JPS63106116A - Snow tyre and its manufacturing method - Google Patents

Snow tyre and its manufacturing method

Info

Publication number
JPS63106116A
JPS63106116A JP61246517A JP24651786A JPS63106116A JP S63106116 A JPS63106116 A JP S63106116A JP 61246517 A JP61246517 A JP 61246517A JP 24651786 A JP24651786 A JP 24651786A JP S63106116 A JPS63106116 A JP S63106116A
Authority
JP
Japan
Prior art keywords
fiber
composite member
tread
tire
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61246517A
Other languages
Japanese (ja)
Inventor
Terumasa Doi
土井 照政
Hiroshi Furukawa
浩 古川
Yuichi Saito
祐一 斉藤
Ichiro Tominaga
一郎 富永
Taketo Matsuki
松木 丈人
Tetsuo Yamaguchi
哲男 山口
Hiromi Matsushita
松下 裕臣
Kunio Niwa
邦夫 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Publication of JPS63106116A publication Critical patent/JPS63106116A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve gripping ability and to prevent surface damage by laying a pin-shaped member made of a complex member, in which fiber cords are buried in plastic, under tread rubber so that if becomes a specified angle to the tread surface. CONSTITUTION:Fiber cords 6 made of organic fiber such as aramid fiber, etc. or inorganic fiber such as carbon fiber, etc. are buried in thermoplastic resin such as polysulfone, etc. or thermosetting resin such as epoxyresin, etc. so as to make complex material C. This complex material C is formed into a pin shape with diameter of 0.3-15mm and laid under blocks 3-5 of tread rubber at the angle of 45 deg.-90 deg. to the tread surface. Then, it is laid under the unit blocks 3-5 at a rate of 5-25% by volume. By this constitution, the gripping ability can be improved and the surface damage can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、氷結路面、積雪路面の走行を安全としかつ舗
装路面での粉塵公害を軽減しうるスノー用タイヤ及びそ
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a snow tire that allows safe driving on frozen and snowy roads and reduces dust pollution on paved roads, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、氷結路面、積雪路面の走行には、タイヤにチェー
ンを装着するか又はスパイクタイヤ等を用いている。
Conventionally, when driving on icy or snowy roads, chains are attached to tires or spiked tires are used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、この種のタイヤは、舗装路面を走行する際、路
面のtO耗が激しく、又特にスパイクタイヤは、粉塵に
よる公害が社会問題化しており、使用が規制されつつあ
る。なお、近年トレッドゴムの低温特性を改良してスパ
イクタイヤと同様なグリップ性能を与えることを意図し
たいわゆるスタラドレスタイヤの開発も進められている
が、未だ実用化されていない。
However, when this type of tire is run on a paved road surface, the road surface is subject to significant wear and tear, and the use of spiked tires in particular is being regulated due to the pollution caused by dust that has become a social problem. In recent years, so-called starless tires have been developed which are intended to improve the low-temperature properties of the tread rubber and provide grip performance similar to that of spiked tires, but these have not yet been put to practical use.

本発明は、積雪路面、氷結路面でのグリップ性を維持し
かつ路面の損傷を防ぎうるスノー用タイヤ及びその製造
方法の提供を目的としている。
An object of the present invention is to provide a snow tire that can maintain grip on snowy and icy roads and prevent damage to the road surface, and a method for manufacturing the same.

〔技術手段〕[Technical means]

本発明は、繊維コード6とプラスチック7とからなる複
合部材Cをトレッド表面に対して45゜〜90゛の角度
になるようにトレッドゴムに埋設したことを特徴とする
スノー用タイヤ及びその製造方法である。
The present invention provides a snow tire and its manufacturing method, characterized in that a composite member C consisting of fiber cords 6 and plastic 7 is embedded in tread rubber at an angle of 45° to 90° with respect to the tread surface. It is.

本発明のタイヤの一実施例のトレッド部を、平面で示す
第1図において、タイヤ1は、そのトレッド部2に、赤
道を通るブロック3−の各両側に2列のブロック4−1
5−・−を配しており、又本例ではブロック3−・−1
4・・・、5・・〜は周方向に長い平面矩形の直方体伏
をなし、かつ同位相で並設される。そしてブロック3−
・、4−・・、5−・には、前記複合部材Cが配される
とともに、本例では、複合部材Cは、予め各ブロックの
ほぼ全体を構成するトレッドゴムに埋着されている。
In FIG. 1, which shows a tread portion of an embodiment of the tire of the present invention in plan view, the tire 1 has two rows of blocks 4-1 on each side of a block 3- passing through the equator on its tread portion 2.
5-・-, and in this example, blocks 3-・-1 are arranged.
4..., 5... form a rectangular rectangular parallelepiped with a plane long in the circumferential direction, and are arranged in parallel in the same phase. And block 3-
, 4-, 5-, are arranged with the composite member C, and in this example, the composite member C is embedded in advance in the tread rubber that constitutes almost the entirety of each block.

複合部材Cは複数本の繊維コード6をプラスチック7、
本例では熱硬化性樹脂又は熱可塑性樹脂により固着し一
体化してなり、又複合部材Cは、第2図に示すごとく、
円柱ピン状に形成される。
The composite member C includes a plurality of fiber cords 6 and a plastic 7,
In this example, the composite member C is fixed and integrated with thermosetting resin or thermoplastic resin, and as shown in FIG.
It is formed into a cylindrical pin shape.

なお、第3図に示すごとく、従来のスタンドと同様にシ
ャンク部C1の下面にフランジ部C2を膨出させた段付
ピンにも形成でき、さらに第4図に示すごとく、角柱状
等の形状にも形成しうる。
As shown in FIG. 3, the flange portion C2 can be formed into a stepped pin with a bulging flange portion C2 on the lower surface of the shank portion C1, similar to the conventional stand, and as shown in FIG. It can also be formed.

ここで熱硬化性樹脂としてエポキシ樹脂、ウレタン樹脂
、フェノール樹脂等が用いられる。
Here, epoxy resin, urethane resin, phenol resin, etc. are used as the thermosetting resin.

又熱可塑性樹脂として、ポリサルホン、ポリフェニレン
オキサイド、変性ポリフェニレンオキサイド、PBT、
ポリアミド、PE5S PEEK。
In addition, as thermoplastic resins, polysulfone, polyphenylene oxide, modified polyphenylene oxide, PBT,
Polyamide, PE5S PEEK.

pc、pps等が用いられる。このような熱可塑性樹脂
にあっては、例えばポリサルホンは脆化温度が一100
℃、Tgが190℃、熱変形温度(抗張力18.6kg
/m  のものにおいて)が175℃であるなどマトリ
ックスとしての靭性に優れかつ高い剛性を有する。又こ
のような熱可塑性樹脂は、型成形用材料としてシート状
に形成したものを型外で加熱熔融させた後、成形型に装
入し成形することができ、熱硬化性樹脂の成形に比べて
高サイクルで成形しうるため、効率のよい生産が可能と
なる。さらに例えばナイロンリムに代表される方法、即
ち型内に強化用繊維を配設しかつ重合温度に加熱した後
、モノマーを流し込み重合させた熱可塑性樹脂を用いう
る。なおナイロンリムにより得られるものについては、
例えば6ナイロ等通常のナイロンに比べ飽和吸水量が少
ないため寸法が安定する一方、大なる分子量を有しかつ
結晶性が高いナイロンの特性を具備しているため、靭性
を有し振動、衝撃吸収性、疲労強度に優れる等、複合部
材Cの基材としては好適な特性を具えている。
PC, pps, etc. are used. Among such thermoplastic resins, for example, polysulfone has a brittle temperature of 1100
℃, Tg is 190℃, heat distortion temperature (tensile strength 18.6kg
/m2) is 175°C, and has excellent toughness and high rigidity as a matrix. In addition, such thermoplastic resins can be formed into a sheet as a molding material, heated and melted outside the mold, and then charged into a mold and molded, which is faster than molding with thermosetting resins. Since it can be molded in high cycles, efficient production is possible. Furthermore, for example, a thermoplastic resin may be used, such as a method typified by a nylon rim, in which reinforcing fibers are placed in a mold, heated to a polymerization temperature, and then monomers are poured and polymerized. Regarding what can be obtained with a nylon rim,
For example, it has less saturated water absorption than regular nylon such as nylon 6, making it dimensionally stable, while it has the characteristics of nylon, which has a large molecular weight and high crystallinity, so it has toughness and absorbs vibrations and shocks. It has properties suitable as a base material for the composite member C, such as excellent properties such as excellent elasticity and fatigue strength.

繊維コード6は、有機繊維としてアラミド繊維の長繊維
が用いられる。又無機繊維としてカーボンファイバー、
炭化ケイ素繊維、ガラス繊維等の長繊維が用いられる。
The fiber cord 6 uses long fibers of aramid fibers as organic fibers. Also, carbon fiber as an inorganic fiber,
Long fibers such as silicon carbide fibers and glass fibers are used.

これらの繊維コード6は、複数本をプラスチック7に長
手方向に平行に埋着、固定することにより、前記のごと
く、複合部材Cが形成される。なお、繊維コード6は、
モノフィラメント即ち一本のコード体により複合部材C
を形成することもできる。又複合部材Cは、直径0゜3
〜15alの範囲でトレンド表面に対して45゜〜90
°、好ましくは90°の角度即ち第1図の紙面に対して
直角となるように配列することが必要である。ここで複
合部材Cを45°以下の角度に配設すると、走行時の曲
げ剛性が充分でなく、氷上でのグリップ性を発揮できな
い。
By embedding and fixing a plurality of these fiber cords 6 in the plastic 7 in parallel in the longitudinal direction, the composite member C is formed as described above. In addition, the fiber cord 6 is
Composite member C by monofilament, that is, one cord body
can also be formed. Also, the composite member C has a diameter of 0°3
45° to 90° to the trend surface in the range of ~15al
1, preferably at a 90° angle, ie perpendicular to the plane of the page of FIG. If the composite member C is arranged at an angle of 45° or less, the bending rigidity during running will not be sufficient, and grip performance on ice will not be exhibited.

なおこのような観点から、繊維コード6は複合部材Cに
対して平行に配置されるのが好ましく、又複合部材Cが
埋設された状態において少なくともトレンド表面と平行
とならないように、複合部材Cの長手方向とのなす角度
が45°よりも小、好ましくは30°〜0°とする。
From this point of view, it is preferable that the fiber cords 6 be arranged parallel to the composite member C, and the fiber cords 6 should be arranged parallel to the composite member C so that the fiber cords 6 are not parallel to the trend surface at least when the composite member C is buried. The angle formed with the longitudinal direction is smaller than 45°, preferably 30° to 0°.

これらの複合部材Cは、トレッドゴムのブロック3.4
.5において体積割合で3〜40%、好ましくは5〜2
5%の範囲で埋設される。3%より少ない場合、積雪路
面でのグリップ性に劣り、又40%を越えるに従ってト
レッドゴムと複合部材Cの結合強度が低下し、特に40
%をこえると走行時の複合部材Cの損傷が発生し易くな
る。なお前記繊維コード6は、第2図においては、複合
部材Cの全区に亘り配設されているが、接地部分にのみ
配設されてもよい、なお繊維コード6が過員である場合
、無駄である他、トレッドゴム中へ深く入りすぎ、トレ
ッドゴムの底厚さを減じ、その埋設効果を妨げることも
ある。なお第3図に示すように、フランジ部02等は、
硬質ゴム、又はプラスチック等を用いて構成するのもよ
い、又複合部材Cの接地部の総表面積は、トレッド部2
表面の総面積、即ちトレッド中とタイヤ周長の積の3〜
30%、好ましくは3〜20%の範囲である。
These composite members C are made of tread rubber blocks 3.4
.. 5 to 40% by volume, preferably 5 to 2
Buried within 5%. If it is less than 3%, the grip performance on snowy road surfaces will be poor, and if it exceeds 40%, the bonding strength between the tread rubber and the composite member C will decrease, especially if it exceeds 40%.
%, the composite member C is more likely to be damaged during running. Although the fiber cords 6 are arranged over the entire area of the composite member C in FIG. 2, they may be arranged only in the ground contact area. In addition to being wasteful, it may penetrate too deeply into the tread rubber, reducing the bottom thickness of the tread rubber and hindering its embedding effect. In addition, as shown in FIG. 3, the flange portion 02, etc.
It may also be constructed using hard rubber or plastic, and the total surface area of the ground contact portion of the composite member C is equal to the tread portion 2.
Total surface area, i.e. 3 to 3 of the product of the tread and tire circumference
30%, preferably in the range of 3-20%.

3%より小さい場合、グリップ性能が維持できず、一方
30%を越えると乗心地を阻害することとなる。かかる
観点から複合部材Cがタイヤ1本当りに埋設される個数
は100〜500個である。又各ブロック4・・−15
−には、1つの複合部材Cを埋設する場合の他、多数個
取付けてもよい。
If it is less than 3%, grip performance cannot be maintained, while if it exceeds 30%, riding comfort will be impaired. From this point of view, the number of composite members C buried in one tire is 100 to 500. Also each block 4...-15
- In addition to the case where one composite member C is buried, a large number of composite members C may be attached.

本発明のタイヤ1を製造するには、前記繊維コード6を
プラスチック7中に充填した複合部材Cを予め加硫、も
しくは半加硫したトレッドゴムバンドT(第5図に示す
)に埋設し、しかる後、第6図に示すごとく、ビード部
、カーカス及びベルト層等の補強材で構成された台タイ
ヤBTに、クツシランゴム9、ゴム糊等の接着層10を
介して貼設される。この方法は従来更生タイヤで用いら
れている技術がそのまま採用できる。なお本発明のタイ
ヤlは、ブロックパターンとして、各種の形状のものが
採用でき、又リブ、ブロックパターン等のものにも採用
できる。
To manufacture the tire 1 of the present invention, a composite member C in which the fiber cords 6 are filled in a plastic 7 is embedded in a tread rubber band T (shown in FIG. 5) that has been vulcanized or semi-vulcanized in advance; Thereafter, as shown in FIG. 6, it is attached to a base tire BT made up of reinforcing materials such as the bead portion, carcass, and belt layer via an adhesive layer 10 such as silica rubber 9 and rubber glue. For this method, the technology conventionally used for retreaded tires can be adopted as is. The tire 1 of the present invention can have various shapes as a block pattern, and can also have ribs, block patterns, etc.

なおプラスチック7が熱可塑性樹脂である場合には繊維
コード6を装項したモールドを加熱しかつ内部を減圧す
るとともに、モールド内に樹脂の原材を注入するいわゆ
るモノマーキャステング方法が好適に採用できる。
In addition, when the plastic 7 is a thermoplastic resin, a so-called monomer casting method can be suitably employed, in which a mold in which the fiber cord 6 is placed is heated, the inside of the mold is reduced in pressure, and a resin raw material is injected into the mold.

本発明の他の実施例として、前記複合部材C自体を用い
てトレッド部の一部を形成するように構成することもで
きる0例えば第8図に示すごとく、繊維コード1)を平
行に引き揃えた織物に熱硬化性樹脂又は熱可塑性樹脂を
硬化したシート12を長手方向に一定間隔Hで切断し、
この切断片13をコードが垂直になるように純ゴム片1
4を介して41JIrfi!することにより第9図に示
されるトレッドバンドTを形成できる。しかる後このト
レッドバンドTをプレス加硫し、さらに自動もしくは手
動のグルービングマシンで模様を形成する。その後の台
タイヤに貼設する工程は前記のとおりである。
As another embodiment of the present invention, the composite member C itself may be used to form a part of the tread portion. For example, as shown in FIG. 8, fiber cords 1) are aligned in parallel. A sheet 12 in which a thermosetting resin or a thermoplastic resin is cured on a woven fabric is cut at regular intervals H in the longitudinal direction,
Place this cut piece 13 on the pure rubber piece 1 so that the cord is vertical.
41JIrfi via 4! By doing so, the tread band T shown in FIG. 9 can be formed. Thereafter, this tread band T is press-cured, and a pattern is further formed using an automatic or manual grooving machine. The subsequent process of attaching it to the base tire is as described above.

実施例 1 複合部材をモノマーキャステングにより製作し、その特
性を調査した。
Example 1 A composite member was manufactured by monomer casting and its properties were investigated.

(1)カーボンファイバーを軸方向に15°の角度に編
みかつ熱可塑性樹脂との比が35f!!ff%になるよ
うモールド内に配設するとともに、該モールドを150
℃で加熱し、次いで真空ポンプを用いてモールド内を1
 w Hgまで減圧した。100gのC−カプロタムを
llのフラスコ中で窒素置換しながら130℃に加熱熔
融し、0.21 gのNaH(50%油性)を加え完全
に反応溶解させた。
(1) Carbon fiber is woven at an angle of 15° in the axial direction and the ratio to thermoplastic resin is 35f! ! ff% in the mold, and the mold was heated to 150%.
℃, then use a vacuum pump to cool the inside of the mold to 1
The pressure was reduced to w Hg. 100 g of C-caprotam was heated and melted at 130° C. while purging with nitrogen in a 1 liter flask, and 0.21 g of NaH (50% oily) was added to completely react and dissolve.

同時に他方のIEのフラスコ中に100gのe−カブロ
ラクタムを秤取し、同様に窒素澄換しながら130℃に
加熱溶融した後0.13 gのN−アセチル−e−カプ
ロラクタムを加え完全に熔解させた。前記モールド内に
前記ラクタム混合液を同時に注入した。
At the same time, 100 g of e-caprolactam was weighed into the other IE flask, heated and melted at 130°C while purging with nitrogen, and then 0.13 g of N-acetyl-e-caprolactam was added and completely melted. Ta. The lactam mixture was simultaneously injected into the mold.

このようにして得られた複合部材の特性について調査を
行い、その疲労特性を第1O図に示す。
The properties of the composite member thus obtained were investigated, and its fatigue properties are shown in Figure 1O.

なお性能比較のため短繊維(炭S)強化材を用いたポリ
アミド系材料Bとエポキシプリプレグ材料Cについても
同様に調査した。又耐熱性、破壊エネルギーについても
試験を行い、耐熱性を第1表に、破壊エネルギーを第2
表に夫々示す。なお比較のためプラスチック及び繊維コ
ードの形成を異にする複合部材についても併せて調査し
た。
For performance comparison, polyamide material B and epoxy prepreg material C using short fiber (charcoal S) reinforcement were also investigated in the same manner. Tests were also conducted for heat resistance and fracture energy, with heat resistance shown in Table 1 and fracture energy shown in Table 2.
Each is shown in the table. For comparison, composite members with different plastic and fiber cord formations were also investigated.

(2)カーボンファイバーを軸方向に25@の角度に編
み、熱可塑性樹脂との比が35%となるようにモールド
内に設置し、モールドを(1)項と同一温度に加熱しか
つ減圧するとともに、100gのe−カブロラクタムを
1)のフラスコ中で窒素置換しながら130℃に加熱し
、0.21gのNaHを加えて完全に熔解させた。同時
に他の1)のフラスコ中に100gのε−カプロラクタ
ムを秤取し、同様に窒素置換しながら130℃に加熱し
熔解させた後0.13 gのN−アセチル−ε−カプロ
ラクタムを加え完全に熔解させた。前記モール内に前記
ラクタム液を同時に注入し150℃の温度に30分間保
った。
(2) Knit carbon fibers at an angle of 25@ in the axial direction, place them in a mold so that the ratio to the thermoplastic resin is 35%, heat the mold to the same temperature as in (1), and reduce the pressure. At the same time, 100 g of e-cabrolactam was heated to 130° C. while purging with nitrogen in the flask of 1), and 0.21 g of NaH was added to completely melt it. At the same time, 100 g of ε-caprolactam was weighed into the other flask from 1), heated to 130°C to melt it while purging with nitrogen, and then 0.13 g of N-acetyl-ε-caprolactam was added and completely dissolved. Melted. The lactam solution was simultaneously injected into the mold and maintained at a temperature of 150° C. for 30 minutes.

このようにして得られた熱可塑性樹脂について疲労特性
を調査し、その結果を第1)図に示す。
The fatigue properties of the thermoplastic resin thus obtained were investigated, and the results are shown in Figure 1).

第1)図においては、破壊強度に対する疲労応力値の割
合を縦軸に、負荷サイクルを横軸に夫々表示するととも
に、Dは比較のため前記のモノマーキャステングにより
成形した複合材を強化材として連続ガラス繊維マットを
用いたナイロン樹脂からなる複合材料(スタンパブルシ
ート)をあられす。
In Figure 1), the vertical axis represents the ratio of fatigue stress to fracture strength, and the horizontal axis represents the load cycle. For comparison, D is a continuous composite material formed by monomer casting as a reinforcing material. We produce a composite material (stampable sheet) made of nylon resin with glass fiber mat.

なお、試験条件は、曲げ弾性率、曲げ強度が繊維角度±
15°で、テスト速度2.5 M / mainの3点
曲げ試験による。スパン間隔は100fi、テストピー
ス寸法は4(厚)XIO(巾)x150(長)Uであっ
た。また疲労試験は、応カ一定で周波数IHzの3点曲
げ疲労試験による。 !Jli維角度は±15°、テス
トピース寸法4(厚)貢1×10(巾)mx150(長
)u1スパン間隔80鶴で耐久限を10’ 回とした。
The test conditions are that the bending modulus and bending strength are within the fiber angle ±
By 3-point bending test at 15° and test speed 2.5 M/main. The span spacing was 100fi, and the test piece dimensions were 4 (thickness) XIO (width) x 150 (length) U. The fatigue test was conducted using a three-point bending fatigue test with a constant stress and a frequency of IHz. ! Jli fiber angle was ±15°, test piece dimensions were 4 (thickness) 1 x 10 (width) m x 150 (length) u1 span interval 80 tsuru, and the durability limit was set at 10 times.

破壊エネルギーは曲げ強度と同じ条件で行う一方、耐熱
性は室温での剛性率(E 20)より100℃(Elo
o)及び150℃(E150)での剛性率の保持率(E
100/E20、E 150 / E 20)を求め、
その結果を第1.2表、第10.1)図に示す。
Fracture energy was measured under the same conditions as bending strength, while heat resistance was measured at 100°C (Elo
o) and retention rate of rigidity at 150°C (E150) (E
100/E20, E 150/E 20),
The results are shown in Table 1.2 and Figure 10.1).

前記各試験に用いた装置は株式会社インテスコ製のTY
PE  2050であった。
The equipment used in each of the above tests was TY manufactured by Intesco Co., Ltd.
It was PE 2050.

さらに減衰性能については、繊維角度±15゜の4(厚
)龍×10 (巾)鶴X150 (長) amの材料を
糸で吊し、インパクトハンマで衝撃を与え加速度ピック
アップで加速度<tx>を測定してα/Fを周波数解析
した。
Furthermore, regarding the damping performance, a material of 4 (thickness) Dragon x 10 (width) Tsuru x 150 (length) am with a fiber angle of ±15° was suspended with a thread, an impact was applied with an impact hammer, and the acceleration <tx> was measured with an acceleration pickup. It was measured and α/F was subjected to frequency analysis.

減交比(ζ)の針算は、YHP■社製ダイナミックアナ
ライザー3562Aを用いて行った。即ら前記α/Fを
周波数解析し、次式によってζを求め第   1   
表 第   2   表 た。
The cross-reduction ratio (ζ) was calculated using a dynamic analyzer 3562A manufactured by YHP ■. That is, frequency analysis is performed on the above α/F, and ζ is determined using the following formula.
Table 2.

ζ−(1/2)X (△ω/ωn) To−Tn/ σ その結果は、ナイロン樹脂(UX−21を加熱重合させ
たもの)で強化繊維を含まないものが0.0558、表
面処理を施さない連続炭素繊維を含むもの   ゛(繊
維角度17°)が0.0107、ナイロン系表面処理剤
で表面処理を施した連続炭素繊維を含むもの(繊維角度
12°)が0.0135、表面処理を施さない連続炭素
繊維を含むもの(繊維角度19°)が0.0122、ナ
イロン樹脂(NY66)で炭素繊維(短繊維)を15%
含むものが0.0230、同30%含むものが0.01
59、エポキシ樹脂で連続炭素繊維を含むものが0.0
098であった。
ζ-(1/2) Those containing continuous carbon fibers without surface treatment (fiber angle 17°) are 0.0107, those containing continuous carbon fibers that have been surface-treated with a nylon surface treatment agent (fiber angle 12°) are 0.0135, and the surface The one containing untreated continuous carbon fiber (fiber angle 19°) is 0.0122, and the carbon fiber (short fiber) is 15% with nylon resin (NY66).
Those containing 0.0230, those containing 30% are 0.01
59. Epoxy resin containing continuous carbon fiber is 0.0
It was 098.

このように熱可塑性樹脂を用いて七ノマーキャステング
法により形成した複合材料は、疲労特性、耐熱性、破壊
エネルギー等の特性が他のものより優れており、本発明
のタイヤの複合部材として好適に採用しうろことが判明
した。
The composite material formed by the heptanomer casting method using a thermoplastic resin as described above has better properties such as fatigue properties, heat resistance, and fracture energy than other materials, and is suitable as a composite member for the tire of the present invention. It turned out that I would be hired.

実施例 2 タイヤサイズIG5.5R13でトレッド部2に第1図
、第5図に示す1−レッドパターンを採用し、第3表の
仕様のタイヤを試作した。
Example 2 A tire with a tire size of IG5.5R13 and a 1-red pattern shown in FIGS. 1 and 5 was adopted for the tread portion 2, and a tire with the specifications shown in Table 3 was manufactured as a prototype.

その製法は第8図、第9図に示す方法にてトレンドバン
ドを作成し、これをプレス加硫して、しかる後、第1図
と同様な、第7図に示す模様を形成した。この場合、第
7図のものでは、赤道を通るブロック3にも強化材6が
埋設されている。その後トレッドバンドTを台タイヤB
Tに貼設してタイヤを製造した。
The manufacturing method was to create a trend band by the method shown in FIGS. 8 and 9, press vulcanize it, and then form a pattern similar to that shown in FIG. 1 as shown in FIG. 7. In this case, in the one shown in FIG. 7, the reinforcing material 6 is also embedded in the block 3 passing through the equator. Then replace the tread band T with the tire B.
A tire was manufactured by attaching it to T.

積雪路面、氷結路面での走行試験結果は第3表の通りで
ある。
The results of driving tests on snowy and icy roads are shown in Table 3.

〔発明の効果〕〔Effect of the invention〕

叙上のごとく本発明は、トレッドゴム中に繊維コードを
有する複合部材をほぼ垂直に埋設しているため路面との
間に大きなN棒刀を生じ、グリップ性が向上するととも
に前記繊維コードからなる複合部材は従来のスパイクに
比べて柔軟性があるため、路面を傷つけることもなく、
路面とスパイクとの接触に伴う振動衝撃も解消し乗心地
が向上する。
As described above, in the present invention, a composite member having fiber cords is buried almost vertically in the tread rubber, so that a large N-shaped rod is created between the composite member and the road surface, which improves grip performance and improves grip performance. Composite materials are more flexible than conventional spikes, so they do not damage the road surface.
Vibration and shock caused by contact between the road surface and the spikes are also eliminated, improving ride comfort.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はトレッド部平面図、第2〜4図は複合部材を例
示する斜視図、第5図はトレッドハンドの概略図、第6
図は本発明の製造方法を示すタイヤ断面図、第7図は4
hの実施例を示すトレッド部平面図、第8図はその製造
に際して用いるシートを例示する斜視図、第9図は第7
図のタイヤのトレッドバンドを例示する斜視図、第10
.1)図は複合部材の疲労特性を示すグラフである。 2−・・トレッド部、  6・・・繊維コード、7−・
・プラスチック、B−ブロック、C・−複合部材、T−
・・トレッドバンド、  BT−・一台タイヤ。 特 許 出 願 人  住友ゴム工業株式会社代理人 
弁理士    苗  村     正第3図
Fig. 1 is a plan view of the tread part, Figs. 2 to 4 are perspective views illustrating the composite member, Fig. 5 is a schematic diagram of the tread hand, and Fig. 6 is a schematic diagram of the tread hand.
The figure is a sectional view of a tire showing the manufacturing method of the present invention, and FIG.
FIG. 8 is a perspective view illustrating a sheet used in manufacturing the tread portion, and FIG.
A perspective view illustrating the tread band of the tire shown in FIG.
.. 1) The figure is a graph showing the fatigue characteristics of composite members. 2-...Tread portion, 6...Fiber cord, 7-...
・Plastic, B-block, C・-composite member, T-
・・Tread band, BT-・One tire. Patent applicant Agent: Sumitomo Rubber Industries, Ltd.
Patent Attorney Tadashi Naemura Figure 3

Claims (7)

【特許請求の範囲】[Claims] (1)繊維コードをプラスチックに埋設してなる複合部
材を、トレッド表面に対して45°〜90°の角度にな
るようにトレッドゴムに埋設したことを特徴とするスノ
ー用タイヤ。
(1) A snow tire characterized in that a composite member formed by embedding fiber cords in plastic is embedded in tread rubber at an angle of 45° to 90° with respect to the tread surface.
(2)前記プラスチックは熱硬化性樹脂である特許請求
の範囲第1項記載のスノー用タイヤ。
(2) The snow tire according to claim 1, wherein the plastic is a thermosetting resin.
(3)前記プラスチックは熱可塑性樹脂である特許請求
の範囲第1項記載のスノー用タイヤ。
(3) The snow tire according to claim 1, wherein the plastic is a thermoplastic resin.
(4)繊維コードは、カーボンファイバー、炭化ケイ素
繊維、ガラス繊維、アラミド繊維である特許請求の範囲
第1項記載のタイヤ。
(4) The tire according to claim 1, wherein the fiber cord is carbon fiber, silicon carbide fiber, glass fiber, or aramid fiber.
(5)複合部材は、直径0.3〜15mmのピン状をな
す特許請求の範囲第1項記載のタイヤ。
(5) The tire according to claim 1, wherein the composite member is pin-shaped with a diameter of 0.3 to 15 mm.
(6)複合部材は、トレッドゴムの単位ブロック中に体
積割合で5〜25%埋設されている特許請求の範囲第1
項記載のタイヤ。
(6) The composite member is embedded in a unit block of tread rubber at a volume ratio of 5 to 25%.
Tires listed in section.
(7)複合部材を埋設したトレッドゴムバンドを加硫し
、しかる後台タイヤに前記トレッドバンドを貼設一体化
することを特徴とするスノータイヤの製造方法。
(7) A method for manufacturing a snow tire, which comprises vulcanizing a tread rubber band in which a composite member is embedded, and then affixing and integrating the tread band onto a base tire.
JP61246517A 1986-06-04 1986-10-16 Snow tyre and its manufacturing method Pending JPS63106116A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-131021 1986-06-04
JP13102186 1986-06-04

Publications (1)

Publication Number Publication Date
JPS63106116A true JPS63106116A (en) 1988-05-11

Family

ID=15048144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61246517A Pending JPS63106116A (en) 1986-06-04 1986-10-16 Snow tyre and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS63106116A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074103U (en) * 1993-06-16 1995-01-20 隆二 冨樫 Anti-slip pin for tire
JP2003267004A (en) * 2002-03-14 2003-09-25 Yokohama Rubber Co Ltd:The Pneumatic tire
US20110088822A1 (en) * 2009-10-20 2011-04-21 Jean Joseph Victor Collette Studs for a tire
US20110088823A1 (en) * 2009-10-20 2011-04-21 Cuny Andre Studs for a tire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4967304A (en) * 1972-05-03 1974-06-29
JPS5052705A (en) * 1973-04-13 1975-05-10
JPS5948206A (en) * 1982-09-13 1984-03-19 Katsuo Takeda Method for improving slip prevention of snow tire
JPS60166507A (en) * 1984-02-10 1985-08-29 Kinya Nakamura Snow tire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4967304A (en) * 1972-05-03 1974-06-29
JPS5052705A (en) * 1973-04-13 1975-05-10
JPS5948206A (en) * 1982-09-13 1984-03-19 Katsuo Takeda Method for improving slip prevention of snow tire
JPS60166507A (en) * 1984-02-10 1985-08-29 Kinya Nakamura Snow tire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074103U (en) * 1993-06-16 1995-01-20 隆二 冨樫 Anti-slip pin for tire
JP2003267004A (en) * 2002-03-14 2003-09-25 Yokohama Rubber Co Ltd:The Pneumatic tire
US20110088822A1 (en) * 2009-10-20 2011-04-21 Jean Joseph Victor Collette Studs for a tire
US20110088823A1 (en) * 2009-10-20 2011-04-21 Cuny Andre Studs for a tire
US8215353B2 (en) * 2009-10-20 2012-07-10 The Goodyear Tire & Rubber Company Studs for a tire
US8215354B2 (en) * 2009-10-20 2012-07-10 The Goodyear Tire & Rubber Company Studs for a tire

Similar Documents

Publication Publication Date Title
EP0502353B1 (en) Non-pneumatic spare tire
AU2005249924B2 (en) Elastomeric tire with arch shaped shoulders
CN101687433B (en) Tension-based non-pneumatic tire
CA2091210C (en) Non-pneumatic tire with ride-enhancing insert
US8439090B2 (en) Tyre equipped for attaching an object to the wall thereof and fastener therefor
US20100200131A1 (en) Non-pneumatic tire and its manufacturing method
US6374887B1 (en) Non-pneumatic, leaf spring-supported vehicle tire
JP2014503394A (en) Annular structure having a plurality of reinforcing bands
JPS62148252A (en) Fiber-reinforced thermosetting molding composite material and manufacture thereof
CA1143263A (en) Tire and method of reinforcement
EP0421767B1 (en) Molded articles of fiber-reinforced plastic and preparation process of same
JPS63106116A (en) Snow tyre and its manufacturing method
US5291930A (en) Pneumatic radial tires including fiber/resin belt cords having elliptical or rectangular cross-sectional shape
CN114228403B (en) Polyurethane spoke for non-pneumatic tire and preparation method thereof
US4320082A (en) Molding of rotary mower safety blade
WO1991004145A1 (en) Moulding of articles in plastics
CN216609755U (en) Spoke mold for non-pneumatic tire
CN210101205U (en) Flexible wheel of blade formula combined material elastic support body
CN218749737U (en) One shot forming&#39;s compound undersole of light weight bradyseism
US3387990A (en) Structures formed of glass fiber-elastomer systems
JPS62231804A (en) Snow tire
JPH06239112A (en) Spike for tire and tire with spike installed
JPH0757539B2 (en) Snow tire manufacturing method
US4353850A (en) Method of making a bowling ball
US4137112A (en) Method of retreading a pneumatic tire