JPS63106581A - Gps navigation apparatus - Google Patents

Gps navigation apparatus

Info

Publication number
JPS63106581A
JPS63106581A JP25086486A JP25086486A JPS63106581A JP S63106581 A JPS63106581 A JP S63106581A JP 25086486 A JP25086486 A JP 25086486A JP 25086486 A JP25086486 A JP 25086486A JP S63106581 A JPS63106581 A JP S63106581A
Authority
JP
Japan
Prior art keywords
reception
satellite
level
time slot
slot length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25086486A
Other languages
Japanese (ja)
Inventor
Hisao Kishi
岸 久夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP25086486A priority Critical patent/JPS63106581A/en
Publication of JPS63106581A publication Critical patent/JPS63106581A/en
Pending legal-status Critical Current

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PURPOSE:To execute highly accurate position measurement stably, by allotting a long time to PN code matching and Doppler frequency matching for radio waves of low reception level. CONSTITUTION:Radio waves from reception satellites are received 10 sequentially with the respective time slot lengths, position measurement computation 5 for a reception point is conducted on the basis of the received waves, and a prescribed number of reception satellites are selected 8. Then, a time slot length to be assigned to each reception satellite within the period of a reception cycle of a unit determined by a period of one bit of orbit data is computed 9 in accordance with the reception level in the past of each reception satellite so that the length be enlarged when the level is low, and a reception control 10 on each reception satellite is conducted so that the wave of each satellite be received in sequence with the computed time slot length. On the occasion, a long time is allotted to PN code matching and Doppler frequency matching for satellite waves of low reception level, and thereby the satellite waves of low level are caught with high accuracy and without fail.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は1チャンネルシーケンシャル方式のGPS 
(Global PositioningSystem
 >航法装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] This invention is a one-channel sequential GPS system.
(Global Positioning System
>Relating to navigation equipment.

[従来の技術] 従来のGPS航法装置としては、第5図に示すようなも
のがある(例えば特開昭60−15573号)。
[Prior Art] As a conventional GPS navigation device, there is one shown in FIG. 5 (for example, Japanese Patent Laid-Open No. 15573/1983).

図において、101はアンテナ、102は高周波増幅器
、103,105,106は混合器、104及び107
は第1及び第2の中間周波数増幅器、108は位相検出
器、109は搬送波位相同期用数値制御発振器、110
は符号発生器、111は符号位相同期用数値制御発振器
、112は周波数逓倍器、113は基準発振器、114
は中央処理装置を示している。
In the figure, 101 is an antenna, 102 is a high frequency amplifier, 103, 105, 106 are mixers, 104 and 107
are first and second intermediate frequency amplifiers, 108 is a phase detector, 109 is a numerically controlled oscillator for carrier phase synchronization, 110
is a code generator, 111 is a numerically controlled oscillator for code phase synchronization, 112 is a frequency multiplier, 113 is a reference oscillator, 114
indicates the central processing unit.

この装置では、第6図に示すように、衛星データ1ピツ
ト分の時間To(20IIIS)を測位次元に応じて定
められる数の等時間へTOの時間間隔のタイムスロット
に分け、各スロットを各衛星(■〜■)に割り当ててシ
ーケンシャル受信し、中央処理装置114内の測位演算
部で受信地点の測位を行なっている。なお、スロット数
は3次元測位では4であるが、これに予備衛星が追加さ
れ、例えば、5とされることもある。
In this device, as shown in Fig. 6, the time To (20 IIIS) for one satellite data is divided into a number of equal times determined according to the positioning dimension into time slots with a time interval of TO, and each slot is The signals are assigned to the satellites (■ to ■) for sequential reception, and the positioning calculation unit in the central processing unit 114 performs positioning of the receiving point. Note that the number of slots is 4 in three-dimensional positioning, but may be increased to 5, for example, by adding spare satellites to this number.

しかしながら、このような従来よりの1チャンネルシー
ケンシャル方式の衛星航法装置にあっては、全衛星電波
に対し全く同じ時間間隔にてPNコード合せやドツプラ
ー周波数合せを行うため、受信レベルの低い衛星電波に
ついてPNコードやドツプラー周波数を精度良く合せる
ことがむずかしく、そのため測位精度も低下するという
問題点があった。
However, in such conventional one-channel sequential satellite navigation devices, PN code matching and Doppler frequency matching are performed at exactly the same time intervals for all satellite radio waves, so satellite radio waves with low reception levels are There was a problem in that it was difficult to precisely match the PN code and Doppler frequency, and as a result, the positioning accuracy also decreased.

[発明の目的] この発明は、上記問題点を改善し、受信レベルが低い衛
星電波でも、PNコードやドツプラー周波数を精度良く
合わせることができ、もって高精度の測位を行うことが
できる1チヤンネルシ一ケシヤル方式の衛星航法装置を
提供することを目的とする。
[Objective of the Invention] The present invention improves the above problems and provides a one-channel system that can accurately match the PN code and Doppler frequency even with satellite radio waves with a low reception level, thereby making it possible to perform highly accurate positioning. The purpose is to provide a Kesiyar type satellite navigation device.

[発明の概要] 上記目的を達成するためにこの発明では、1チャンネル
シーケンシャル方式の衛星航法装置を、所定数の受信衛
星を選択する衛星選択手段8と、軌道データ1ビットの
期間で定められる単位の受信サイクル期間TO内で各受
信衛星に割当てるべきタイムスロット長を各受信衛星の
過去の受信レベルの高低に応じ該レベルが低ければ長く
なるよう演算する衛星受信スロット長演算手段9と、演
算されたタイムスロット長で各受信衛星を順次受信すべ
く各受信衛星についての受信制御を行う受信制御演算手
段10と、該手段10の制御により各受信衛星を順次そ
れぞれのタイムスロット長で受信する1チャンネルシー
ケンシャル方式の受信手段11と、受信電波に基いて受
信地点の測位演算を行う測位演算手段5と、を備えて構
成し、受信レベルの低い衛星電波にはPNコード合せや
ドツプラー周波数合せに長い時間を割り当て、低レベル
の衛星電波を高精度で確実に捕捉できるようにした。
[Summary of the Invention] In order to achieve the above object, the present invention provides a one-channel sequential satellite navigation device including a satellite selection means 8 for selecting a predetermined number of receiving satellites, and a unit defined by a period of one bit of orbit data. Satellite reception slot length calculation means 9 calculates the time slot length to be assigned to each reception satellite within the reception cycle period TO according to the past reception level of each reception satellite so that the time slot length is longer when the level is lower; a reception control calculation means 10 that performs reception control for each reception satellite so as to sequentially receive each reception satellite with a time slot length, and one channel for sequentially receiving each reception satellite with a respective time slot length under the control of the means 10; The configuration includes a sequential reception means 11 and a positioning calculation means 5 that performs positioning calculation of the reception point based on the received radio waves, and it takes a long time to match the PN code and Doppler frequency for satellite radio waves with a low reception level. This makes it possible to reliably capture low-level satellite radio waves with high precision.

[実施例] 以下、この発明の一実施例を説明する。[Example] An embodiment of this invention will be described below.

第1図はこの発明の一実施例に係る車両用のGPS航法
装置のブロック図である。
FIG. 1 is a block diagram of a GPS navigation device for a vehicle according to an embodiment of the present invention.

図において、1はGPS衛星の電波を受信するためのア
ンテナである。
In the figure, 1 is an antenna for receiving radio waves from GPS satellites.

2は周波数変換器で、基準発振器、逓倍器、混合器、増
幅器などを有して構成され、アンテナ1から送られた受
信信号を逓倍器の出力信号を基準として周波数変換する
A frequency converter 2 includes a reference oscillator, a multiplier, a mixer, an amplifier, etc., and converts the frequency of the received signal sent from the antenna 1 using the output signal of the multiplier as a reference.

3は擬似距離測定器で、相関器、PNココ−発生器、コ
ード位相設定切換器、擬似距離計測器を有して構成され
、周波数変換器2で周波数変換された信号のPNコード
と内部で発生したPNコードとの相関をとり、PN復調
を行う。
3 is a pseudorange measuring device, which includes a correlator, a PN coco generator, a code phase setting switch, and a pseudorange measuring device. The correlation with the generated PN code is taken and PN demodulation is performed.

4は、軌道データ復調器で、帯域フィルタ、位相検波器
、キャリアNGO,キャリア周波数切換器等を有して構
成され、擬似距離測定器3の相関出力信号を帯域フィル
タを介して位相検波器に入力し受信信号の位相と位相差
を求める。
Reference numeral 4 denotes an orbit data demodulator, which includes a bandpass filter, a phase detector, a carrier NGO, a carrier frequency switch, etc., and sends the correlation output signal of the pseudorange measuring device 3 to the phase detector via the bandpass filter. Find the phase and phase difference of the received signal.

5は測位演算器であり、擬似距離測定結果により被測位
体の位置を求め、また、受信信号のドツプラ周波数シフ
トより、速度、方位を求める。
Reference numeral 5 denotes a positioning calculator which determines the position of the object to be positioned based on the pseudorange measurement results, and also determines the speed and direction from the Doppler frequency shift of the received signal.

6はCRTなどの表示器であり、測位演算器で求めた測
位結果を表示する。
Reference numeral 6 denotes a display device such as a CRT, which displays the positioning results obtained by the positioning calculator.

7は受信レベル検出器で、第2図に示すように衛星電波
の受信レベルIを衛星毎に検出する。図には、衛星■〜
■についての受信レベル11〜I4の検出状態が示され
ている。
A reception level detector 7 detects the reception level I of satellite radio waves for each satellite as shown in FIG. The figure shows the satellite
Detection states of reception levels 11 to I4 for (2) are shown.

8は衛星選択器であり、受信すべき衛星を選択する。例
えば、3次元測位では、測位に使用する衛星は4個又は
これに予備衛星1個を加えた5個の衛星が選択される。
8 is a satellite selector which selects a satellite to be received. For example, in three-dimensional positioning, four satellites or five satellites including one reserve satellite are selected for use in positioning.

本例では、ここで4個の衛星■〜■が選択されたとする
In this example, it is assumed that four satellites ■ to ■ have been selected.

9は、衛星受信スロット長演算器であり、衛星選択器8
で選択した衛星に対し、第3図に示すように、受信レベ
ルが低いほど受信衛星のスロット長を長くするよう演算
する。ただし、この演算は必ずしも比例演算ではなく、
レベルに応じて2値を選択したり、又、比例以外の演算
式を用いても行なわれるものである。
9 is a satellite reception slot length calculator, and satellite selector 8
As shown in FIG. 3, the slot length of the receiving satellite is calculated to be longer as the reception level is lower. However, this calculation is not necessarily a proportional calculation;
This can be done by selecting binary values depending on the level, or by using an arithmetic expression other than proportionality.

又、受信レベル11としては、前回のサイクルタイムで
検出されたレベルの他、過去数回の受信レベルの平均値
、前前回、前回の検出値の外挿値等が使用されて良い。
Further, as the reception level 11, in addition to the level detected at the previous cycle time, an average value of the reception levels of the past several times, an extrapolated value of the previous and previous detection values, etc. may be used.

10は受信制御演算器であり、擬似距離測定器3内のP
Nコード発生器および軌道データ復調器4内のキャリア
NGOにそれぞれPNコード選択信号、コード位相スロ
ット長データおよびキャリア周波数データを送る。
10 is a reception control calculator, and P in the pseudo distance measuring device 3
A PN code selection signal, code phase slot length data and carrier frequency data are sent to the carrier NGO in the N code generator and orbit data demodulator 4, respectively.

アンテナ19周波数変換器2.擬似距離測定器3、軌道
データ復調器4は、全体で受信手段11を構成する。
Antenna 19 Frequency converter 2. The pseudorange measuring device 3 and the orbit data demodulator 4 together constitute a receiving means 11.

次に、以上の構成に係るGPS航法装置の測位方式を第
4図に示したフローチャートを用いて説明する。
Next, the positioning method of the GPS navigation device having the above configuration will be explained using the flowchart shown in FIG.

第4図において、電源投入により、システムプログラム
はスタートする。
In FIG. 4, the system program starts when the power is turned on.

ステップ401では時刻・位置の設定など演算に必要な
初期値の設定を行う。
In step 401, initial values necessary for calculations such as time and position settings are set.

ステップ402では、選択された衛星に対するドツプラ
ー周波数合せを行う。
In step 402, Doppler frequency tuning is performed for the selected satellite.

ステップ403では、選択された衛星に対して同期合せ
のタイミング制御を行い、擬似距離を凋定する。
In step 403, synchronization timing control is performed on the selected satellite to determine the pseudorange.

ステップ404では、同期合せによる相関結果に基づき
同期合せの良否判定を行い。十分な同期合せ精度が得ら
れた場合にはステップ405に進み、そうでない場合に
はステップ402に戻る。
In step 404, the quality of the synchronization is determined based on the correlation result of the synchronization. If sufficient synchronization accuracy is obtained, the process proceeds to step 405; otherwise, the process returns to step 402.

ステップ405では、受信衛星の軌道データの収集要求
があるか否かを判断する。軌道データは1時間毎に新し
いデータに更新されるので、軌道データの収集は、例え
ば1時間毎に行うものとする。軌道データ収集要求があ
る場合にはステップ406に進み、悪い場合にはステッ
プ407に進む。
In step 405, it is determined whether there is a request to collect orbit data of the receiving satellite. Since the trajectory data is updated with new data every hour, the trajectory data is collected, for example, every hour. If there is a request to collect trajectory data, the process proceeds to step 406; otherwise, the process proceeds to step 407.

ステップ406では、位相検波した信号をフィルタを通
し、A/D′iJ換することによりデータを復調する。
In step 406, the phase-detected signal is passed through a filter and subjected to A/D'iJ conversion to demodulate the data.

ステップ407では、衛星位置と擬似距離測定結果を用
いて航法方程式を解くことにより自車位置を計算する。
In step 407, the vehicle position is calculated by solving a navigation equation using the satellite position and the pseudorange measurement results.

ステップ408では、測位結果に基づき、自車位置を表
示器6に表示している地図上に表示とともに、必要に応
じて衛星に関する情報等も表示する。
In step 408, based on the positioning results, the vehicle position is displayed on the map displayed on the display 6, and information regarding satellites is also displayed as necessary.

ステップ409では、第2図に示すように、復調した衛
星データの信号のA/D変換値から受信レベルを判定す
る。
In step 409, as shown in FIG. 2, the reception level is determined from the A/D conversion value of the demodulated satellite data signal.

ステップ410では各衛星の受信レベル■1〜I4と衛
星配置とから最適な衛星組合せを選択する。liのうち
、1=5以上のレベルは、前回以前に受信された他の衛
星についての受信レベルを示している。
In step 410, the optimum satellite combination is selected from the reception levels 1 to 14 of each satellite and the satellite arrangement. Among li, levels of 1=5 or higher indicate reception levels of other satellites received before the previous time.

ステップ411では、第3図に示すように、第2図に示
したような各衛星の受信レベルに基づき、受信すべき衛
星に割り当てるスロット長Δ丁1〜八T4を演算し、ス
テップ402ヘリターンする。
In step 411, as shown in FIG. 3, based on the reception level of each satellite as shown in FIG. .

このスロット長の演算は、例えば比例演算、即ち各衛星
の受信レベル■iの相対比に基づき軌道データ1ビット
に相当する期間内での各衛星電波を受信する時間へT+
を決める。
The calculation of this slot length is, for example, a proportional calculation, that is, based on the relative ratio of the reception level of each satellite ■i, the time to receive each satellite radio wave within a period corresponding to 1 bit of orbit data T +
decide.

以上により本例では、受信レベルの低い衛星については
、より長いタイムスロットで電波受信でき、受信レベル
が低くともPNコード合せやドツプラー周波数合せを精
度良く確実に行うことができるので、高精度の測位を行
うことが可能となる。
As described above, in this example, radio waves can be received in longer time slots for satellites with low reception levels, and even if the reception level is low, PN code matching and Doppler frequency matching can be performed accurately and reliably, resulting in high-precision positioning. It becomes possible to do this.

なお、この発明は上記実施例に限定されるものではなく
、適宜の設計的変更を行うことにより、他の態様でも実
施し得るものである。
Note that the present invention is not limited to the above-mentioned embodiments, but can be implemented in other embodiments by making appropriate design changes.

し発明の効果] 以上の通り、この発明によれば、1チャンネルシーケン
シャル方式の衛星航法装置において、受信レベルの低い
電波についてはより長いタイムスロット長で受信するこ
とができるので、電波の受信レベルが低くともPNコー
ド合せやドツプラー周波数合わせを精度良く、確実に行
うことができ、高精度の測位を安定して行うことがて゛
きる。
[Effects of the Invention] As described above, according to the present invention, in a one-channel sequential satellite navigation device, radio waves with a low reception level can be received with a longer time slot length, so that the reception level of the radio waves can be lowered. At the very least, PN code matching and Doppler frequency matching can be performed accurately and reliably, and highly accurate positioning can be performed stably.

4、図面簡単な説明 第1図はこの発明の一実施例に係るGPS航法装置のブ
ロック図、第2図は電波受信レベルの説明図、第3図は
タイムスロット長の設定例を示すタイムチャート、第4
図は測位処理のフローチャート、第5図は従来の衛星航
法装置のブロック図、第6図は従来のタイムスロット長
の設定方式を示すタイムチャートである。
4. Brief description of the drawings Fig. 1 is a block diagram of a GPS navigation device according to an embodiment of the present invention, Fig. 2 is an explanatory diagram of the radio wave reception level, and Fig. 3 is a time chart showing an example of setting the time slot length. , 4th
The figure is a flowchart of positioning processing, FIG. 5 is a block diagram of a conventional satellite navigation device, and FIG. 6 is a time chart showing a conventional time slot length setting method.

1・・・アンテナ 2・・・周波数変換器 3・・・擬似距離測定器 4・・・軌道データ復調器 5・・・測位演算器 6・・・表示器 7・・・受信レベル検出器 8・・・衛星選択器 9・・・衛星受信スロット長演算器 10・・・受信制御演算器 代理人  弁理士  三 好  保 男第4図1... antenna 2...Frequency converter 3... Pseudo distance measuring device 4... Orbit data demodulator 5...Positioning calculator 6...Indicator 7... Reception level detector 8...Satellite selector 9...Satellite reception slot length calculator 10...Reception control calculator Agent Patent Attorney Yasuo Miyoshi Figure 4

Claims (1)

【特許請求の範囲】[Claims] 所定数の受信衛星を選択する衛星選択手段と、軌道デー
タ1ビットに相当する期間で定められる単位の受信サイ
クル期間内で各受信衛星に割当てるべきタイムスロット
長を各受信衛星の過去の受信レベルの高低に応じ該レベ
ルが低ければ長くなるよう演算する衛星受信スロット長
演算手段と、演算されタイムスロット長で各受信衛星を
順次受信すべく各受信衛星についての受信制御を行う受
信制御演算手段と、該手段の制御により各受信衛星を順
次それぞれのタイムスロット長で受信する1チャンネル
シーケンシャル方式の受信手段と、受信電波に基いて受
信地点の測位演算を行う測位演算手段と、を備えて構成
されるGPS航法装置。
A satellite selection means for selecting a predetermined number of receiving satellites, and a time slot length to be assigned to each receiving satellite within a unit receiving cycle period determined by a period corresponding to 1 bit of orbit data, based on the past reception level of each receiving satellite. Satellite reception slot length calculation means that calculates the length of a satellite reception slot so that the lower the level is, the longer the time slot length is; and reception control calculation means that performs reception control for each reception satellite so as to sequentially receive each reception satellite at the calculated time slot length; A one-channel sequential receiving means that sequentially receives each receiving satellite at each time slot length under the control of the means, and a positioning calculation means that performs positioning calculation of a receiving point based on received radio waves. GPS navigation device.
JP25086486A 1986-10-23 1986-10-23 Gps navigation apparatus Pending JPS63106581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25086486A JPS63106581A (en) 1986-10-23 1986-10-23 Gps navigation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25086486A JPS63106581A (en) 1986-10-23 1986-10-23 Gps navigation apparatus

Publications (1)

Publication Number Publication Date
JPS63106581A true JPS63106581A (en) 1988-05-11

Family

ID=17214144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25086486A Pending JPS63106581A (en) 1986-10-23 1986-10-23 Gps navigation apparatus

Country Status (1)

Country Link
JP (1) JPS63106581A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259402B1 (en) 1999-05-26 2001-07-10 Mitsubishi Denki Kabushiki Kaisha GPS receiver suspending correlation value calculation process for time period corresponding to condition of received signal
JP2006504097A (en) * 2002-10-22 2006-02-02 クゥアルコム・インコーポレイテッド Method for searching for position determination signals using multiple sequentially high sensitivity search modes
JP2011007740A (en) * 2009-06-29 2011-01-13 Japan Radio Co Ltd Satellite signal capturing circuit and satellite signal receiver
US7978131B2 (en) 2006-05-19 2011-07-12 Qualcomm Incorporated System and/or method for determining sufficiency of pseudorange measurements

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259402B1 (en) 1999-05-26 2001-07-10 Mitsubishi Denki Kabushiki Kaisha GPS receiver suspending correlation value calculation process for time period corresponding to condition of received signal
JP2006504097A (en) * 2002-10-22 2006-02-02 クゥアルコム・インコーポレイテッド Method for searching for position determination signals using multiple sequentially high sensitivity search modes
JP2011237449A (en) * 2002-10-22 2011-11-24 Qualcomm Incorporated Method for searching for position determination signals using a plurality of progressively more sensitive search modes
US8473205B2 (en) 2002-10-22 2013-06-25 Qualcomm Incorporated Procedure for searching for position determination signals using a plurality of search modes
US7978131B2 (en) 2006-05-19 2011-07-12 Qualcomm Incorporated System and/or method for determining sufficiency of pseudorange measurements
JP2011007740A (en) * 2009-06-29 2011-01-13 Japan Radio Co Ltd Satellite signal capturing circuit and satellite signal receiver

Similar Documents

Publication Publication Date Title
US5173710A (en) Navigation and positioning system and method using uncoordinated beacon signals
US5499032A (en) Navigation and positioning system and method using uncoordinated beacon signals
US6204807B1 (en) Portable GPS positioning apparatus
JP2609292B2 (en) GPS positioning device
EP0198029B1 (en) Enhanced global positioning system delta-range processing
US6388613B1 (en) Portable GPS type distance/speed meter capable of selectively using doppler speed measuring method
EP0527558A1 (en) GPS navigation system with local speed direction sensing and PDOP accuracy evaluation
CN101441259A (en) Self-assisted tracking system and tracking method of global positioning system receiver
JPH04326079A (en) Gps receiver
JP2001027545A (en) Portable range finder, portable distance/speed meter, and distance/speed measuring method
JPS61108982A (en) Position measuring system of mobile station
EP0166300A2 (en) Receiver for global positioning system and method for determining position of a stationary station using same
US6240366B1 (en) GPS reception ratio detecting apparatus and portable type distance/speed meter capable of indicating GPS signal receiving condition
CN101042430B (en) Positioning device, positioning control method
JP3595093B2 (en) GPS satellite location system
JPS63106581A (en) Gps navigation apparatus
JPS62261087A (en) Satellite navigator for moving object
JP2921435B2 (en) Positioning signal receiver
JPS63308587A (en) Gps navigation system
GB2170672A (en) Satellite navigation receiver
JPS63127172A (en) Gps navigation system
JPS6015573A (en) Gps navigation apparatus
JPH1183979A (en) Navigation system, position measuring system and positioning method
JPS61226610A (en) Navigation device for automobile
JPS63106580A (en) Gps navigation apparatus