JP2818109B2 - Superconducting rotating electric machine rotor - Google Patents

Superconducting rotating electric machine rotor

Info

Publication number
JP2818109B2
JP2818109B2 JP6057538A JP5753894A JP2818109B2 JP 2818109 B2 JP2818109 B2 JP 2818109B2 JP 6057538 A JP6057538 A JP 6057538A JP 5753894 A JP5753894 A JP 5753894A JP 2818109 B2 JP2818109 B2 JP 2818109B2
Authority
JP
Japan
Prior art keywords
heat transfer
rotor
electric machine
mounting portion
rotary electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6057538A
Other languages
Japanese (ja)
Other versions
JPH07274483A (en
Inventor
幸一 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6057538A priority Critical patent/JP2818109B2/en
Publication of JPH07274483A publication Critical patent/JPH07274483A/en
Application granted granted Critical
Publication of JP2818109B2 publication Critical patent/JP2818109B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、超電導回転電機の回
転子に関するもので、さらに詳しくは、超電導界磁コイ
ルの冷媒である液体ヘリウムを保持するヘリウム液溜め
部の構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotor of a superconducting rotary electric machine, and more particularly to a structure of a helium reservoir for holding liquid helium as a refrigerant of a superconducting field coil.

【0002】[0002]

【従来の技術】図9、10は例えば実開昭59−103
587号のマイクロフィルムに示された従来の超電導回
転電機の回転子を示す断面図で、図9は軸方向断面図、
図10は図9におけるX−X線に沿う矢視断面図であ
る。図において、1は中空のトルクチューブであり、コ
イル取付部2とトルク伝達部3からなっている。コイル
取付部2の外周部にはスロット溝20が設けられ、超電
導界磁コイル4が収納され、その外周にはヘリウム外筒
7が嵌着されており、さらにその外側に低温ダンパ6が
嵌着されている。低温ダンパ6のさらに外周にトルクチ
ューブ1と同じ長さをもつ常温ダンパ5がトルクチュー
ブ1と同心状に配設され、トルク伝達部3および常温ダ
ンパ5の両端部は、駆動側端部軸9および反駆動側端部
軸10と結合されており、これら2つの端部軸は軸受1
1で軸支されている。反駆動側端部軸10にはスリップ
リング12が設けられ、超電導界磁コイル4に界磁電流
を供給するようになされている。コイル取付部2の両端
部にはヘリウム端板8が取付けられ、トルク伝達部3の
外周には熱交換器13が、また内側には側部輻射シール
ド14が配設されている。空間15は熱遮蔽のための真
空部、16はヘリウム液溜め部である。
2. Description of the Related Art FIGS.
FIG. 9 is a cross-sectional view showing a rotor of the conventional superconducting rotary electric machine shown in the microfilm of No. 587, FIG.
FIG. 10 is a sectional view taken along line XX in FIG. In the figure, reference numeral 1 denotes a hollow torque tube, which comprises a coil mounting part 2 and a torque transmitting part 3. A slot groove 20 is provided in the outer peripheral portion of the coil mounting portion 2, the superconducting field coil 4 is housed, a helium outer cylinder 7 is fitted on the outer periphery, and a low-temperature damper 6 is fitted on the outer side. Have been. A normal-temperature damper 5 having the same length as the torque tube 1 is disposed concentrically with the torque tube 1 on the outer periphery of the low-temperature damper 6, and both ends of the torque transmission unit 3 and the normal-temperature damper 5 are connected to a drive-side end shaft 9. And the other end shaft 10 is connected to the bearing 1.
It is supported at 1. A slip ring 12 is provided on the non-drive side end shaft 10 so as to supply a field current to the superconducting field coil 4. Helium end plates 8 are mounted on both ends of the coil mounting portion 2, a heat exchanger 13 is provided on the outer periphery of the torque transmitting portion 3, and a side radiation shield 14 is provided on the inner side. The space 15 is a vacuum section for heat shielding, and 16 is a helium liquid storage section.

【0003】以上のように構成される回転子において
は、コイル取付部2に配設されている超電導界磁コイル
4を極低温、例えば4.2Kに冷却することにより超電
導状態にして電流を流すことによって、超電導界磁コイ
ル4に磁界を発生させ、固定子(図示せず)に交流電力
を発生させる。超電導界磁コイル4を冷却して極低温に
保つために、冷媒である液体ヘリウムを反駆動側端部軸
10の中央部から導入管(図示せず)を通じ、ヘリウム
外筒7、ヘリウム端板8により形成される液体ヘリウム
収容部に供給する一方、回転子内部を真空部15で熱遮
蔽する。さらにコイル取付部2にトルクを伝えるトルク
伝達部3を薄肉円筒とし、かつ、熱交換器13を設ける
ことにより、トルク伝達部3を経て極低温部に流入する
熱量を制限している。また、軸方向側面からの熱輻射を
低減するため、側部輻射シールド14が設けられてい
る。常温ダンパ5は真空外筒として、低温ダンパ6はヘ
リウム収容部への輻射シールドとしてそれぞれ機能して
いる。またこれらは、固定子からの高調波磁界をシール
ドして超電導界磁コイル4を保護するとともに、電力系
統の擾乱による回転子の振動を抑制するように機能す
る。ヘリウム液溜め部16に設けた伝熱円板17は、コ
イル取付部2とは異なり、銅、銅合金、アルミニウム、
アルミニウム合金あるいはチタンのような熱伝導率の大
きな材料からなり、中空孔17aを有するもので、コイ
ル取付部2の中空部内壁に回転子軸線方向と直交するよ
うに取付られている。
In the rotor configured as described above, the superconducting field coil 4 disposed in the coil mounting portion 2 is cooled to a very low temperature, for example, 4.2 K, so that a superconducting state is established and a current flows. As a result, a magnetic field is generated in the superconducting field coil 4, and an AC power is generated in a stator (not shown). In order to cool the superconducting field coil 4 and keep it at a very low temperature, liquid helium, which is a refrigerant, is introduced from the central part of the non-drive end shaft 10 through an introduction pipe (not shown), and a helium outer cylinder 7 and a helium end plate. The inside of the rotor is thermally shielded by a vacuum unit 15 while being supplied to the liquid helium storage unit formed by 8. Further, the amount of heat flowing into the cryogenic portion via the torque transmitting portion 3 is limited by forming the torque transmitting portion 3 for transmitting the torque to the coil mounting portion 2 into a thin cylindrical shape and providing the heat exchanger 13. Further, a side radiation shield 14 is provided to reduce heat radiation from the axial side surface. The normal temperature damper 5 functions as a vacuum outer cylinder, and the low temperature damper 6 functions as a radiation shield to the helium storage unit. Further, they function to shield the harmonic magnetic field from the stator to protect the superconducting field coil 4 and to suppress the vibration of the rotor due to the disturbance of the power system. The heat transfer disk 17 provided in the helium reservoir 16 is different from the coil mounting portion 2 in that copper, copper alloy, aluminum,
It is made of a material having high thermal conductivity such as aluminum alloy or titanium and has a hollow hole 17a, and is mounted on the inner wall of the hollow portion of the coil mounting portion 2 so as to be orthogonal to the axial direction of the rotor.

【0004】図11および図12は他の従来例であり、
図の関係は図9および図10と同様である。18は伝熱
矩形板で、先に説明した従来例と同様に熱伝導率の大き
な材料からなり、放射状にヘリウム液溜め部16の内壁
に、回転子軸線と平行に取り付けられている。なお、図
9と同様に図11においても、回転子内部のヘリウム導
入、排出系を構成する配管類および回転子に接続されて
いるヘリウム導入、排出装置は図示を省略している。
FIGS. 11 and 12 show another conventional example.
The relationship between the figures is the same as in FIGS. 9 and 10. Reference numeral 18 denotes a heat transfer rectangular plate, which is made of a material having a high thermal conductivity as in the conventional example described above, and is radially attached to the inner wall of the helium liquid reservoir 16 in parallel with the rotor axis. Note that, similarly to FIG. 9, in FIG. 11, the helium introduction / discharge device connected to the piping and the helium introduction / discharge system inside the rotor is omitted.

【0005】以上のように構成された従来の回転子にお
いては、超電導界磁コイル4には一般にニオブ・チタン
合金の超電導線材が使用される。ニオブ・チタン合金を
用いた超電導界磁コイル4の臨界電流は温度の上昇とと
もに減少し、4.2Kから温度が1K上昇すると臨界電
流は約4割減少する。超電導界磁コイル4の臨界電流の
減少を防ぎ、常電導状態の発生を防ぐには超電導界磁コ
イル4付近の液体ヘリウムの温度上昇を避ける必要があ
る。ところが、液体ヘリウムは熱伝導率が小さいため回
転子の回転に伴う遠心力による断熱圧縮により、回転中
心から離れるほど温度が上昇する。
In the conventional rotor configured as described above, the superconducting field coil 4 generally uses a superconducting wire of a niobium-titanium alloy. The critical current of the superconducting field coil 4 using a niobium-titanium alloy decreases with an increase in temperature. When the temperature rises from 4.2K by 1K, the critical current decreases by about 40%. In order to prevent the critical current of the superconducting field coil 4 from decreasing and to prevent the occurrence of the normal conducting state, it is necessary to avoid the temperature rise of the liquid helium near the superconducting field coil 4. However, since liquid helium has a low thermal conductivity, the temperature increases as the distance from the center of rotation increases due to adiabatic compression due to centrifugal force accompanying rotation of the rotor.

【0006】断熱圧縮によって温度が上昇した外側の液
体ヘリウムは、伝熱円板17あるいは伝熱矩形板18の
伝熱によって内側の液体ヘリウムと熱交換される。図9
の場合、伝熱円板17の内側液体ヘリウムに対する外側
液体ヘリウムの温度上昇ΔTは、 ΔT=(Q/2πλ)・log(Do/Di)/(n・t) ここで、Q=伝熱円板の伝熱量 λ=伝熱円板の熱伝導率 Do=伝熱円板の外径 Di=伝熱円板の内径 n=伝熱円板の個数 t=伝熱円板の厚さ で表わされる。伝熱円板17の材質や個数、さらにはそ
の厚さを適切に選択すれば、内側液体ヘリウムに対する
外側液体ヘリウムの温度上昇を許容範囲内にすることが
できる。伝熱矩形板18を用いる場合も同様である。こ
のように、伝熱円板17、伝熱矩形板18は液体ヘリウ
ムの温度分布を均一にする伝熱部材として機能してい
る。
The outer liquid helium whose temperature has increased due to the adiabatic compression exchanges heat with the inner liquid helium by the heat transfer of the heat transfer disk 17 or the heat transfer rectangular plate 18. FIG.
In this case, the temperature rise ΔT of the outer liquid helium with respect to the inner liquid helium of the heat transfer disk 17 is ΔT = (Q / 2πλ) · log (Do / Di) / (nt) where Q = heat transfer circle Heat transfer amount of plate λ = Thermal conductivity of heat transfer disk Do = Outer diameter of heat transfer disk Di = Inner diameter of heat transfer disk n = Number of heat transfer disks t = Thickness of heat transfer disk It is. By appropriately selecting the material and number of the heat transfer disks 17 and the thickness thereof, the temperature rise of the outer liquid helium with respect to the inner liquid helium can be made within an allowable range. The same applies to the case where the heat transfer rectangular plate 18 is used. Thus, the heat transfer disk 17 and the heat transfer rectangular plate 18 function as heat transfer members for making the temperature distribution of liquid helium uniform.

【0007】[0007]

【発明が解決しようとする課題】従来の超電導回転電機
の回転子は、コイル取付部と伝熱部材の材質が異なるた
め、各々の熱膨張係数も異なる。そのため、液体ヘリウ
ムでの冷却による熱収縮量に差を生じ、コイル取付部と
伝熱部材の結合部に応力が発生し、最悪の場合はコイル
取付部と伝熱部材との結合部が破壊されるという問題点
があった。また、円板状の伝熱部材を用いた場合、ヘリ
ウム液溜め部内の液体ヘリウムを軸方向に均一に分布さ
せることが困難で、偏りが生じ、均一な冷却が出来ない
という問題点があった。また、伝熱部材のコイル取付部
への取付を溶接により行う場合、コイル取付部中空部は
狭く長いため、溶接作業も困難であった。さらに、伝熱
部材とコイル取付部とが異種材料であるため、溶接が困
難でしかも溶接欠陥が発生しやすく、伝熱部材とコイル
取付部との結合部の信頼性が低いという問題点があっ
た。
The rotor of the conventional superconducting rotary electric machine has different thermal expansion coefficients because the materials of the coil mounting portion and the heat transfer member are different. As a result, a difference occurs in the amount of heat shrinkage due to cooling with liquid helium, and stress is generated at the joint between the coil attachment portion and the heat transfer member. In the worst case, the joint between the coil attachment portion and the heat transfer member is broken. There was a problem that. In addition, when a disc-shaped heat transfer member is used, it is difficult to uniformly distribute the liquid helium in the helium liquid reservoir in the axial direction, and there is a problem in that a bias occurs and uniform cooling cannot be performed. . In addition, when the heat transfer member is mounted on the coil mounting portion by welding, the welding operation is difficult because the hollow portion of the coil mounting portion is narrow and long. Further, since the heat transfer member and the coil mounting portion are made of different materials, welding is difficult and welding defects are easily generated, and the reliability of the joint between the heat transfer member and the coil mounting portion is low. Was.

【0008】この発明は上記のような課題を解決するた
めになされたものであり、コイル取付部と伝熱部材との
結合部に発生する応力を低減し、コイル取付部と伝熱部
材との結合部の破壊が起こらない信頼性の高い超電導回
転電機の回転子を得ることを目的とする。また、円板状
の伝熱部材を用いた場合でも、液体ヘリウムを軸方向に
均一に分布させ冷却特性の良い信頼性の高い超電導回転
電機の回転子を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and reduces the stress generated at the joint between the coil attachment portion and the heat transfer member, thereby reducing the stress between the coil attachment portion and the heat transfer member. An object of the present invention is to obtain a highly reliable rotor of a superconducting rotating electric machine in which a joint is not broken. It is another object of the present invention to obtain a highly reliable rotor of a superconducting rotary electric machine having good cooling characteristics by uniformly distributing liquid helium even when a disk-shaped heat transfer member is used.

【0009】[0009]

【課題を解決するための手段】この発明に係る超電導回
転電機の回転子は、コイル取付部と伝熱部材との結合部
に発生する熱応力を低減するため、伝熱部材を分割構造
としたものである。また、この発明に係る超電導回転電
機の回転子は、コイル取付部と伝熱部材との結合部に発
生する熱応力を低減するため、伝熱部材をコイル取付部
と同じ熱膨張係数を有する材質としたものである。ま
た、この発明に係る超電導回転電機の回転子は、液体ヘ
リウムを軸方向に均一に分布させ冷却温度のバラツキを
なくするため、円板状の伝熱部材のコイル取付部中空部
周壁と接する部分の一部に切欠を設け伝熱部材で仕切ら
れる液体ヘリウムの液溜め部を互いに連通するようにし
たものである。さらにまた、この発明に係る超電導回転
電機の回転子は、コイル取付部に穿孔した取付孔に伝熱
部材を締結手段によって固定したものである。
In the rotor of the superconducting rotary electric machine according to the present invention, the heat transfer member has a divided structure in order to reduce the thermal stress generated at the joint between the coil mounting portion and the heat transfer member. Things. In addition, the rotor of the superconducting rotary electric machine according to the present invention is configured such that the heat transfer member is made of a material having the same coefficient of thermal expansion as that of the coil attachment portion in order to reduce thermal stress generated in a joint portion between the coil attachment portion and the heat transfer member. It is what it was. Further, the rotor of the superconducting rotary electric machine according to the present invention has a portion in contact with the coil mounting portion hollow portion peripheral wall of the disc-shaped heat transfer member in order to uniformly distribute the liquid helium in the axial direction and eliminate variations in cooling temperature. A notch is provided in a part of the liquid helium so that the liquid helium reservoirs separated by the heat transfer member communicate with each other. Still further, in the rotor of the superconducting rotary electric machine according to the present invention, the heat transfer member is fixed to the mounting hole formed in the coil mounting portion by fastening means.

【0010】[0010]

【作用】この発明における超電導回転電機の回転子は、
伝熱部材を分割することにより、伝熱部材とコイル取付
部との収縮量の差の絶対量を少なくし、結合部に発生す
る熱応力が低減する。また、この発明における超電導回
転電機の回転子は、伝熱部材をコイル取付部と同じ熱膨
張係数を有する材質にすることにより、伝熱部材と、コ
イル取付部との収縮量の差をなくしたため、伝熱部材と
コイル取付部との結合部に応力が発生することがない。
また、この発明における超電導回転電機の回転子は、円
板状の伝熱部材のコイル取付部中空部周壁と接する部分
の一部を切り欠くことにより、液体ヘリウムがコイル取
付部の軸方向に移動することが可能になり、液体ヘリウ
ムの偏りが防止され、コイル取付部の冷却温度のバラツ
キがなくなる。さらにまた、この発明における超電導回
転電機の回転子は、コイル取付部に穿孔した取付孔に伝
熱部材を締結手段によって固定したので、伝熱部材とコ
イル取付部との結合部の信頼性が高められる。
According to the present invention, the rotor of the superconducting rotating electric machine is:
By dividing the heat transfer member, the absolute amount of the difference in the amount of contraction between the heat transfer member and the coil mounting portion is reduced, and the thermal stress generated at the joint is reduced. In addition, the rotor of the superconducting rotary electric machine according to the present invention has a heat transfer member made of a material having the same coefficient of thermal expansion as the coil attachment portion, thereby eliminating the difference in the amount of contraction between the heat transfer member and the coil attachment portion. Also, no stress is generated at the joint between the heat transfer member and the coil mounting portion.
Further, in the rotor of the superconducting rotary electric machine according to the present invention, liquid helium moves in the axial direction of the coil mounting portion by cutting out a part of the disk-shaped heat transfer member which is in contact with the peripheral wall of the hollow portion of the coil mounting portion. And the bias of liquid helium is prevented, and the cooling temperature of the coil mounting portion does not vary. Furthermore, in the rotor of the superconducting rotary electric machine according to the present invention, since the heat transfer member is fixed to the mounting hole perforated in the coil mounting portion by the fastening means, the reliability of the coupling portion between the heat transfer member and the coil mounting portion is improved. Can be

【0011】[0011]

【実施例】実施例1. この発明の第1の実施例を図によって説明する。図1お
よび図2はこの発明の第1の実施例を説明するためのも
ので、図1は軸方向断面図、図2は図1におけるX−X
線に沿う矢視断面図である。図中の符号のうち、図9な
いし図12と同一のものは同一あるいは相当するもので
あり、説明を省略する。また、冷媒である液体ヘリウム
の供給や、磁界を発生させ交流電力を発生させる機能に
ついては従来例と同一であるため、以下説明を省略す
る。図においてヘリウム液溜め部16にはコイル取付部
2の中空部周壁に伝熱円板100がコイル取付部2の軸
線方向と直角に取付けられている。そして、伝熱部材で
ある伝熱円板100は複数個に周方向に分割されてい
る。伝熱円板100には中空孔100aとコイル取付部
2の中空部周壁に接する部分の一部に切欠部100bを
有している。
[Embodiment 1] A first embodiment of the present invention will be described with reference to the drawings. 1 and 2 are views for explaining a first embodiment of the present invention. FIG. 1 is an axial sectional view, and FIG.
It is arrow sectional drawing along a line. Among the reference numerals in the drawings, those which are the same as those in FIGS. 9 to 12 are the same or corresponding, and the description thereof will be omitted. Further, the functions of supplying liquid helium as a refrigerant and generating an AC power by generating a magnetic field are the same as those of the conventional example, and thus description thereof will be omitted. In the figure, a heat transfer disc 100 is attached to the helium reservoir 16 on the peripheral wall of the hollow portion of the coil mounting portion 2 at right angles to the axial direction of the coil mounting portion 2. The heat transfer disk 100, which is a heat transfer member, is divided into a plurality of pieces in the circumferential direction. The heat transfer disc 100 has a hollow 100a and a cutout 100b in a part of the coil mounting portion 2 that is in contact with the peripheral wall of the hollow.

【0012】液体ヘリウムは、伝熱円板100に設けら
れた切欠部100bを通りコイル取付部2の軸方向に移
動することができる。このため、コイル取付部2の軸方
向において液体ヘリウムが偏ることはなく、コイル取付
部2を均一に冷却することが出来る。また、伝熱円板1
00は分割構造のため、伝熱円板100とコイル取付部
2との結合部に発生する応力は、従来の超電導回転電機
の回転子に比較し低く、伝熱円板100とコイル取付部
2との結合部の信頼性の高い超電導回転電機の回転子を
得ることが出来る。伝熱円板100は周方向に2つ以上
の適当な任意の数に分割することが可能である。
The liquid helium can move in the axial direction of the coil mounting portion 2 through the notch 100b provided in the heat transfer disk 100. For this reason, the liquid helium is not biased in the axial direction of the coil mounting portion 2, and the coil mounting portion 2 can be cooled uniformly. Heat transfer disk 1
00 is a divided structure, the stress generated at the joint between the heat transfer disk 100 and the coil mounting portion 2 is lower than that of the rotor of the conventional superconducting rotating electric machine, and the heat transfer disk 100 and the coil mounting portion 2 A highly reliable rotor of the superconducting rotating electric machine having a joint portion with the rotor can be obtained. The heat transfer disk 100 can be divided into two or more arbitrary arbitrary numbers in the circumferential direction.

【0013】実施例2. この発明の第2の実施例を図に基づいて説明する。図3
および図4はこの発明の第2の実施例を説明するための
もので、図の関係は図1および図2と同様である。図に
おいて、ヘリウム液溜め部16にはコイル取付部2の中
空部周壁に回転子軸線方向に伝熱矩形板200が取付け
られている。そして、伝熱部材である伝熱矩形板200
は軸線方向に複数個に分割されている。その軸方向の長
さは冷却に伴う収縮量に差が均一になるよう、コイル取
付部2の全長を等分したものがよい。
Embodiment 2 FIG. A second embodiment of the present invention will be described with reference to the drawings. FIG.
FIG. 4 and FIG. 4 are for explaining the second embodiment of the present invention, and the relation of the drawings is the same as that of FIG. 1 and FIG. In the figure, a heat transfer rectangular plate 200 is attached to the helium reservoir 16 on the peripheral wall of the hollow portion of the coil attachment portion 2 in the axial direction of the rotor. Then, a heat transfer rectangular plate 200 as a heat transfer member
Is divided into a plurality in the axial direction. The length in the axial direction is preferably obtained by equally dividing the entire length of the coil mounting portion 2 so that the difference in the amount of shrinkage due to cooling becomes uniform.

【0014】液体ヘリウムによって冷却された伝熱矩形
板18とコイル取付部2とは熱膨張係数が異なるため収
縮量に差を生じる。この収縮量の差は、伝熱矩形板20
0とコイル取付部2との結合部長さに比例する。伝熱矩
形板200は、コイル取付部2の軸方向で複数個に分割
されているため、コイル取付部2との収縮量の差は従来
の超電導回転電機の回転子に比較し、数分の1となる。
伝熱矩形板200とコイル取付部2との収縮量の差は伝
熱矩形板200とコイル取付部2との結合部に発生する
応力に比例するため、伝熱矩形板200とコイル取付部
2との締結部に発生する応力は、従来の超電導回転電機
の回転子に比較し、数分の1となり伝熱矩形板200と
コイル取付部2との結合部に発生する熱応力が低減す
る。伝熱矩形板200の分割数を適切に選べば伝熱矩形
板200とコイル取付部2との結合部が破壊される恐れ
はなくなり、信頼性の高い超電導回転電機の回転子を得
ることが出来る。
The heat transfer rectangular plate 18 cooled by liquid helium and the coil mounting portion 2 have different coefficients of thermal expansion, so that a difference occurs in the amount of contraction. This difference in the amount of shrinkage is caused by the heat transfer rectangular plate 20.
0 is proportional to the length of the coupling portion between the coil mounting portion 2 and 0. Since the heat transfer rectangular plate 200 is divided into a plurality of parts in the axial direction of the coil mounting part 2, the difference in the amount of shrinkage from the coil mounting part 2 is several minutes smaller than that of a conventional superconducting rotary electric machine. It becomes 1.
The difference in the amount of shrinkage between the heat transfer rectangular plate 200 and the coil mounting portion 2 is proportional to the stress generated at the joint between the heat transfer rectangular plate 200 and the coil mounting portion 2. The stress generated in the fastening portion between the heat transfer rectangular plate 200 and the coil mounting portion 2 is reduced to a fraction of that in the conventional superconducting rotary electric machine. By appropriately selecting the number of divisions of the heat transfer rectangular plate 200, there is no possibility that the joint between the heat transfer rectangular plate 200 and the coil mounting portion 2 will be broken, and a highly reliable rotor of the superconducting rotary electric machine can be obtained. .

【0015】実施例3. この発明の第3の実施例を説明する。この第3の実施例
では、先に説明した第1に実施例における伝熱円板10
0を、コイル取付部2と同じ熱膨張係数の材質としてあ
る。第2の実施例における伝熱矩形板200も同様であ
る。
Embodiment 3 FIG. A third embodiment of the present invention will be described. In the third embodiment, the heat transfer disk 10 according to the first embodiment described above is used.
0 is a material having the same thermal expansion coefficient as that of the coil mounting portion 2. The same applies to the heat transfer rectangular plate 200 in the second embodiment.

【0016】液体ヘリウムによって冷却された伝熱円板
100あるいは伝熱矩形板200とコイル取付部2とは
熱膨張係数が同一のため、収縮量の差を生じることはな
く、伝熱円板100あるいは伝熱矩形板200とコイル
取付部2との結合部に熱応力が発生しないため、結合部
が破壊されることはない。このため、信頼性の高い超電
導回転電機の回転子を得ることが出来る。
Since the heat transfer disk 100 or the rectangular heat transfer plate 200 cooled by liquid helium and the coil mounting portion 2 have the same coefficient of thermal expansion, there is no difference in the amount of contraction. Alternatively, since no thermal stress is generated at the joint between the heat transfer rectangular plate 200 and the coil mounting portion 2, the joint is not broken. Therefore, a highly reliable rotor of the superconducting rotating electric machine can be obtained.

【0017】実施例4. この発明の第4の実施例を図に基づき説明する。図5お
よび図6はこの発明の第4の実施例を説明するためのも
ので、図の関係は図1および図2と同様である。図にお
いてヘリウム液溜め部16に設けられた伝熱円板100
は、コイル取付部2に設けられている超電導界磁コイル
4を挿入するためのスロット溝20の底に設けられた取
付孔101からボルト102で締結されている。
Embodiment 4 FIG. A fourth embodiment of the present invention will be described with reference to the drawings. FIGS. 5 and 6 are for explaining the fourth embodiment of the present invention, and the relation of the drawings is the same as that of FIGS. 1 and 2. FIG. In the figure, a heat transfer disk 100 provided in a helium reservoir 16 is provided.
Are fastened by bolts 102 from mounting holes 101 provided at the bottom of a slot groove 20 for inserting the superconducting field coil 4 provided in the coil mounting portion 2.

【0018】この発明のように構成された回転子におい
ては、コイル取付部2と伝熱円板100との締結は、ボ
ルト102により行われるため、コイル取付部2と伝熱
円板100が異種材質でも結合部に欠陥が生じることは
なく、コイル取付部2と伝熱円板100との結合作業も
容易で、コイル取付部2と伝熱円板100との結合部の
信頼性の高い超電導回転電機の回転子を得ることが出来
る。尚、以上の説明では、伝熱円板100をスロット溝
20の底に取付孔101を設けたものとしたが、コイル
取付部のスロット溝底以外から伝熱円板100をボルト
により締結しても同じ効果を得られる。もちろん、取付
孔101は中空部の内径側から所定深さ設けてもよい。
さらに、図3および図4に示すような伝熱矩形板200
をコイル取付部に同様の手段で固定してもかまわない。
In the rotor constructed as in the present invention, since the coil mounting portion 2 and the heat transfer disk 100 are fastened by the bolts 102, the coil mounting portion 2 and the heat transfer disk 100 are of different types. Even if the material is used, a defect does not occur in the joint portion, the joining operation between the coil attaching portion 2 and the heat transfer disk 100 is easy, and the highly reliable superconducting portion of the joint portion between the coil attaching portion 2 and the heat transfer disk 100 is provided. A rotor for a rotating electric machine can be obtained. In the above description, the heat transfer disk 100 is provided with the mounting hole 101 at the bottom of the slot groove 20. However, the heat transfer disk 100 is fastened by bolts from a position other than the slot groove bottom of the coil mounting portion. Has the same effect. Of course, the mounting hole 101 may be provided at a predetermined depth from the inner diameter side of the hollow portion.
Further, a heat transfer rectangular plate 200 as shown in FIGS.
May be fixed to the coil mounting portion by similar means.

【0019】実施例5. この発明の第5の実施例を図によって説明する。図7お
よび図8はこの発明の第5の実施例を説明するためのも
ので、図の関係は図1および図2と同様である。図にお
ける伝熱円板100は先に説明した図1および図2と同
様に設けられている。そして伝熱矩形板200は先に説
明した図3および図4と同様に設けられている。
Embodiment 5 FIG. A fifth embodiment of the present invention will be described with reference to the drawings. FIGS. 7 and 8 are for explaining the fifth embodiment of the present invention, and the relation of the figures is the same as that of FIGS. The heat transfer disk 100 in the figure is provided in the same manner as in FIGS. 1 and 2 described above. The heat transfer rectangular plate 200 is provided in the same manner as in FIGS. 3 and 4 described above.

【0020】液体ヘリウムは、伝熱円板100に設けら
れた切欠部100bを通りコイル取付部2の軸方向に移
動することができる。そのため、コイル取付部2の軸方
向において液体ヘリウムが偏ることはなく、コイル取付
部2を均一に冷却することが出来る。また、ヘリウム液
溜め部を伝熱円板100、伝熱矩形板200により細分
化出来るため、回転子の低速回転時における液体ヘリウ
ムの撹拌を抑えることができ、液体ヘリウムの消費量を
抑える効果がある。また、伝熱円板100、伝熱矩形板
200は分割構造のため、コイル取付部2との結合部に
発生する応力は、従来の超電導回転電機の回転子に比較
し低く、結合部が破壊されることはなく、信頼性の高い
超電導回転電機の回転子を得ることが出来る。
The liquid helium can move in the axial direction of the coil mounting portion 2 through the notch 100b provided in the heat transfer disk 100. Therefore, the liquid helium is not biased in the axial direction of the coil mounting portion 2, and the coil mounting portion 2 can be cooled uniformly. Further, since the helium reservoir can be subdivided by the heat transfer disk 100 and the heat transfer rectangular plate 200, the stirring of the liquid helium during the low-speed rotation of the rotor can be suppressed, and the effect of suppressing the consumption of the liquid helium can be reduced. is there. Further, since the heat transfer disk 100 and the heat transfer rectangular plate 200 have a divided structure, the stress generated at the joint with the coil mounting portion 2 is lower than that of the rotor of the conventional superconducting rotating electric machine, and the joint is broken. Therefore, a highly reliable rotor of the superconducting rotating electric machine can be obtained.

【0021】[0021]

【発明の効果】以上のように、請求項1ないし請求項3
のいずれかの発明による超電導回転電機の回転子は、伝
熱部材を周方向あるいは軸方向に分割したので、伝熱部
材とコイル取付部との収縮量の差の絶対量が減少し、結
合部の応力が低減され、コイル取付部と伝熱部材との結
合部が破壊されることがない。
As described above, claims 1 to 3 are as described above.
In the rotor of the superconducting rotary electric machine according to any one of the inventions, the heat transfer member is divided in the circumferential direction or the axial direction, so that the absolute amount of the difference in the amount of contraction between the heat transfer member and the coil mounting portion is reduced, Is reduced, and the joint between the coil mounting portion and the heat transfer member is not broken.

【0022】また、請求項3の発明による超電導回転電
機の回転子は、ヘリウム液溜め内部の軸方向複数箇所に
周壁に結合され、その周方向に分割された有孔円板の伝
熱部材と、回転子の半径方向に幅を有して周壁に結合さ
れているとともに回転子軸線と平行に配設され、かつ回
転子軸線方向にヘリウム液溜め部の長さを複数個にほぼ
等分する単位長さに分割された複数の矩形の伝熱部材と
を備えたので、ヘリウム液溜め部を細分化出来る、回転
子の低速回転時における液体ヘリウムの撹拌を抑えるこ
とができ、液体ヘリウムの消費量を抑えられる。
The rotor of the superconducting rotary electric machine according to the third aspect of the present invention is characterized in that the rotor of the superconducting rotary electric machine is connected to the peripheral wall at a plurality of locations in the axial direction inside the helium reservoir, Is connected to the peripheral wall with a width in the radial direction of the rotor, is disposed parallel to the rotor axis, and substantially equally divides the length of the helium reservoir into a plurality in the rotor axis direction. With a plurality of rectangular heat transfer members divided into unit lengths, the helium liquid reservoir can be subdivided, liquid helium agitation during low-speed rotation of the rotor can be suppressed, and liquid helium consumption can be reduced. The amount can be reduced.

【0023】また、請求項4の発明による超電導回転電
機の回転子は、伝熱部材をコイル取付部と同じ熱膨張率
の材質としたので、伝熱部材とコイル取付部との熱収縮
量の差がなくなり熱収縮による応力の発生が防止され、
コイル取付部と伝熱部材との結合部の破壊が生じること
はない。
Further, in the rotor of the superconducting rotary electric machine according to the fourth aspect of the present invention, since the heat transfer member is made of a material having the same coefficient of thermal expansion as that of the coil attachment portion, the amount of heat shrinkage between the heat transfer member and the coil attachment portion is reduced. The difference is eliminated and the occurrence of stress due to heat shrinkage is prevented,
The joint between the coil mounting portion and the heat transfer member is not broken.

【0024】また、請求項5の発明による超電導回転電
機の回転子は、コイル取付部の軸線方向と直角に取付け
られる伝熱部材を、周方向に複数に分割し、かつコイル
取付部の中空部周壁に接する部分切欠部を設けたので、
液体ヘリウムがコイル取付部の軸方向に移動し、液体ヘ
リウムが偏ることがなく、コイル取付部が均一に冷却さ
れる。
According to a fifth aspect of the present invention, there is provided a rotor for a superconducting rotary electric machine, wherein a heat transfer member mounted at right angles to an axial direction of a coil mounting portion is divided into a plurality of portions in a circumferential direction, and a hollow portion of the coil mounting portion is provided. Since a partial notch is provided in contact with the peripheral wall,
The liquid helium moves in the axial direction of the coil mounting portion, so that the liquid helium is not biased and the coil mounting portion is uniformly cooled.

【0025】さらにまた、請求項6の発明による超電導
回転電機の回転子は、コイル取付部に穿孔した取付孔に
伝熱部材を締結手段によって固定したので、伝熱部材と
コイル取付部の材質が異なっても結合部の破壊が生じな
い。
Further, in the rotor of the superconducting rotary electric machine according to the present invention, since the heat transfer member is fixed to the mounting hole formed in the coil mounting portion by the fastening means, the material of the heat transfer member and the coil mounting portion is not limited. Even if they are different, the joint is not broken.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の第1の実施例による、超電導回転
電機の回転子の軸方向断面図である。
FIG. 1 is an axial sectional view of a rotor of a superconducting rotary electric machine according to a first embodiment of the present invention.

【図2】 この発明の第1の実施例を示す図1のX−X
線に沿う矢視断面図である。
FIG. 2 shows a first embodiment of the present invention.
It is arrow sectional drawing along a line.

【図3】 この発明の第2の実施例による、超電導回転
電機の回転子の軸方向断面図である。
FIG. 3 is an axial sectional view of a rotor of a superconducting rotary electric machine according to a second embodiment of the present invention.

【図4】 この発明の第2の実施例を示す図3のX−X
線に沿う矢視断面図である。
FIG. 4 shows a second embodiment of the present invention.
It is arrow sectional drawing along a line.

【図5】 この発明の第4の実施例による、超電導回転
電機の回転子の軸方向断面図である。
FIG. 5 is an axial sectional view of a rotor of a superconducting rotary electric machine according to a fourth embodiment of the present invention.

【図6】 この発明の第4の実施例を示す図5のX−X
線に沿う矢視断面図である。
FIG. 6 shows a fourth embodiment of the present invention.
It is arrow sectional drawing along a line.

【図7】 この発明の第5の実施例による、超電導回転
電機の回転子の軸方向断面図である。
FIG. 7 is an axial sectional view of a rotor of a superconducting rotary electric machine according to a fifth embodiment of the present invention.

【図8】 この発明の第5の実施例を示す図7のX−X
線に沿う矢視断面図である。
FIG. 8 is a sectional view taken along line XX of FIG. 7 showing a fifth embodiment of the present invention;
It is arrow sectional drawing along a line.

【図9】 従来の超電導回転電機の回転子の軸方向断面
図である。
FIG. 9 is an axial sectional view of a rotor of a conventional superconducting rotary electric machine.

【図10】 図9のX−X線に沿う矢視断面図である。FIG. 10 is a sectional view taken along the line XX of FIG. 9;

【図11】 従来の超電導回転電機の回転子の軸方向断
面図である。
FIG. 11 is an axial sectional view of a rotor of a conventional superconducting rotary electric machine.

【図12】 図11のX−X線に沿う矢視断面図であ
る。
12 is a sectional view taken along the line XX in FIG. 11;

【符号の説明】[Explanation of symbols]

2 コイル取付部、4 超電導界磁コイル、16 ヘリ
ウム液溜め部、17伝熱円板、18 伝熱矩形板、20
スロット溝、100 伝熱円板、100a中空孔、1
00b 切欠部、101 取付孔、102 ボルト、2
00 伝熱矩形板。
2 Coil mounting part, 4 superconducting field coil, 16 helium reservoir, 17 heat transfer disk, 18 heat transfer rectangular plate, 20
Slot groove, 100 heat transfer disk, 100a hollow hole, 1
00b notch, 101 mounting hole, 102 bolt, 2
00 Heat transfer rectangular plate.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 中空円筒状であって、その外周部には超
電導界磁コイルを支持し、中空部にはヘリウム液溜め部
が形成され、該ヘリウム液溜め内部の軸方向複数箇所
に、周壁に結合された有孔円板の伝熱部材を備えたコイ
ル取付部を有する超電導回転電機の回転子において、前
記伝熱部材が周方向に分割されていることを特徴とする
超電導回転電機の回転子。
1. A hollow cylindrical member having a superconducting field coil supported on an outer peripheral portion thereof, a helium reservoir formed in a hollow portion, and a peripheral wall formed at a plurality of axial positions inside the helium reservoir. In a rotor of a superconducting rotary electric machine having a coil mounting portion provided with a heat transfer member of a perforated disk coupled to a rotating member of the superconducting rotary electric machine, the heat transfer member is divided in a circumferential direction. Child.
【請求項2】 中空円筒状であって、その外周部には超
電導界磁コイルを支持し、中空部にはヘリウム液溜め部
が形成され、該ヘリウム液溜め内部にその軸方向に回転
子の半径方向に幅を有し周壁に結合され回転子軸線と平
行に配設された複数の矩形の伝熱部材を備えたコイル取
付部を有する超電導回転電機の回転子において、前記伝
熱部材が回転子軸線方向に前記ヘリウム液溜め部の長さ
を複数個にほぼ等分する単位長さに分割されていること
を特徴とする超電導回転電機の回転子。
2. A hollow cylindrical shape having a superconducting field coil supported on an outer peripheral portion thereof, a helium liquid reservoir formed in the hollow portion, and a helium liquid reservoir formed inside the helium liquid reservoir in an axial direction thereof. In a rotor of a superconducting rotary electric machine having a coil mounting portion having a plurality of rectangular heat transfer members having a width in a radial direction and being connected to a peripheral wall and disposed in parallel with a rotor axis, the heat transfer member rotates. A rotor for a superconducting rotary electric machine, wherein the rotor is divided into unit lengths in which a length of the helium reservoir is substantially equally divided into a plurality in a child axis direction.
【請求項3】 中空円筒状であって、その外周部には超
電導界磁コイルを支持し、中空部にはヘリウム液溜め部
が形成され、該ヘリウム液溜め内部に伝熱部材を備えた
コイル取付部を有する超電導回転電機の回転子におい
て、前記ヘリウム液溜め内部の軸方向複数箇所に周壁に
結合され、かつその周方向に分割された有孔円板の伝熱
部材と、回転子の半径方向に幅を有して周壁に結合され
いるとともに回転子軸線と平行に配設され、かつ回転
子軸線方向に前記ヘリウム液溜め部の長さを複数個にほ
ぼ等分する単位長さに分割された複数の矩形の伝熱部材
を備えたコイル取付部を有することを特徴とする超電導
回転電機の回転子。
3. A coil having a hollow cylindrical shape and supporting a superconducting field coil at an outer peripheral portion thereof, a helium liquid reservoir formed in the hollow portion, and a heat transfer member provided inside the helium liquid reservoir. In a rotor of a superconducting rotary electric machine having a mounting portion, a heat transfer member of a perforated disk which is coupled to a peripheral wall at a plurality of axial directions inside the helium reservoir and divided in the circumferential direction , and a radius of the rotor Is attached to the peripheral wall with a width in the direction and is disposed in parallel with the rotor axis and rotates
A superconducting rotary electric machine having a coil mounting portion provided with a plurality of rectangular heat transfer members divided into unit lengths which substantially divide the length of the helium liquid reservoir portion into a plurality in the child axis direction. Rotor.
【請求項4】 前記伝熱部材が前記コイル取付部と同じ
熱膨張係数を有する材質からなることを特徴とする請求
項1ないし請求項3のいずれかに記載の超電導回転電機
の回転子。
4. The rotor of a superconducting rotary electric machine according to claim 1, wherein the heat transfer member is made of a material having the same coefficient of thermal expansion as the coil mounting portion.
【請求項5】 前記有孔の伝熱部材の外周に切欠部を設
けたことを特徴とする請求項1、請求項3および請求項
4のいずれかに記載の超電導回転電機の回転子。
5. A rotor for a superconducting rotary electric machine according to claim 1, wherein a notch is provided on an outer periphery of said perforated heat transfer member.
【請求項6】 前記伝熱部材をコイル取付部に穿孔した
取付孔に締結手段によって固定したことを特徴とする請
求項1ないし請求項5のいずれかに記載の超電導回転電
機の回転子。
6. A rotor for a superconducting rotary electric machine according to claim 1, wherein said heat transfer member is fixed to a mounting hole formed in a coil mounting portion by fastening means.
JP6057538A 1994-03-28 1994-03-28 Superconducting rotating electric machine rotor Expired - Fee Related JP2818109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6057538A JP2818109B2 (en) 1994-03-28 1994-03-28 Superconducting rotating electric machine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6057538A JP2818109B2 (en) 1994-03-28 1994-03-28 Superconducting rotating electric machine rotor

Publications (2)

Publication Number Publication Date
JPH07274483A JPH07274483A (en) 1995-10-20
JP2818109B2 true JP2818109B2 (en) 1998-10-30

Family

ID=13058546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6057538A Expired - Fee Related JP2818109B2 (en) 1994-03-28 1994-03-28 Superconducting rotating electric machine rotor

Country Status (1)

Country Link
JP (1) JP2818109B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115955080B (en) * 2023-02-14 2023-08-29 中国科学院合肥物质科学研究院 Onboard liquid hydrogen cooling high-temperature superconducting DC power system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103587U (en) * 1982-12-27 1984-07-12 三菱電機株式会社 Rotor of superconducting rotating electric machine

Also Published As

Publication number Publication date
JPH07274483A (en) 1995-10-20

Similar Documents

Publication Publication Date Title
US5703421A (en) Reluctance generator/motor cooling
US20230038386A1 (en) Axial flux motor with cooling jacket
JP6982522B2 (en) Stator for superconducting rotary machine and superconducting rotary machine
JP2818109B2 (en) Superconducting rotating electric machine rotor
US4439701A (en) Rotor of a superconductive rotary electric machine
JPS62230352A (en) Cryosorption pump for rotary electric machine
US4442369A (en) Rotor of a superconductive rotary electric machine
EP0043282B2 (en) Superconductive rotor, and electric machine incorporating it
US4649303A (en) Rotor for a superconducting rotating electric machine
JP3302705B2 (en) Superconducting rotating electric machine rotor
US4329602A (en) Superconducting rotor
JP2796055B2 (en) Superconducting rotating electric machine rotor
JP3236925B2 (en) Superconducting bearing device
JP2838013B2 (en) Superconducting rotating electric machine rotor
JPH0851767A (en) Rotor for superconducting electric rotating machine and refrigerant supply/discharge unit
JPH083172Y2 (en) Rotating electric machine
JP2603002B2 (en) Superconducting rotating electric machine rotor
JP2529382B2 (en) Insertion molding method of superconducting field coil in rotor of superconducting rotating electric machine
JPS6041829Y2 (en) superconducting rotor
JPS6118348A (en) Rotor of superconductive rotary electric machine
JP2667063B2 (en) Superconducting rotating electric machine rotor
JPH0524746B2 (en)
JPS62213554A (en) Rotor of superconducting rotary electric machine
JPS6118351A (en) Rotor of superconductive rotary electric machine
JPH06327234A (en) Rotor of superconducting rotary electric device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees