation center axis 20. For example, the outer pipe is the downstream refrigerant discharge pipe 1
8b, the inner pipe of which is the refrigerant supply pipe 17. The inner and outer pipes of the refrigerant pipe 30 are respectively provided for the refrigerant supply pipe 17 and the downstream refrigerant discharge pipe 18.
The bellows 19 for b is attached. The other configuration is the same as the rotor of the superconducting rotary electric machine of the first embodiment.
【0027】この実施例2においても、回転中心軸20
の位置またはその近傍に位置された2重管構造の冷媒管
30の内外管に、それぞれ冷媒供給管17用および下流
側冷媒排出管18b用のベローズ19を取り付けている
ため、回転子の回転に伴ない冷媒供給管17や下流側冷
媒排出管18bが回転しても、ベローズ19に作用する
回転中心軸20からの偏位によって生じる遠心力は大幅
に低減され、上記実施例1の超電導回転電機の回転子と
同様の効果を得ることができる。また、ベローズ19は
2重管構造の冷媒管30に取り付けられているが、その
伸縮機能や冷媒を通過させる機能には何の障害も生じな
い。そして、この実施例2の場合には、とくに実施例1
の場合と比べて、冷媒供給管17や下流側冷媒排出管1
8bを曲げる必要がなく、さらに遠心力に対する配管支
持が容易となるというメリットがある。Also in the second embodiment, the rotation center shaft 20
Since the bellows 19 for the refrigerant supply pipe 17 and the downstream refrigerant discharge pipe 18b are respectively attached to the inner and outer pipes of the double pipe structure refrigerant pipe 30 located at or near the position of Even when the refrigerant supply pipe 17 and the downstream-side refrigerant discharge pipe 18b rotate, the centrifugal force acting on the bellows 19 due to the deviation from the rotation center shaft 20 is greatly reduced. The same effect as that of the rotator can be obtained. Further, the bellows 19 is attached to the refrigerant pipe 30 having a double pipe structure, but does not cause any obstacle to its expansion and contraction function and the function of passing the refrigerant. In the case of the second embodiment, in particular, the first embodiment
, The refrigerant supply pipe 17 and the downstream-side refrigerant discharge pipe 1
There is an advantage that it is not necessary to bend the 8b, and the pipe is easily supported against centrifugal force.
【0028】なお、この実施例2では下流側冷媒排出管
18bは1本しか示していないが、他の下流側冷媒排出
管18bについては冷媒管30を3重管とするとか、2
本の下流側冷媒排出管18bを一体化するようにして対
処すればよい。Although only one downstream-side refrigerant discharge pipe 18b is shown in the second embodiment, for the other downstream-side refrigerant discharge pipes 18b, the refrigerant pipe 30 may be a triple pipe,
What is necessary is just to cope by integrating the downstream-side refrigerant discharge pipes 18b.
【0029】実施例3.図3はこの発明の第3の発明の
一実施例に係る超電導回転電機の回転子内に配設される
冷媒供給管および下流側冷媒排出管のベローズ周りの縦
断面図、図4は図3のIVーIV線に沿った断面図である。Embodiment 3 FIG. FIG. 3 is a longitudinal sectional view of a refrigerant supply pipe and a downstream refrigerant discharge pipe arranged around a bellows disposed in a rotor of a superconducting rotary electric machine according to an embodiment of the third invention of the present invention, and FIG. FIG. 4 is a sectional view taken along line IV-IV of FIG.
【0030】図において、31は冷媒供給管17および
下流側冷媒排出管18bを挿通させる貫通孔31aを有
し、その外側面側が例えば側面輻射シールド12の内孔
12a内に嵌め込まれて、この側面輻射シールド12に
支持される厚肉円板状の支持手段としての支持部材であ
る。この支持部材31の貫通孔31a内には冷媒供給管
17および下流側冷媒排出管18bのベローズが位置決
め支持されている。なお、他の構成は上記実施例1の超
電導回転電機の回転子と同一である。In the figure, reference numeral 31 denotes a through hole 31a through which the refrigerant supply pipe 17 and the downstream refrigerant discharge pipe 18b are inserted. The outer surface of the through hole 31a is fitted into the inner hole 12a of the side radiation shield 12, for example. It is a support member as a thick disk-shaped support means supported by the radiation shield 12. The bellows of the refrigerant supply pipe 17 and the downstream refrigerant discharge pipe 18b are positioned and supported in the through hole 31a of the support member 31. The other configuration is the same as the rotor of the superconducting rotary electric machine of the first embodiment.
【0031】冷媒供給管17および下流側冷媒排出管1
8bは回転子の回転中心軸20からそれぞれ一定距離離
れた位置にあるため、この冷媒供給管17および下流側
冷媒排出管18bにそれぞれ取り付けられているベロー
ズ19には回転子の回転に伴ないこの偏位による遠心力
が作用する。ところが、このベローズ19は支持部材3
1の貫通孔31a内に位置しこの支持部材31によりそ
の外側面が支持されているため、このベローズ19に遠
心力が作用しても、このベローズ19には異常変形は生
じない。したがって、この実施例3においても上記実施
例1の超電導回転電機の回転子と同様の効果を得ること
ができる。なお、この場合ベローズ19は支持部材31
の貫通孔31a内をその軸方向に移動自在であり、その
伸縮機能に問題は生じない。またとくに、この実施例3
の超電導回転電機では上記実施例1、2のそれに比べ
て、冷媒供給管17や下流側冷媒排出管18bの配置位
置を自由に設定でき、その設置の自由度が高いというメ
リットがある。Refrigerant supply pipe 17 and downstream refrigerant discharge pipe 1
8b is located at a certain distance from the rotation center axis 20 of the rotor, and therefore, the bellows 19 attached to the refrigerant supply pipe 17 and the downstream refrigerant discharge pipe 18b are respectively attached to the bellows 19 as the rotor rotates. Centrifugal force due to the displacement acts. However, this bellows 19 is
Since the outer surface of the bellows 19 is located in the through hole 31a and supported by the support member 31, even if a centrifugal force acts on the bellows 19, the bellows 19 does not undergo abnormal deformation. Therefore, also in the third embodiment, the same effects as those of the rotor of the superconducting rotary electric machine of the first embodiment can be obtained. In this case, the bellows 19 is supported by the support member 31.
Is freely movable in the axial direction in the through hole 31a, and there is no problem in its expansion / contraction function. Particularly, in the third embodiment,
The superconducting rotary electric machine of the third embodiment has an advantage that the arrangement positions of the refrigerant supply pipe 17 and the downstream-side refrigerant discharge pipe 18b can be set freely, and the degree of freedom of installation is high, as compared with those of the first and second embodiments.
【0032】なお、支持部材31を側面輻射シールド1
2を介してトルクチューブ3に支持させるだけでなく、
この支持部材31をトルクチューブ3に取り付けた他の
支持部材に支持させるようにしてもよい。The supporting member 31 is connected to the side surface radiation shield 1.
Not only is it supported on the torque tube 3 via
The support member 31 may be supported by another support member attached to the torque tube 3.
【0033】実施例4.図5はこの発明の第3の発明の
他の実施例に係る超電導回転電機の回転子内に配設され
る冷媒供給管および下流側冷媒排出管のベローズ周りの
縦断面図、図6は図5のVIーVI線に沿った断面図であ
る。Embodiment 4 FIG. FIG. 5 is a vertical cross-sectional view of a refrigerant supply pipe and a downstream refrigerant discharge pipe disposed around a bellows disposed in a rotor of a superconducting rotary electric machine according to another embodiment of the third invention of the present invention, and FIG. It is sectional drawing along the VI-VI line of No. 5.
【0034】図において、32は回転中心軸20から偏
位した位置にある冷媒供給管17および下流側冷媒排出
管18bのベローズ19の側面側を支持するために、こ
のベローズ19に取り付けられた支持手段としての支持
部材である。この支持部材31はベローズ19の遠心力
が作用する側にのみ設けられており、この支持部材32
は側面輻射シールド12の内孔12a内面に接するよう
に位置決めされ、この側面輻射シールド12に支持され
ている。ここで、支持部材31はベローズ19の外周面
のベローズ19の伸縮機能に支障をきたさない位置に例
えば溶接等により取り付けられている。In the drawing, reference numeral 32 denotes a support attached to the bellows 19 for supporting the side surfaces of the bellows 19 of the refrigerant supply pipe 17 and the downstream refrigerant discharge pipe 18b at positions deviated from the rotation center shaft 20. It is a support member as a means. The support member 31 is provided only on the side of the bellows 19 on which the centrifugal force acts.
Are positioned so as to be in contact with the inner surface of the inner hole 12 a of the side surface radiation shield 12, and are supported by the side surface radiation shield 12. Here, the support member 31 is attached to a position on the outer peripheral surface of the bellows 19 where the expansion and contraction function of the bellows 19 is not hindered, for example, by welding or the like.
【0035】この支持部材32もベローズ19に遠心力
が作用した場合、このベローズ19をこれに異常変形が
生じないように支持でき、上記実施例3の超電導回転電
機の回転子と同様な効果を得ることができる。この場
合、この支持部材32は上記実施例3の支持部材31に
比べ小型であり、その構造も簡単であるため、低コスト
であり、その取り付け作業も簡単なものとなる。なお、
支持部材32を側面輻射シールド12を介してトルクチ
ューブ3に支持させるだけでなく、この支持部材32を
トルクチューブ3に取り付けた他の支持部材により支持
させるようにしてもよい。When a centrifugal force acts on the bellows 19, the support member 32 can also support the bellows 19 so that abnormal deformation does not occur. Obtainable. In this case, the support member 32 is smaller than the support member 31 of the third embodiment and has a simple structure, so that the cost is low and the mounting operation is simple. In addition,
In addition to supporting the support member 32 on the torque tube 3 via the side surface radiation shield 12, the support member 32 may be supported by another support member attached to the torque tube 3.
【0036】[0036]
【発明の効果】この発明は、以上のように構成されてい
るので、以下に記載されるような効果を奏する。Since the present invention is configured as described above, it has the following effects.
【0037】この発明の第1の発明によれば、駆動側端
部軸と、この駆動側端部軸に対向して設けられた反駆動
側端部軸と、一方の一端側がこの反駆動側端部軸に、他
方の一端側が駆動側端部軸にそれぞれ固定されるととも
に、この反駆動側端部軸およびこの駆動側端部軸側から
の入熱を除去する冷却器を有した一対のトルクチューブ
と、この一対のトルクチューブ間に固定され、その内部
に冷媒の液溜め部を有するコイル取付軸と、このコイル
取付軸外面に巻回される超電導界磁コイルと、外部から
供給される冷媒を反駆動側端部軸内を通ってコイル取付
軸の液溜め部に供給する冷媒供給管と、コイル取付軸の
液溜め部内の冷媒をトルクチューブの前記冷却器を経由
した後、反駆動側端部軸内を通って外部に排出する冷媒
排出管と、この冷媒排出管中および冷媒供給管中にそれ
ぞれ取り付けられ、これらの管の軸方向伸縮量を調整す
る伸縮手段とを備え、駆動側端部軸への回転力の伝達に
より、この駆動側端部軸と反駆動側端部軸との中心軸を
結んだ回転中心軸を中心として回転される超電導回転電
機の回転子において、冷媒供給管および前記冷媒排出管
を曲げて、これらの管の一部を回転中心軸の位置または
その近傍の位置に配設し、この位置に冷媒供給管と冷媒
排出管との伸縮手段をそれぞれ配設したので、冷媒供給
管や冷媒排出管中に設けられた伸縮手段に作用する回転
中心軸からの偏位による遠心力は大幅に低減され、この
遠心力に起因した異常な変形等がこの伸縮手段に生じる
ことはない。According to the first aspect of the present invention, the driving-side end shaft, the non-driving-side end shaft provided opposite to the driving-side end shaft, and one end of the driving-side end shaft are connected to the non-driving-side end shaft. A pair of end shafts, each having the other end fixed to the driving end shaft, and having a cooler for removing heat input from the non-driving end shaft and the driving end shaft. A torque tube, a coil mounting shaft fixed between the pair of torque tubes and having a liquid reservoir for refrigerant therein, a superconducting field coil wound around the outer surface of the coil mounting shaft, and supplied from outside. A refrigerant supply pipe for supplying the refrigerant to the liquid reservoir of the coil mounting shaft through the inside of the end shaft on the anti-drive side, and the refrigerant in the liquid reservoir of the coil mounting shaft passes through the cooler of the torque tube, and then is driven in the opposite direction. A refrigerant discharge pipe that passes through the inside of the side end shaft and discharges to the outside; Attached to the discharge pipe and the refrigerant supply pipe, respectively, provided with expansion and contraction means for adjusting the amount of expansion and contraction of these pipes in the axial direction, and by transmitting the rotational force to the drive side end axis, this drive side end axis and In a rotor of a superconducting rotary electric machine that is rotated around a rotation center axis connecting a center axis with an anti-drive side end axis, a refrigerant supply pipe and the refrigerant discharge pipe are bent, and a part of these pipes is rotated. Since the expansion and contraction means of the refrigerant supply pipe and the refrigerant discharge pipe are respectively disposed at the position of the central axis or a position near the center axis, the expansion and contraction means provided in the refrigerant supply pipe and the refrigerant discharge pipe are provided. The centrifugal force due to the deviation from the rotating center axis that acts is greatly reduced, and abnormal deformation or the like due to the centrifugal force does not occur in the expansion / contraction means.
【0038】[0038]
【0039】[0039]
【図1】この発明の実施例1に係る超電導回転電機の回
転子内に配設される冷媒供給管および冷媒排出管のベロ
ーズ周りの側面図である。FIG. 1 is a side view around a bellows of a refrigerant supply pipe and a refrigerant discharge pipe disposed in a rotor of a superconducting rotary electric machine according to Embodiment 1 of the present invention.
【図2】この発明の実施例2に係る超電導回転電機の回
転子内に配設される冷媒供給管および冷媒排出管のベロ
ーズ周りの断面図である。FIG. 2 is a sectional view around a bellows of a refrigerant supply pipe and a refrigerant discharge pipe provided in a rotor of a superconducting rotary electric machine according to Embodiment 2 of the present invention.
【図3】この発明の実施例3に係る超電導回転電機の回
転子内に配設される冷媒供給管および冷媒排出管のベロ
ーズ周りの縦断面図である。FIG. 3 is a longitudinal sectional view of a refrigerant supply pipe and a refrigerant discharge pipe around a bellows disposed in a rotor of a superconducting rotary electric machine according to Embodiment 3 of the present invention.
【図4】図3のIVーIV線に沿った断面図である。FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3;
【図5】この発明の実施例4に係る超電導回転電機の回
転子内に配設される冷媒供給管および冷媒排出管のベロ
ーズ周りの縦断面図である。FIG. 5 is a longitudinal sectional view of a refrigerant supply pipe and a refrigerant discharge pipe disposed around a bellows disposed in a rotor of a superconducting rotary electric machine according to Embodiment 4 of the present invention.
【図6】図5のVIーVI線に沿った断面図である。FIG. 6 is a sectional view taken along the line VI-VI in FIG. 5;
【図7】従来の超電導回転電機の回転子の全体構成の概
要を示す断面図である。FIG. 7 is a cross-sectional view illustrating an outline of an entire configuration of a rotor of a conventional superconducting rotary electric machine.
【図8】従来の超電導回転電機の回転子の冷媒供給管と
冷媒排出管とのベローズ周りの側面図である。FIG. 8 is a side view around a bellows of a refrigerant supply pipe and a refrigerant discharge pipe of a rotor of a conventional superconducting rotary electric machine.
1 駆動側端部軸 2 反駆動側端部軸 3 トルクチューブ 3a 冷却器 4 コイル取付軸 6 超電導界磁コイル 17 冷媒供給管 18 冷媒排出管 18b 下流側冷媒排出管(冷媒排出管) 19 ベローズ(伸縮手段) 20 回転中心軸 30 冷媒管(多重管) 31 支持部材(支持手段) 32 支持部材(支持手段) DESCRIPTION OF SYMBOLS 1 Drive side end shaft 2 Non-drive side end shaft 3 Torque tube 3a Cooler 4 Coil mounting shaft 6 Superconducting field coil 17 Refrigerant supply pipe 18 Refrigerant discharge pipe 18b Downstream refrigerant discharge pipe (refrigerant discharge pipe) 19 Bellows ( Expansion / contraction means 20 rotation center axis 30 refrigerant pipe (multiple pipe) 31 support member (support means) 32 support member (support means)
Claims (1)
向して設けられた反駆動側端部軸と、一方の一端側がこ
の反駆動側端部軸に、他方の一端側が前記駆動側端部軸
にそれぞれ固定されるとともに、この反駆動側端部軸お
よびこの駆動側端部軸側からの入熱を除去する冷却器を
有した一対のトルクチューブと、この一対のトルクチュ
ーブ間に固定され、その内部に冷媒の液溜め部を有する
コイル取付軸と、このコイル取付軸外面に巻回される超
電導界磁コイルと、外部から供給される冷媒を前記反駆
動側端部軸内を通って前記コイル取付軸の前記液溜め部
に供給する冷媒供給管と、前記コイル取付軸の前記液溜
め部内の冷媒を前記トルクチューブの前記冷却器を経由
した後、前記反駆動側端部軸内を通って外部に排出する
冷媒排出管と、この冷媒排出管中および前記冷媒供給管
中にそれぞれ取り付けられ、これらの管の軸方向伸縮量
を調整する伸縮手段とを備え、前記駆動側端部軸への回
転力の伝達により、この駆動側端部軸と前記反駆動側端
部軸との中心軸を結んだ回転中心軸を中心として回転さ
れる超電導回転電機の回転子において、 前記冷媒供給管および前記冷媒排出管を曲げて、これら
の管の一部を前記回転中心軸の位置またはその近傍の位
置に配設し、この位置に前記冷媒供給管と前記冷媒排出
管との前記伸縮手段をそれぞれ配設したことを特徴とす
る超電導回転電機の回転子。1. A driving-side end shaft, a non-driving-side end shaft provided to face the driving-side end shaft, one end of the driving-side end shaft and the other end of the driving-side end shaft. A pair of torque tubes each fixed to the drive side end shaft and having a cooler for removing heat input from the non-drive side end shaft and the drive side end shaft; A coil mounting shaft fixed between the tubes and having a coolant reservoir therein; a superconducting field coil wound around the outer surface of the coil mounting shaft; A refrigerant supply pipe for supplying the liquid storage portion of the coil mounting shaft through the shaft, and a refrigerant in the liquid storage portion of the coil mounting shaft passing through the cooler of the torque tube, and then the counter drive side A refrigerant discharge pipe for discharging through the end shaft to the outside, Telescopic means attached to the refrigerant discharge pipe and the refrigerant supply pipe, respectively, for adjusting the amount of expansion and contraction of these pipes in the axial direction. In a rotor of a superconducting rotary electric machine that is rotated about a rotation center axis connecting a center axis of a unit shaft and the opposite end shaft, the refrigerant supply pipe and the refrigerant discharge pipe are bent, and these pipes are bent. Is disposed at or near the position of the rotation center axis, and the expansion and contraction means of the refrigerant supply pipe and the refrigerant discharge pipe are disposed at this position, respectively. Rotor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5064283A JP2838013B2 (en) | 1993-03-23 | 1993-03-23 | Superconducting rotating electric machine rotor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5064283A JP2838013B2 (en) | 1993-03-23 | 1993-03-23 | Superconducting rotating electric machine rotor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06276722A JPH06276722A (en) | 1994-09-30 |
JP2838013B2 true JP2838013B2 (en) | 1998-12-16 |
Family
ID=13253757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5064283A Expired - Fee Related JP2838013B2 (en) | 1993-03-23 | 1993-03-23 | Superconducting rotating electric machine rotor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2838013B2 (en) |
-
1993
- 1993-03-23 JP JP5064283A patent/JP2838013B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06276722A (en) | 1994-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8729751B2 (en) | Heat transfer assembly for electric motor rotor | |
US4740711A (en) | Pipeline built-in electric power generating set | |
US4117357A (en) | Flexible coupling for rotor elements of a superconducting generator | |
JP2838013B2 (en) | Superconducting rotating electric machine rotor | |
JP2796055B2 (en) | Superconducting rotating electric machine rotor | |
EP0043282B2 (en) | Superconductive rotor, and electric machine incorporating it | |
JPS585583B2 (en) | superconducting rotating machine | |
US4329602A (en) | Superconducting rotor | |
JP2667063B2 (en) | Superconducting rotating electric machine rotor | |
JP2818109B2 (en) | Superconducting rotating electric machine rotor | |
JPS6248473B2 (en) | ||
JP2672894B2 (en) | Superconducting rotating electric machine rotor | |
JP3300707B2 (en) | Superconducting rotating electric machine rotor | |
JPH01249993A (en) | Blower for high temperature gas | |
JPH0428204Y2 (en) | ||
JP2603002B2 (en) | Superconducting rotating electric machine rotor | |
JP3461952B2 (en) | Superconducting rotating electric machine rotor | |
EP2595283B1 (en) | Heat transfer assembly for electric motor rotor | |
JPH06327234A (en) | Rotor of superconducting rotary electric device | |
JP2785691B2 (en) | Spindle device of machine tool | |
JP3400597B2 (en) | Rotor of superconducting rotating electric machine and method of manufacturing the same | |
JP3205193B2 (en) | Cooling mechanism of electromagnetic coupling device | |
JP2779398B2 (en) | Rotor for superconducting rotating electric machine | |
JPS61196762A (en) | Rotor of superconductive rotary machine | |
JP2635228B2 (en) | Superconducting rotating electric machine rotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |