JPS631062A - Parallel optical-signal processing semiconductor element - Google Patents

Parallel optical-signal processing semiconductor element

Info

Publication number
JPS631062A
JPS631062A JP61145378A JP14537886A JPS631062A JP S631062 A JPS631062 A JP S631062A JP 61145378 A JP61145378 A JP 61145378A JP 14537886 A JP14537886 A JP 14537886A JP S631062 A JPS631062 A JP S631062A
Authority
JP
Japan
Prior art keywords
substrate
receiving element
light
signal processing
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61145378A
Other languages
Japanese (ja)
Inventor
Kenichi Kasahara
健一 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61145378A priority Critical patent/JPS631062A/en
Publication of JPS631062A publication Critical patent/JPS631062A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To enable high density assembly, and to enable high-speed transmission by electrically connecting each light-receiving element and a semiconductor substrate simultaneously through fusion. CONSTITUTION:A light-receiving element array 12 is constituted of InGaAsP/ InPP-I-N photodiodes of one line of twelve rows, and formed onto the surface of a semi-insulating InP substrate 13. An electronic circuit at the post-step of the array 12 is shaped onto the surface of a substrate 11. The array 12 is placed on the substrate 11, and fused.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はコンピュータ間の並列光データ伝送や。[Detailed description of the invention] (Industrial application field) The present invention relates to parallel optical data transmission between computers.

多重ルーズ構成の構内並列光伝送網において用いられ、
複合化光・電気集積素子の一種である並列光信号処理半
導体素子に関する。
Used in local parallel optical transmission networks with multiple loose configurations,
This invention relates to a parallel optical signal processing semiconductor device, which is a type of composite optical/electrical integrated device.

(従来の技術) 複数本の光ファイバを伝送路として用いる並列光伝送は
大量の清報を高速に伝達するための通信方式として重要
なものである。その、端末や中継部に入るデバイスには
、信号の再生、増幅機能の他に、更に交換や記憶といっ
た各種の機能を付加することによって、−層高度で機能
性)て富んだシステムを実現することが可能となる。第
4図は従来の並列光信号処理半導体素子の一例を示す斜
視図である。この従来例は、コンピュータ間の並列デー
タ伝送に用いられる1行12列のPINフォトダイオー
ドで構成される受光素子アレイであり、インターナショ
ナル・エレクトロデバイス・ミーティング(IEDM 
84、San Francisco 。
(Prior Art) Parallel optical transmission using multiple optical fibers as transmission lines is important as a communication method for transmitting a large amount of information at high speed. By adding various functions such as signal exchange and storage to the terminals and devices that enter the relay section, in addition to signal regeneration and amplification functions, a highly sophisticated and highly functional system can be realized. becomes possible. FIG. 4 is a perspective view showing an example of a conventional parallel optical signal processing semiconductor device. This conventional example is a light-receiving element array composed of 1 row and 12 columns of PIN photodiodes used for parallel data transmission between computers.
84, San Francisco.

USA、1984)のテクニカル・ダイジェストの72
7頁に報告されているものである。同図に於いて21は
受光素子アレイ、22は信号光をアレイに導くファイバ
リボン、23はシリコンのV溝から成る光ファイバの支
持台である。
USA, 1984) Technical Digest 72
This is reported on page 7. In the figure, 21 is a light receiving element array, 22 is a fiber ribbon that guides signal light to the array, and 23 is an optical fiber support made of a silicon V-groove.

(発明が解決しようとする問題点) 第4図の溝底の欠点は、受光索子アレイ21の後段に続
(CPIJ等の電気回路までの配線を、各PINフォト
ダイオード毎に行なわれなければならないことである。
(Problems to be Solved by the Invention) The disadvantage of the groove bottom in FIG. It must not happen.

そのためにコンパクトな高密度実装ができず、配線によ
る浮遊容量によって高速応答特性が妨げられるという問
題が生じた。
This posed a problem in that compact, high-density packaging was not possible, and high-speed response characteristics were hindered by stray capacitance caused by wiring.

本発明は、上記欠点に鑑みなされたものであり、高密度
実装が可能な並列光信号処理用半導体素子を提供するこ
とを目的とする。
The present invention has been made in view of the above drawbacks, and an object of the present invention is to provide a semiconductor device for parallel optical signal processing that can be mounted at high density.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する並列光
信号処理半導体素子は、並列伝送される光信号を受ける
半導体受光素子アレイが表面側に形成しである第1の半
導体基板と、前記半導体受光素子アレイの出力信号を受
けて処理する電子回路が表面側に形成された第2の半導
体基板とがらなり、前記第1の半導体基板と前記第2の
半導体基板とは互いに表面側を対面して′@層されて融
着によって一体化されており、前記j独着は前記半導体
受光素子の端子と前記電子回路の端子との間で行なわれ
ており、前記半導体受光素子アレイの入射光は前記M1
の半導体基板の裏面側から照射されることを特徴とする
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a parallel optical signal processing semiconductor device, in which a semiconductor photodetector array for receiving optical signals transmitted in parallel is formed on the front side. and a second semiconductor substrate having an electronic circuit formed on the surface side for receiving and processing output signals of the semiconductor light receiving element array; The semiconductor substrates are layered with their front surfaces facing each other and are integrated by fusion bonding, and the bonding is performed between the terminals of the semiconductor photodetector and the terminals of the electronic circuit. , the incident light of the semiconductor light receiving element array is the M1
It is characterized by being irradiated from the back side of the semiconductor substrate.

(作用) 上述の本発明の素子では、各受光素子と下側の半導体基
板との電気的接読が融着によって同時に成されるので、
手間のかかるワイヤ・ボンディング工程は不要となる。
(Function) In the above-described device of the present invention, electrical reading between each light-receiving element and the lower semiconductor substrate is achieved simultaneously by fusion bonding.
The time-consuming wire bonding process is no longer necessary.

又、裏面から受光素子に光を入射する構造では、配線の
ための不要な畜生容量が生じないので高速比の観点から
も優れている。
In addition, the structure in which light is incident on the light receiving element from the back side is superior from the viewpoint of high speed ratio since unnecessary capacitance for wiring is not generated.

(実施例) 第1図は本発明の−実り例を示す部分破断;斜視図であ
る。受光素子アレイ12は、第4図の従来例と同じく、
1行12列のInGaAs P / IHP P IN
フォトダイオードで構成されている。受光素子アレイ1
2は半絶縁性InP基板130表面に形成されている。
(Example) FIG. 1 is a partially broken perspective view showing a practical example of the present invention. The light receiving element array 12 is similar to the conventional example shown in FIG.
1 row and 12 columns of InGaAs P/IHP P IN
It consists of a photodiode. Photodetector array 1
2 is formed on the surface of the semi-insulating InP substrate 130.

Ga As基板110表面には、受光素子アレイ12の
フォトダイオードの後段につながる増幅回路やその他の
交換、演算を行なう電子回路が形成されている。受光素
子アレイ12はそのGaAs基板11の上に乗せられ融
着されている。
On the surface of the GaAs substrate 110, an amplifier circuit connected to the rear stage of the photodiode of the light receiving element array 12 and other electronic circuits for performing exchange and calculation are formed. The light receiving element array 12 is placed on the GaAs substrate 11 and fused.

第2図(a)〜(c)は第1図実施例の製造工程を示す
図である。
FIGS. 2(a) to 2(c) are diagrams showing the manufacturing process of the embodiment shown in FIG.

まず、乗置配線となる融着部141及び142をC)a
As基板11及びInP基板13にそれぞれ形成する(
第21図(a))。融着部141,142は層厚的2z
zmで30/zm角のAIl / Tiからなる。次に
、半絶縁性のInP基板13及びC)a As基板11
の”&’Ji1をともに平担化して、融着な容易にし、
更に層間絶縁をとるためにポリイミド14を約2/I+
nの厚さでコーティングする(第2図(b))。 再び
融着部141及び142にAu/Tiを被着させた後、
対向する融着部141及び142相互の目合わせをし、
20Q°C程度の温度に加熱した状態で圧力を加えてI
nP基板[3とC)a As基板11とを融着させる(
第2図(C))。この様にして形成される本実施例は、
フォトダイオード毎のワイヤ・ボンディングを要せず、
その分だけ製作の手間が省けるだけでなく、フォトダイ
オードと、それに続く電子回路までの配線長を非常に短
かくできるので応答速度、更には受光感度等の点で従来
方式に比べて優れている。
First, the fused parts 141 and 142 that will become the mounted wiring are C)a
Formed on the As substrate 11 and the InP substrate 13 respectively (
Figure 21(a)). The fused parts 141 and 142 have a layer thickness of 2z
It consists of Al/Ti of 30/zm square. Next, a semi-insulating InP substrate 13 and C)a As substrate 11
``&'Ji1 are both flattened to make it easier to fuse,
Furthermore, in order to provide interlayer insulation, the polyimide 14 is approximately 2/I+
coating to a thickness of n (FIG. 2(b)). After applying Au/Ti to the fused parts 141 and 142 again,
Align the facing fused parts 141 and 142 with each other,
Apply pressure while heating to a temperature of about 20Q°C.
Fusing the nP substrate [3 and C) a As substrate 11 (
Figure 2 (C)). This example formed in this way is
No need for wire bonding for each photodiode,
This not only saves time in manufacturing, but also allows the length of wiring from the photodiode to the electronic circuit that follows it to be extremely short, making it superior to conventional methods in terms of response speed, light-receiving sensitivity, etc. .

第3図は本発明の他の実施例を示す部分破断斜視図であ
る。受光素子アレイ15とそれにつながるFETγンプ
16とをInP基板17の上に形成し、InP基板17
をGa As基板18に融着することによって作った並
列光信号処理用の半導体素子である。第1図の実施例に
比べて電子回路の一部がInP基板17の上に形成され
ているので全てを一方の半導体基板側に作る場合に比べ
てより一層電子回路を詰め込むことが可能となり、実装
密度が向上する。
FIG. 3 is a partially cutaway perspective view showing another embodiment of the present invention. A light receiving element array 15 and a FET γ amplifier 16 connected thereto are formed on an InP substrate 17.
This is a semiconductor device for parallel optical signal processing made by fusing the above to a GaAs substrate 18. Compared to the embodiment shown in FIG. 1, a part of the electronic circuit is formed on the InP substrate 17, so it is possible to pack in more electronic circuits than if they were all formed on one semiconductor substrate. Improves packaging density.

なお、上記実施例では受光素子アレイについて述べたが
発光素子アレイに関しても、本発明を用いれば同様にコ
ンパクトで高速な並列処理用半導体素子の作製が可能と
なる。
In the above embodiments, a light-receiving element array has been described, but if the present invention is applied to a light-emitting element array, it is also possible to fabricate a compact and high-speed semiconductor element for parallel processing.

(発明の効果) 以上に説明したように、本発明によれば、高密度実装が
容易に行え、高速伝送が可能な並列光信号処理半導体素
子が提供できる。
(Effects of the Invention) As described above, according to the present invention, it is possible to provide a parallel optical signal processing semiconductor element that can be easily mounted at high density and capable of high-speed transmission.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第3図は本発明の実施例を示す部分破断斜視
図、第2図(a)〜(C)は第1図実施例の製造工程を
示す図、第4図は従来の並列光信号処理半導体素子の例
を示す斜視図である。 これら図において、12.15及び21は受光素子アレ
イ、11及び18はGaAs基板、13はInP基板、
141及び142は融着部、14はポリイミド、16は
FETアンプ、22はファイパリメン、23は支持台で
ある。 代理人 弁理士  本 庄 伸  介 (a) (b) +41 (c) 第2図
1 and 3 are partially cutaway perspective views showing an embodiment of the present invention, FIGS. 2(a) to (C) are views showing the manufacturing process of the embodiment of FIG. 1, and FIG. 4 is a conventional parallel 1 is a perspective view showing an example of an optical signal processing semiconductor element. In these figures, 12.15 and 21 are photodetector arrays, 11 and 18 are GaAs substrates, 13 is an InP substrate,
141 and 142 are fusion parts, 14 is polyimide, 16 is a FET amplifier, 22 is a fiber ream, and 23 is a support stand. Agent Patent Attorney Shinsuke Honjo (a) (b) +41 (c) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 並列伝送される光信号を受ける半導体受光素子アレイが
表面側に形成してある第1の半導体基板と、前記半導体
受光素子アレイの出力信号を受けて処理する電子回路が
表面側に形成された第2の半導体基板とからなり、前記
第1の半導体基板と前記第2半導体基板とは互いに表面
側を対面させて積層されて融着によつて一体化されてお
り、前記融着は前記半導体受光素子の端子と前記電子回
路の端子との間で行なわれており、前記半導体受光素子
アレイの入射光は前記第1の半導体基板の裏面側から照
射されることを特徴とする並列光信号処理半導体素子。
a first semiconductor substrate having a semiconductor light-receiving element array formed on the front side for receiving optical signals transmitted in parallel; and a first semiconductor substrate having an electronic circuit formed on the front side for receiving and processing output signals of the semiconductor light-receiving element array. The first semiconductor substrate and the second semiconductor substrate are laminated with their surfaces facing each other and are integrated by fusion bonding, and the fusion bonding is performed by the semiconductor light receiving substrate. Parallel optical signal processing is performed between a terminal of an element and a terminal of the electronic circuit, and the incident light of the semiconductor light receiving element array is irradiated from the back side of the first semiconductor substrate. element.
JP61145378A 1986-06-20 1986-06-20 Parallel optical-signal processing semiconductor element Pending JPS631062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61145378A JPS631062A (en) 1986-06-20 1986-06-20 Parallel optical-signal processing semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61145378A JPS631062A (en) 1986-06-20 1986-06-20 Parallel optical-signal processing semiconductor element

Publications (1)

Publication Number Publication Date
JPS631062A true JPS631062A (en) 1988-01-06

Family

ID=15383850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61145378A Pending JPS631062A (en) 1986-06-20 1986-06-20 Parallel optical-signal processing semiconductor element

Country Status (1)

Country Link
JP (1) JPS631062A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194558A (en) * 1989-01-21 1990-08-01 Nippondenso Co Ltd Semiconductor device and manufacture thereof
JPH11354762A (en) * 1998-06-03 1999-12-24 Nippon Telegr & Teleph Corp <Ntt> Image sensor
WO2020213436A1 (en) * 2019-04-18 2020-10-22 日本電信電話株式会社 Light-receiving device and light receiver

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965474A (en) * 1982-09-08 1984-04-13 テキサス・インスツルメンツ・インコ−ポレイテツド Focal surface array structure and method of producing same
JPS60224265A (en) * 1984-04-20 1985-11-08 Fujitsu Ltd Manufacture of semiconductor element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965474A (en) * 1982-09-08 1984-04-13 テキサス・インスツルメンツ・インコ−ポレイテツド Focal surface array structure and method of producing same
JPS60224265A (en) * 1984-04-20 1985-11-08 Fujitsu Ltd Manufacture of semiconductor element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194558A (en) * 1989-01-21 1990-08-01 Nippondenso Co Ltd Semiconductor device and manufacture thereof
JPH11354762A (en) * 1998-06-03 1999-12-24 Nippon Telegr & Teleph Corp <Ntt> Image sensor
WO2020213436A1 (en) * 2019-04-18 2020-10-22 日本電信電話株式会社 Light-receiving device and light receiver
JP2020178028A (en) * 2019-04-18 2020-10-29 日本電信電話株式会社 Photoreceiver and optical receiver
US11862739B2 (en) 2019-04-18 2024-01-02 Nippon Telegraph And Telephone Corporation Photoreceiver and optical receiver having an inclined surface

Similar Documents

Publication Publication Date Title
JP3147141B2 (en) Light assembly
US7046868B2 (en) Optical waveguide transmitter-receiver module
US20020080457A1 (en) Optical receiver
Hashimoto et al. Multichip optical hybrid integration technique with planar lightwave circuit platform
US9946042B2 (en) Electronic/photonic chip integration and bonding
US6114737A (en) Light-receiving device
JPH05136152A (en) Photoelectronic part
JPS631062A (en) Parallel optical-signal processing semiconductor element
JPH09186348A (en) Semiconductor module
Cho et al. Board-level optical interconnection and signal distribution using embedded thin-film optoelectronic devices
JP2540040B2 (en) Optical integrated circuit board device
JP3264284B2 (en) Optical receiving module
JPH05121710A (en) Light receiving and emitting element array module
JPH09121043A (en) Integrated circuit optical circuit net unit
CN115803665A (en) Coherent fiber bundle parallel optical link
US6894269B2 (en) Configuration for detecting optical signals in at least one optical channel in a planar light circuit, attenuator including the configuration, and method for manufacturing the configuration
US6824313B2 (en) Optical receiver module
US6294821B1 (en) Single-chip wavelength converter
JPS62215909A (en) Parallel optical signal processing semiconductor element
JP2004186692A (en) Method of manufacturing electronic module including active component in base
JP2843874B2 (en) Optical integrated device
JPS61170707A (en) Substrate for hybrid optical integrated circuit
CN116314169B (en) Packaging structure of silicon-based integrated light receiving chip
EP0030167A1 (en) Connecting device for the multiplexing of electronic microcircuits, and read-write head and display panel using this method
JP2001053223A (en) Optical module