JPS63106369A - Fluid energy converting arrangement - Google Patents

Fluid energy converting arrangement

Info

Publication number
JPS63106369A
JPS63106369A JP25081086A JP25081086A JPS63106369A JP S63106369 A JPS63106369 A JP S63106369A JP 25081086 A JP25081086 A JP 25081086A JP 25081086 A JP25081086 A JP 25081086A JP S63106369 A JPS63106369 A JP S63106369A
Authority
JP
Japan
Prior art keywords
spiral
seal
shaft member
fluid
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25081086A
Other languages
Japanese (ja)
Inventor
Atsushi Imai
淳 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP25081086A priority Critical patent/JPS63106369A/en
Publication of JPS63106369A publication Critical patent/JPS63106369A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To facilitate flow rate adjustment and output power control in such an arrangement that a shaft member is fitted in a hole in a hole member, by forming a spiral groove in either of the inner peripheral surface of the hole member and the outer peripheral surface of the shaft, and by disposing a spiral seal in the spiral groove. CONSTITUTION:A shaft member 11 in which a spiral seal 3 is fitted in a spiral groove 3 formed in the outer peripheral surface thereof, is fitted in a cylindrical hole member 4. The axial center selection of the hole member 4 has a small diameter part 4a having a diameter smaller than that of both end parts thereof, and the outer periphery of the spiral seal member 3 is made to slide on the inner peripheral surface of the small diameter part 4a. Further, it is arranged such that when fluid is allowed to flow from an inlet port 5 to an outlet port 6 which are formed in the axial both end parts of the hole member 4, the fluid is subjected to resistance in a spiral passage 7 formed by the part of the spiral seal 3, and thus obtained resistance is used to rotate the shaft member 1 by means of the spiral seal 3 so that power may be taken out. Further, in the case of the drive rotation of the shaft member 1, it functions as a pump.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、嵌合状態にある孔部材と軸部材の接合面部分
に螺旋通路を設け、螺旋通路に流体を流してエネルギ変
換をする構造に関する。
Detailed Description of the Invention "Industrial Application Field" The present invention provides a structure in which a spiral passage is provided at the joint surface of a hole member and a shaft member in a fitted state, and energy is converted by flowing fluid through the spiral passage. Regarding.

「従来の技術」 孔部材に軸部材を嵌合して、その接合面部分に螺旋通路
を形成することにより流体エネルギの変換をさせる形態
としては、(1)螺旋通路を流れる流体の圧力あるいは
流星を制御するもの、(2)孔部材と軸部材のうち螺旋
通路を形成した方の部材を、回転することにより螺旋通
路中の流体を螺旋通路の進向方向に押出させてポンプ作
用をさせるもの、(3)n線通路に圧力流体を流がすこ
とにより、螺旋通路を形成した方の部材を回転させてハ
イドロリックタービン等の作用をさせるものがある。
``Prior Art'' Examples of methods for converting fluid energy by fitting a shaft member into a hole member and forming a spiral passage at the joint surface are: (1) the pressure of the fluid flowing through the spiral passage; (2) A device that performs a pump action by rotating the hole member and the shaft member that form the spiral passage to push out the fluid in the spiral passage in the advancing direction of the spiral passage. , (3) There are devices in which the member forming the spiral passage is rotated by causing pressure fluid to flow through the n-line passage, thereby acting as a hydraulic turbine or the like.

従来、螺旋通路に流体を流がすことにより流体圧力ある
いは流量を制御するものは知られておらず、木発明者の
出願にかかる特願昭80−248747号等のみである
Conventionally, there is no known method for controlling the fluid pressure or flow rate by flowing fluid through a spiral passage, and the only known method is Japanese Patent Application No. 80-248747 filed by the inventor of the invention.

また螺旋通路を形成した部材を回転することによりポン
プ作用をさせるものとしては、スクリューポンプやネジ
ポンプが知られている。
Furthermore, screw pumps and screw pumps are known as devices that perform a pumping action by rotating a member in which a spiral passage is formed.

さらにタービン作用をさせるものとしては、回転軸に螺
旋ブレードを設け、流体が螺旋ブレードを介して回転軸
に回転力を与えるのが一般的であリ、螺旋通路に流体を
流す形成のものは知られていない。
Furthermore, as a turbine, it is common to have spiral blades on the rotating shaft, and the fluid applies rotational force to the rotating shaft through the spiral blades. It has not been done.

「発明が解決しようとする問題点」 従来、螺旋通路に流体を流することによりエネルギの変
換をするものとしては、スクリューポンプやネジポンプ
、あるいは本発明者の先の出願(特願昭Go −248
7473)のように、螺旋溝螺旋突条部分が軸部材と一
体に形成されている。その場合、螺旋突条外周端が孔部
材の内周面と汗渉しないようにする必要があり、そのた
め螺旋突条の加工精度を上げなければならないという製
造上の問題があった。
"Problems to be Solved by the Invention" Conventionally, devices that convert energy by flowing fluid through a spiral passage include screw pumps, screw pumps, or the invention as disclosed in the present inventor's earlier application (Japanese Patent Application No.
7473), the spiral groove spiral protrusion portion is formed integrally with the shaft member. In this case, it is necessary to prevent the outer circumferential end of the spiral protrusion from coming into contact with the inner circumferential surface of the hole member, which poses a manufacturing problem in that the processing accuracy of the helical protrusion must be improved.

また逆に、螺旋突条外周端と孔部材の内周面との間の嵌
合代が不均一であると、流体制御が不確実になり、ある
いはポンプ効率やタービンの出力効率が低下してしまう
Conversely, if the fit between the outer peripheral edge of the spiral protrusion and the inner peripheral surface of the hole member is uneven, fluid control may become uncertain or pump efficiency or turbine output efficiency may decrease. Put it away.

r問題点を解決するための手段」 本発明は、軸部材を孔部材に嵌合し、両者の接合面部分
に螺旋通路を設けて、その螺旋通路に流体を流すことに
よりエネルギ変換をさせるようにしたものである。
``Means for Solving the Problems'' The present invention is designed to fit a shaft member into a hole member, provide a spiral passage at the joint surface between the two, and convert energy by flowing fluid through the spiral passage. This is what I did.

螺旋通路の構成としては、軸部材と孔部材との一方に螺
旋溝を形成し、その螺旋溝に螺旋状シールを設けたもの
、あるいは、軸部材と孔部材との一方に環状凹部を形成
し、その凹部にコイル状シールを設けたものがある。
The spiral passage may be configured by forming a spiral groove on one of the shaft member and the hole member and providing a spiral seal in the spiral groove, or by forming an annular recess on one of the shaft member and the hole member. , some have a coiled seal provided in the recess.

「作用」 ■−記手段の流体エネルギの変換構造を流体制装置とし
て使用する場合、流体が螺旋通路を通る間に抵抗を受け
、流体圧力あるいは流量が所定量に制御される。
"Operation" (1) When the fluid energy conversion structure of the means described above is used as a fluid system, the fluid encounters resistance while passing through the spiral passage, and the fluid pressure or flow rate is controlled to a predetermined amount.

螺旋通路を流れる流体の圧力損失Δpは、螺旋通路の巾
、螺旋通路の深さ、螺旋通路のピッチ、孔部材の内径、
流体の粘性、比重により定まる係数をに、α、βとし、
螺旋通路部分の軸方向長さく有効ラビリンス長さ)をR
とし流量をQとすると、Δp=に@RJ@Q”となるこ
とが実験と計算式により確認された(特願昭80−24
8747号、特願昭fll −179392号参照)。
The pressure loss Δp of the fluid flowing through the helical passage is determined by the width of the helical passage, the depth of the helical passage, the pitch of the helical passage, the inner diameter of the hole member,
Let α and β be the coefficients determined by the viscosity and specific gravity of the fluid,
The axial length of the spiral passage (effective labyrinth length) is R
It was confirmed through experiments and calculation formulas that when the flow rate is Q, Δp=@RJ@Q'' (Patent Application No. 80-24)
No. 8747 and Japanese Patent Application No. 179392).

よって上記流体エネルギの変換構造において、Δpを一
定にすればRを変化させて流量Qを制御でき、Qを一定
にすればRを変化させてΔpを制御できる。また流体制
御を長い螺旋通路で行なうので、上流側に急激な圧力変
動が生じても、その長い通路で変動を吸収し、脈動を生
じさせることがない。
Therefore, in the fluid energy conversion structure described above, if Δp is kept constant, the flow rate Q can be controlled by changing R, and if Q is kept constant, Δp can be controlled by changing R. Furthermore, since fluid control is performed using a long spiral passage, even if sudden pressure fluctuations occur on the upstream side, the fluctuations are absorbed by the long passage and pulsation does not occur.

上記手段をポンプとして使用する場合は、孔部材と軸部
材のうち螺旋通路を形成した方の両端部を軸受で保持す
るとともに、その一端を駆動用モータに連結し、螺旋通
路を形成していない方の部材は固定状態とする。モして
モータを回転させると螺旋通路を形成した方の部材は回
転し、螺旋通路部分がその進行方向に流体を押出し、ポ
ンプとして作用する。
When using the above means as a pump, both ends of the hole member and the shaft member, which form a spiral passage, are held by bearings, and one end of the shaft member is connected to a drive motor, so that the spiral passage is not formed. The other member is in a fixed state. When the motor is rotated, the member forming the spiral passage rotates, and the spiral passage pushes out fluid in the direction of movement of the member, acting as a pump.

上記手段をタービンとして使用する場合は、孔部材と軸
部材のうち螺旋通路を形成した方の部材の両端を軸受で
保持し、他方の部材を固定状態とする。そして螺旋通路
に圧力流体を流すと、螺旋通路部分がタービン羽根と同
様に機ず距して螺旋通路を形成した方の部材を回転する
When the above means is used as a turbine, both ends of the hole member and the shaft member forming the spiral passage are held by bearings, and the other member is fixed. When the pressure fluid flows through the spiral passage, the spiral passage portion inadvertently rotates the member forming the spiral passage at a distance, similar to the turbine blade.

「実施例」 本発明の流体エネルギの変換構造を流体制御装置として
使用する場合の第1実施例を、第1図により説明する。
Embodiment A first embodiment in which the fluid energy conversion structure of the present invention is used as a fluid control device will be described with reference to FIG.

軸部材lの外周に螺旋溝2が設けられ、この螺旋溝内に
螺旋状シール3が設けられる。軸部材1は、シリンダ状
の孔部材4内に嵌合されており、孔部材4の軸方向中央
部が両端部よりも小径の小PI、部4aに形成されて螺
旋状シール3の外周に接するようになっている。なお、
螺旋ytz内に設ける螺旋状シール3の内周面は、螺旋
溝2の底面に対して小間隔があけられ、加工誤差による
両者の干渉を吸収し、庁耗、振動に強いものとなってい
る。さらに両者の接触部でのシール性は、螺旋状シール
3の材質、寸法を選択することにより容易に調整できる
。また螺旋溝2の側壁と螺旋状シール3との間の隙間は
流体流れにとって無視できる程のものである。
A helical groove 2 is provided on the outer periphery of the shaft member l, and a helical seal 3 is provided within this helical groove. The shaft member 1 is fitted into a cylindrical hole member 4, and the axial center portion of the hole member 4 is formed into a small PI portion 4a with a smaller diameter than both end portions, and is attached to the outer periphery of the spiral seal 3. It is designed to be in contact with each other. In addition,
The inner peripheral surface of the spiral seal 3 provided in the spiral ytz is spaced a small distance from the bottom surface of the spiral groove 2, absorbs interference between the two due to processing errors, and is resistant to wear and vibration. . Further, the sealing performance at the contact portion between the two can be easily adjusted by selecting the material and dimensions of the spiral seal 3. Also, the gap between the side wall of the helical groove 2 and the helical seal 3 is negligible for fluid flow.

そして孔部材4の軸方向両端に設けた流入口5から流出
口6に向って流体が流れるようになっており、その途中
で螺旋状シール3の部分で形成する螺旋通路7で流体が
抵抗を受けるようになっている。
The fluid flows from the inlet 5 provided at both ends of the hole member 4 in the axial direction toward the outlet 6. On the way, the fluid encounters resistance in the spiral passage 7 formed by the spiral seal 3. I am starting to receive it.

また軸部材lは、孔部材4内で軸方向に移動可能となっ
ており、調節部8により小径部4a内での螺旋状シール
3の軸方向長さく有効ラビリンスR)が調節されるよう
になっている。
Further, the shaft member l is movable in the axial direction within the hole member 4, and the adjustment portion 8 adjusts the axial length and effective labyrinth R) of the helical seal 3 within the small diameter portion 4a. It has become.

そして流体は有効ラビリンス長さRに応じて前記作用の
ように圧力損失Δpが生じる。なお、a旋状シール3の
外端と小径部4aの内周面との間に隙間がないとすると
、圧力損失を表す前記式でβは1となり、隙間がある場
合、あるいは流体が気体である場合にはβはl以外の定
数となる。
Then, a pressure loss Δp occurs in the fluid according to the effective labyrinth length R, as described above. Note that if there is no gap between the outer end of the a-spiral seal 3 and the inner peripheral surface of the small diameter portion 4a, β will be 1 in the above formula expressing pressure loss, and if there is a gap or the fluid is a gas. In some cases, β is a constant other than l.

上記実施例では軸部材lに螺旋状シール3を設けたが、
逆に孔部材4の内周に螺旋状シール3を設けるようにし
てもよく、その場合、軸部材lの中央部が両端部より大
径に形成される。また、螺旋yt2は1条に形成したが
、多条に形成してもよく、螺旋状シール3の断面形状も
長方形に限るものではない、さらに螺旋状シール3を孔
部材内周と軸部材外周の両方に設けてもよく、その場合
In the above embodiment, the spiral seal 3 was provided on the shaft member l, but
Conversely, the spiral seal 3 may be provided on the inner periphery of the hole member 4, in which case the central portion of the shaft member 1 is formed to have a larger diameter than both end portions. Further, although the spiral yt2 is formed into one thread, it may be formed into multiple threads, and the cross-sectional shape of the spiral seal 3 is not limited to a rectangle. In that case, it may be provided for both.

両方の螺旋溝のピッチを異ならせたり、螺旋方向を1f
いに逆向きにして両者が咬み込まないようにする。
The pitch of both spiral grooves may be different, or the spiral direction may be 1f.
Turn them in opposite directions so that they don't bite.

次に流体エネルギの変換構造をポンプ装置として使用す
る第2実施例を第2図により説明する。
Next, a second embodiment in which the fluid energy conversion structure is used as a pump device will be described with reference to FIG.

この実施例は、軸部材1に第1実施例と同様に螺旋状シ
ール3が設けられる。軸部材lの軸方向両端に支軸11
がそれぞれ突設され、支軸11は孔部材lの軸方向両側
に突出されて、その両端部がそれぞれ軸受12を介して
保持される。また支軸11の一端は、図示を省略したモ
ータに連結され−C軸部材lが回転されるようになって
いる。孔部材4の中央部は、第1実施例と同様に小径部
4aに形成される。
In this embodiment, a spiral seal 3 is provided on the shaft member 1 as in the first embodiment. A support shaft 11 is provided at both axial ends of the shaft member l.
The supporting shafts 11 project from both sides of the hole member l in the axial direction, and both ends thereof are held via bearings 12, respectively. Further, one end of the support shaft 11 is connected to a motor (not shown) so that the -C shaft member 1 is rotated. The center portion of the hole member 4 is formed into a small diameter portion 4a as in the first embodiment.

そして孔部材4を固定状態にしてモータ駆動により軸部
材lを回転すると、螺旋状シール3はその進行方向に流
体を押し出し、流入口5から流出口6に向って流体を流
してポンプ作用をする。
Then, when the shaft member 1 is rotated by a motor drive with the hole member 4 fixed, the spiral seal 3 pushes out the fluid in the direction of movement, causing the fluid to flow from the inlet 5 to the outlet 6 to perform a pumping action. .

なお、軸部材1を軸方向に移動調節可能とすれば、ポン
プ出力を連続的に調整できる。また第2実施例において
も、第1実施例で記載した各種の変形例(例えば孔部材
に螺旋状シールを設けて軸部材の外周で回転させる)を
適用できる。
Note that if the shaft member 1 can be adjusted to move in the axial direction, the pump output can be continuously adjusted. Also in the second embodiment, various modifications described in the first embodiment (for example, a spiral seal is provided in the hole member and rotated around the outer periphery of the shaft member) can be applied.

次に流体エネルギの変換構造をハイドロタービンとして
使用する場合の第3実施例を、前記第2図により説明す
る。
Next, a third embodiment in which the fluid energy conversion structure is used as a hydroturbine will be described with reference to FIG. 2.

この実施例も第2実施例と同様、孔部材4内に軸部材1
が嵌合され、軸部材1の外周に螺旋状シール3が設けら
れる。軸部材1の軸方向両端に設けた支軸11は、それ
ぞれ軸受12を介して保持され、支軸11の一方の端部
は、前記モータの代りに駆動すべき装置に連結されるよ
うになっている。
This embodiment also has a shaft member 1 inside the hole member 4, similar to the second embodiment.
are fitted, and a spiral seal 3 is provided on the outer periphery of the shaft member 1. Support shafts 11 provided at both axial ends of the shaft member 1 are held via bearings 12, and one end of the support shafts 11 is connected to a device to be driven instead of the motor. ing.

孔部材4を固定した状態で孔部材の流入口5から流出口
6に向って圧力流体を流すと、螺旋状シール3は圧力流
体により回転力を受け、軸部材lが回転することになる
When the pressure fluid flows from the inlet 5 to the outlet 6 of the hole member with the hole member 4 fixed, the spiral seal 3 receives a rotational force from the pressure fluid, causing the shaft member 1 to rotate.

なお軸部材1を軸方向に移動tJJy!i可崗とすれば
、タービンの出力を連続的に調整できる。また第3実施
例においても第1実施例に記載した各種の変形例を適用
できる。
Note that the shaft member 1 is moved in the axial direction tJJy! If it is adjustable, the output of the turbine can be adjusted continuously. Furthermore, various modifications described in the first embodiment can be applied to the third embodiment as well.

次に前記実施例中の螺旋状シール3を、コイル状シール
に変更し、流体制御装置として使用する第4実施例を第
4図により説明する。
Next, a fourth embodiment will be described with reference to FIG. 4, in which the spiral seal 3 in the above embodiment is replaced with a coiled seal and used as a fluid control device.

軸部材21の軸方向中央部が、小径すなわち環状の凹部
22に形成され、その四部22にコイル状シール23が
設けられる。コイル状シール23は、隣接する巻線部の
間に一定の間隔が生ずるように配置され、凹部22の軸
方向両端部でコイル状シールが位置規制される。そして
このコイル状シール23が、前記第1〜3実施例の螺旋
状シールに相当する機部を有する。コイル状シール23
は、断面円形としたが、隣接する巻線部分の間に間隔が
生じれば他の断面形状であってもよい、凹部22の底面
にゴム板又は樹脂コーティング等が設けられ、凹部22
の底部を流体が漏れに〈〈される、その他の構成は第1
実施例と同一であるが、コイル状シール23の軸方向両
端を規制するためには、四部22を形成しなくとも、軸
部材21を若干小径に形成して、孔部材4との隙間にコ
イル状シール23を挿入し、その両端を軸部材に螺合し
たナツト、あるいはC型スプリングスト−/パ等で、あ
るいはそれらの組合せで位置規制するようにしてもよい
The axially central portion of the shaft member 21 is formed into a small diameter, that is, an annular recess 22, and coiled seals 23 are provided at the four portions 22 of the recess. The coiled seal 23 is arranged so that a constant interval is created between adjacent winding portions, and the position of the coiled seal is regulated at both axial ends of the recess 22. This coiled seal 23 has a mechanical portion corresponding to the spiral seal of the first to third embodiments. Coiled seal 23
Although the cross-sectional shape is circular, other cross-sectional shapes may be used as long as there is a gap between adjacent winding portions.A rubber plate or resin coating is provided on the bottom of the recess 22,
Other configurations where fluid leaks from the bottom of the
Although it is the same as the embodiment, in order to regulate both ends of the coiled seal 23 in the axial direction, the shaft member 21 is formed with a slightly smaller diameter without forming the four parts 22, and the coil is inserted into the gap between the coiled seal 23 and the hole member 4. A shaped seal 23 may be inserted, and its position may be controlled by a nut screwed onto both ends of the shaft member, a C-shaped spring stopper, or a combination thereof.

この実施例は、前記実施例よりも製作が容易となり、隣
接する一対の巻線部分の間隔を断面形状とする螺旋通路
が形成され、その螺旋通路を流体が流れることにより第
1実施例と同様に圧力損失を生じることになる。
This embodiment is easier to manufacture than the previous embodiment, and is similar to the first embodiment because a spiral passage is formed in which the cross-sectional shape is the interval between a pair of adjacent winding portions, and the fluid flows through the spiral passage. This will cause a pressure loss.

なお、この第4実施例に前記第1実施例で記載した変形
例を適用してもよい、また第4実施例のようにコイル状
シール23を用いた構成のものを、第2実施例と同様に
ポンプ装置として適用してもよく、さらに第3実施例と
同様にタービンとして適用してもよい。
Note that the modification described in the first embodiment may be applied to this fourth embodiment, and the structure using the coiled seal 23 as in the fourth embodiment may be replaced with the second embodiment. Similarly, it may be applied as a pump device, and furthermore, as in the third embodiment, it may be applied as a turbine.

「発明の効果」 本発明のエネルギの変換構造は、軸部材と孔部材のどち
らか一方に螺旋溝あるいは凹部を形成してそこに螺旋状
シールを設けるので、螺旋状シール等と軸部材等とを一
体に形成する場合より、製作精度が出しやす〈、製造容
易となる。また螺旋状シールを設けた軸部材を軸方向に
移動すれば、流驕制御やポンプ出力等を容易に調節でき
る。さらに螺旋状シールの材質、寸法を選択することに
より、シール性を適宜選択できる。
"Effects of the Invention" The energy conversion structure of the present invention forms a spiral groove or a recess in either the shaft member or the hole member and provides a spiral seal there, so that the spiral seal etc. and the shaft member etc. It is easier to achieve manufacturing accuracy and manufacture than when the parts are integrally formed. Further, by moving the shaft member provided with the spiral seal in the axial direction, the flow control, pump output, etc. can be easily adjusted. Further, by selecting the material and dimensions of the spiral seal, the sealing performance can be appropriately selected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例のエネルギ変換構造の断面
図、第2図は第2,3実施例の場合のエネルギ変換構造
の断面図、第3図は第4実施例のエネルギ変換構造の断
面図である。 1;軸部材     2;螺旋溝 3;螺旋状シール  4;孔部材 7:螺旋通路    11:支軸 12;軸受     22;凹部 23:コイル状シール
FIG. 1 is a sectional view of the energy conversion structure of the first embodiment of the present invention, FIG. 2 is a sectional view of the energy conversion structure of the second and third embodiments, and FIG. 3 is the energy conversion structure of the fourth embodiment. FIG. 3 is a cross-sectional view of the structure. 1; Shaft member 2; Spiral groove 3; Spiral seal 4; Hole member 7: Spiral passage 11: Support shaft 12; Bearing 22; Recess 23: Coiled seal

Claims (2)

【特許請求の範囲】[Claims] (1)孔部材の孔に軸部材を嵌合した構造において、孔
部材の内周面と軸部材の外周面とのどちらか一方に螺旋
溝を設け、その螺旋溝内に螺旋状シールを設けた流体エ
ネルギの変換構造。
(1) In a structure in which a shaft member is fitted into a hole of a hole member, a spiral groove is provided on either the inner peripheral surface of the hole member or the outer peripheral surface of the shaft member, and a spiral seal is provided within the spiral groove. Fluid energy conversion structure.
(2)孔部材の孔に軸部材を嵌合した構造において、孔
部材の内周面と軸部材の外周面との間に、コイル状シー
ルを配置し、そのコイル状シールの軸方向両端をストッ
パにより位置規制した流体エネルギの変換構造。
(2) In a structure in which a shaft member is fitted into a hole in a hole member, a coiled seal is arranged between the inner peripheral surface of the hole member and the outer peripheral surface of the shaft member, and both axial ends of the coiled seal are Fluid energy conversion structure whose position is regulated by a stopper.
JP25081086A 1986-10-23 1986-10-23 Fluid energy converting arrangement Pending JPS63106369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25081086A JPS63106369A (en) 1986-10-23 1986-10-23 Fluid energy converting arrangement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25081086A JPS63106369A (en) 1986-10-23 1986-10-23 Fluid energy converting arrangement

Publications (1)

Publication Number Publication Date
JPS63106369A true JPS63106369A (en) 1988-05-11

Family

ID=17213385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25081086A Pending JPS63106369A (en) 1986-10-23 1986-10-23 Fluid energy converting arrangement

Country Status (1)

Country Link
JP (1) JPS63106369A (en)

Similar Documents

Publication Publication Date Title
EP2362122B1 (en) Slip ring seal and method for optimising its operating performance
US6109618A (en) Rotary seal with enhanced lubrication and contaminant flushing
JP5135361B2 (en) Pump or motor
US10933375B1 (en) Fluid to fluid pressurizer and method of operating the same
BR0308350B1 (en) VALVE, VALVE ELEMENT, AND METHOD OF OPERATING A VALVE
US4522571A (en) Peristaltic pump
CN104321568A (en) Slide part
TW402666B (en) Drive positioning mechanism, centrifugal compressor, and backlash adjustment mechanism
US6139267A (en) Fluid machine
JPS5933796B2 (en) valve
US4558991A (en) Wave pump assembly
US20160138579A1 (en) Pump assembly
US2802679A (en) Mechanical seal for pumps
JPS63106369A (en) Fluid energy converting arrangement
JP2018178826A (en) Horizontal shaft pump
US11708841B2 (en) Adaptive volutes for centrifugal pumps
JPS59231268A (en) Mechanical seal
KR20190056724A (en) Oil retrieval device
JP7169516B2 (en) Gear pump manufacturing method
KR20160010938A (en) Adjusting apparatus for impeller clearance in axial-flow pump
TW530137B (en) Rotary vane type throttle valve
WO2016202150A1 (en) Pressure generation apparatus and generation method
JPH10184561A (en) Spiral groove structure for spiral seal
JP5298854B2 (en) Spiral pump for blood
JP2005163593A (en) Rotary coupling and oscillating plate pump using the same