JPS6310591B2 - - Google Patents

Info

Publication number
JPS6310591B2
JPS6310591B2 JP57216990A JP21699082A JPS6310591B2 JP S6310591 B2 JPS6310591 B2 JP S6310591B2 JP 57216990 A JP57216990 A JP 57216990A JP 21699082 A JP21699082 A JP 21699082A JP S6310591 B2 JPS6310591 B2 JP S6310591B2
Authority
JP
Japan
Prior art keywords
type
amorphous layer
type amorphous
solar cell
silicon solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57216990A
Other languages
Japanese (ja)
Other versions
JPS59107574A (en
Inventor
Takashi Ishihara
Genshiro Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57216990A priority Critical patent/JPS59107574A/en
Publication of JPS59107574A publication Critical patent/JPS59107574A/en
Publication of JPS6310591B2 publication Critical patent/JPS6310591B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 この発明はアモルフアスシリコン半導体を主材
料として用いたpin接合構造のアモルフアスシリ
コン太陽電池の製造方法に係り、特にi形アモル
フアス層の成長工程に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an amorphous silicon solar cell having a pin junction structure using an amorphous silicon semiconductor as a main material, and particularly relates to a growth process of an i-type amorphous layer.

第1図は従来のpin接合構造のアモルフアスシ
リコン太陽電池の断面図を示すものであり、図に
おいて1は基板、2はこの基板の表面上に周知の
グロー放電法によつて蒸着され、p形不純物であ
るボロンがドープされたp形アモルフアス層で、
厚さ約100Åである。3はこのp形アモルフアス
層の表面上に同様にグロー放電法によつて蒸着さ
れたアンドープのi形アモルフアス層で、厚さ数
千Å、例えば約5000Åである。4はこのi形アモ
ルフアス層の表面上に蒸着され、n形不純物であ
るリンがドープされたn形アモルフアス層で、厚
さ約100Åである。5はこのn形アモルフアス層
の表面上に形成された例えばITO(In、O3とSnO2
との混合物)薄膜からなる反射防止膜、6はこの
反射防止膜の表面上に選択的に形成された金属か
らなる集電電極である。
Figure 1 shows a cross-sectional view of a conventional amorphous silicon solar cell with a pin junction structure. In the figure, 1 is a substrate, and 2 is a p A p-type amorphous layer doped with boron, which is a type impurity,
The thickness is approximately 100 Å. Reference numeral 3 denotes an undoped i-type amorphous layer deposited on the surface of this p-type amorphous layer by the glow discharge method, and has a thickness of several thousand Å, for example, about 5000 Å. Reference numeral 4 denotes an n-type amorphous layer doped with phosphorus as an n-type impurity, which is deposited on the surface of this i-type amorphous layer, and has a thickness of about 100 Å. 5, for example, ITO (In, O 3 and SnO 2 ) formed on the surface of this n-type amorphous layer.
6 is a current collecting electrode made of metal selectively formed on the surface of this anti-reflection film.

この様に構成されたアモルフアスシリコン太陽
電池にあつて特にi形アモルフアス層の成長工程
においては、従来、高い一定のRFパワーによつ
て成長させていた。この様に高い一定のRFパワ
ーによつてi形アモルフアス層を成長させた場
合、p形アモルフアス層2からp形不純物(この
従来例においてはボロン)がたたき出されてi形
アモルフアス層3に混入し、その結果、アモルフ
アスシリコン太陽電池の特性、特に変換効率が低
くなつてしまうという欠点があつた。
In an amorphous silicon solar cell constructed in this manner, especially in the growth process of the i-type amorphous layer, growth has conventionally been performed using a high constant RF power. When the i-type amorphous layer is grown with such a high constant RF power, p-type impurities (boron in this conventional example) are knocked out from the p-type amorphous layer 2 and mixed into the i-type amorphous layer 3. However, as a result, the characteristics of the amorphous silicon solar cell, especially the conversion efficiency, deteriorated.

ところで、i形アモルフアス層3のp形不純物
の混入量を減らす一つの方法として、非常に低い
RFパワーによつてi形アモルフアス層3をp形
アモルフアス層2上に成長させる方法が考えられ
る。この方法によれば、i形アモルフアス層3の
p形不純物混入量は減少させることができる反
面、i形アモルフアス層3自体の膜質が低下する
現象が現われ、結果としてアモルフアスシリコン
太陽電池の特性は良くならなかつた。
By the way, one way to reduce the amount of p-type impurities mixed into the i-type amorphous layer 3 is to reduce the amount of p-type impurities to a very low level.
A possible method is to grow the i-type amorphous layer 3 on the p-type amorphous layer 2 using RF power. According to this method, although the amount of p-type impurities mixed into the i-type amorphous layer 3 can be reduced, the film quality of the i-type amorphous layer 3 itself deteriorates, and as a result, the characteristics of the amorphous silicon solar cell deteriorate. It didn't get better.

すなわち、アモルフアスシリコン太陽電池の特
性は、i形アモルフアス層のp形不純物の混入量
及び膜質に影響されるものである。そして、i形
アモルフアス層3のp形不純物分布には最適プロ
フアイルがあるが、一般にi形アモルフアス層3
中のp形不純物濃度は少ないものが良好であり、
一方i形アモルフアス層3の膜質も最適成長条件
があり、SiH4分解効率及びp形不純物の再分布
に影響するRFパワーと電極大きさとの兼ね合い
になるが、一般に小さいもの程良好であることが
知られている。しかしながら、この低RFパワー
条件よりも更にRFパワーの低い極低RFパワーで
は急激にそのi形アモルフアス層3の膜質は低下
するが、その反面極低RFパワーの条件下におい
ては、上記でも述べたようにi形アモルフアス層
のp形不純物の再分布は抑制できるという利点が
ある。
That is, the characteristics of an amorphous silicon solar cell are influenced by the amount of p-type impurity mixed in the i-type amorphous layer and the film quality. Although there is an optimum profile for the p-type impurity distribution in the i-type amorphous layer 3, generally the i-type amorphous layer 3
The lower the concentration of p-type impurities in the material, the better.
On the other hand, there are optimal growth conditions for the film quality of the i-type amorphous layer 3, and it is a balance between RF power and electrode size, which affect SiH 4 decomposition efficiency and redistribution of p-type impurities, but in general, the smaller the size, the better. Are known. However, at extremely low RF power, which is even lower than this low RF power condition, the film quality of the i-type amorphous layer 3 deteriorates rapidly, but on the other hand, under extremely low RF power conditions, as mentioned above, This has the advantage that redistribution of p-type impurities in the i-type amorphous layer can be suppressed.

この発明は上記した点に鑑みてなされたもので
あり、pin接合構造のアモルフアスシリコン太陽
電池の製造方法において、低いRFパワーにて薄
い第1のi形アモルフアス層を形成し、これに続
いて、高いRFパワーにて厚い第2のi形アモル
フアス層を形成するようすることにより、i形ア
モルフアス層全体としては不純物の混入を抑制す
るとともに膜質向上を図り、太陽電池としての特
性向上、特に変換効率の向上を図ることができる
アモルフアスシリコン太陽電池の製造方法を提供
することを目的とする。
This invention has been made in view of the above points, and is a method for manufacturing an amorphous silicon solar cell with a pin junction structure, in which a thin first i-type amorphous layer is formed using low RF power, and then By forming a thick second i-type amorphous layer with high RF power, the i-type amorphous layer as a whole suppresses the incorporation of impurities and improves the film quality, improving the characteristics as a solar cell, especially the conversion An object of the present invention is to provide a method for manufacturing an amorphous silicon solar cell that can improve efficiency.

以下にこの発明の一実施例を第2図に基づいて
説明する。第2図はこの発明の製造方法により製
造されたpin接合構造のアモルフアスシリコン太
陽電池の断面図であり、第2図において第1図の
ものと同一符号は同一又は相当部分を示し、3は
低いRFパワーのグロー放電(例えば15W)によ
り成長された第1のi形アモルフアス層7と、高
いRFパワーのグロー放電(例えば40W)により
成長された第2のi形アモルフアス層8からなる
i形アモルフアス層で、第1のi形アモルフアス
層7の厚さは数百Å、例えば約500Åであり、第
2のi形アモルフアス層8の厚さは数千Å、例え
ば約5000Åである。
An embodiment of the present invention will be described below based on FIG. 2. FIG. 2 is a cross-sectional view of an amorphous silicon solar cell with a pin junction structure manufactured by the manufacturing method of the present invention. In FIG. 2, the same reference numerals as those in FIG. The i-type is composed of a first i-type amorphous layer 7 grown by a low RF power glow discharge (for example, 15 W) and a second i-type amorphous layer 8 grown by a high RF power glow discharge (for example, 40 W). Among the amorphous layers, the thickness of the first i-type amorphous layer 7 is several hundred Å, for example about 500 Å, and the thickness of the second i-type amorphous layer 8 is several thousand Å, for example about 5000 Å.

この様に構成されたアモルフアスシリコン太陽
電池の製造は、まず基板1の表面上に従来と同様
にグロー放電法によつてp形不純物であるボロン
がドープされたp形アモルフアス層2を蒸着し、
その後、このp形アモルフアス層2の表面上に低
いRFパワーのグロー放電(例えば15W)により
約500Åの膜厚になるまでアンドープの第1のi
形アモルフアス層7を成長させ、引き続いて高い
RFパワーのグロー放電(例えば40W)により第
2のi形アモルフアス層8を約5000Åの膜厚にな
るまで成長させてi形アモルフアス層3を形成す
る。次いで、このi形アモルフアス層3の表面上
に、従来と同様の方法により、n形不純物である
リンがドープされたn形アモルフアス層4、ITO
薄膜からなる反射防止膜5、および集電電極6を
順次積層形成するものである。
To manufacture an amorphous silicon solar cell constructed in this manner, first, a p-type amorphous layer 2 doped with boron, which is a p-type impurity, is deposited on the surface of a substrate 1 by a glow discharge method in the same manner as in the past. ,
Thereafter, the undoped first i is applied to the surface of this p-type amorphous layer 2 by glow discharge with low RF power (for example, 15 W) until the film thickness is about 500 Å.
Amorphous amorphous layer 7 is grown, followed by a high
The i-type amorphous layer 3 is formed by growing the second i-type amorphous layer 8 to a thickness of about 5000 Å by glow discharge of RF power (for example, 40 W). Next, on the surface of this i-type amorphous layer 3, an n-type amorphous layer 4 doped with phosphorus as an n-type impurity, ITO
An antireflection film 5 made of a thin film and a current collecting electrode 6 are sequentially laminated.

この様に本実施例では、薄い第1のi形アモル
フアス層7を低いRFパワーによつて生成するた
め、p形アモルフアス層2からのp形不純物のた
たき出しを抑制でき、つまりp形不純物の第1の
i形アモルフアス層7への混入を抑制でき、しか
も第2のi形アモルフアス層8は高いRFパワー
によつて生成するため膜質の劣化は生じない。さ
らに第1のi形アモルフアス層7の存在により、
p形アモルフアス層2から第2のi形アモルフア
ス層8へのp形不純物の混入を防ぐことができ、
結果として第2のi形アモルフアス層8へのp形
不純物の混入量を著しく低減できる。
As described above, in this embodiment, since the thin first i-type amorphous layer 7 is generated using low RF power, it is possible to suppress the ejection of p-type impurities from the p-type amorphous layer 2. In addition, since the second i-type amorphous layer 8 is generated by high RF power, the film quality does not deteriorate. Furthermore, due to the presence of the first i-type amorphous layer 7,
It is possible to prevent p-type impurities from entering the second i-type amorphous layer 8 from the p-type amorphous layer 2,
As a result, the amount of p-type impurities mixed into the second i-type amorphous layer 8 can be significantly reduced.

その結果、p形不純物の混入量が少なく、か
つ、大部分を占める第2のi形アモルフアス層8
の膜厚が良好であるので、全体として実質的に膜
厚の良好なi形アモルフアス層が得られ、アモル
フアスシリコン太陽電池の特性、特に変換効率の
向上を図ることができる。
As a result, the second i-type amorphous layer 8 has a small amount of p-type impurity mixed in and occupies most of the p-type impurity.
Since the film thickness is good, an i-type amorphous layer having a substantially good film thickness as a whole can be obtained, and the characteristics of the amorphous silicon solar cell, especially the conversion efficiency, can be improved.

なお、上記実施例では基板1側からp形、i
形、n形のそれぞれアモルフアス層2,3,4で
あつたが、逆に基板1側からn形、i形、p形の
それぞれアモルフアス層からなるアモルフアスシ
リコン太陽電池においても、同様の効果を奏する
ものであり、この場合混入不純物はn形不純物と
なるものである。
In the above embodiment, p-type, i-type
The same effect can be obtained in an amorphous silicon solar cell consisting of amorphous layers 2, 3, and 4 of amorphous amorphous and n-type, respectively, but conversely, an amorphous silicon solar cell consisting of amorphous amorphous layers of n-type, i-type, and p-type from the substrate 1 side. In this case, the mixed impurity is an n-type impurity.

この発明は以上述べたように、pin接合構造を
有するアモルフアスシリコン太陽電池の製造方法
において、低いRFパワーにて薄い第1のi形ア
モルフアス層を形成し、これに続いて高いRFパ
ワーにて厚い第2のi形アモルフアス層を形成す
るようにしたので、全体として不純物の混入が著
しく少なく、かつ膜質の良いi形アモルフアス層
が得られ、アモルフアスシリコン太陽電池の特
性、特に変換効率の改善が図れるという効果があ
る。
As described above, the present invention is a method for manufacturing an amorphous silicon solar cell having a pin junction structure, in which a thin first i-type amorphous layer is formed using low RF power, and then a thin first i-type amorphous layer is formed using high RF power. Since a thick second i-type amorphous layer is formed, an i-type amorphous layer with significantly less contamination of impurities and good film quality can be obtained, which improves the characteristics of amorphous silicon solar cells, especially the conversion efficiency. This has the effect of being able to achieve this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のアモルフアスシリコン太陽電池
を示す断面図、第2図はこの発明の一実施例を示
すアモルフアスシリコン太陽電池の断面図であ
る。 図において1は基板、2はp形アモルフアス
層、3はi形アモルフアス層、4はn形アモルフ
アス層、5……反射防止膜、6……集電電極、7
は第1のi形アモルフアス層、8は第2のi形ア
モルフアス層である。なお、各図中、同一符号は
同一、又は相当部分を示す。
FIG. 1 is a sectional view showing a conventional amorphous silicon solar cell, and FIG. 2 is a sectional view of an amorphous silicon solar cell showing an embodiment of the present invention. In the figure, 1 is a substrate, 2 is a p-type amorphous layer, 3 is an i-type amorphous layer, 4 is an n-type amorphous layer, 5... antireflection film, 6... current collecting electrode, 7
is the first i-type amorphous layer, and 8 is the second i-type amorphous layer. In each figure, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 pin接合構造を有するアモルフアスシリコン
太陽電池をRFパワーのグロー放電法を用いて製
造する方法において、 低いRFパワーのグロー放電により薄い第1の
i形アモルフアス層を形成する第1の工程と、 これに続いて高いRFパワーのグロー放電によ
り厚い第2のi形アモルフアス層を形成する第2
の工程とを含むことを特徴とするアモルフアスシ
リコン太陽電池の製造方法。
[Claims] In a method for manufacturing an amorphous silicon solar cell having a 1-pin junction structure using an RF power glow discharge method, a thin first i-type amorphous layer is formed by low RF power glow discharge. a first step, followed by a second step in which a thick second i-type amorphous layer is formed by a high RF power glow discharge;
A method for manufacturing an amorphous silicon solar cell, comprising the steps of:
JP57216990A 1982-12-13 1982-12-13 Manufacture of amorphous silicon solar cell Granted JPS59107574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57216990A JPS59107574A (en) 1982-12-13 1982-12-13 Manufacture of amorphous silicon solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57216990A JPS59107574A (en) 1982-12-13 1982-12-13 Manufacture of amorphous silicon solar cell

Publications (2)

Publication Number Publication Date
JPS59107574A JPS59107574A (en) 1984-06-21
JPS6310591B2 true JPS6310591B2 (en) 1988-03-08

Family

ID=16697079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57216990A Granted JPS59107574A (en) 1982-12-13 1982-12-13 Manufacture of amorphous silicon solar cell

Country Status (1)

Country Link
JP (1) JPS59107574A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154679U (en) * 1988-04-19 1989-10-24

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3516117A1 (en) * 1985-05-04 1986-11-06 Telefunken electronic GmbH, 7100 Heilbronn SOLAR CELL
JPS62101083A (en) * 1985-10-28 1987-05-11 Kanegafuchi Chem Ind Co Ltd Manufacture of semiconductor device
JPH0714075B2 (en) * 1986-01-31 1995-02-15 三井東圧化学株式会社 Method for manufacturing photoelectric conversion element
JPH0799776B2 (en) * 1986-02-14 1995-10-25 住友電気工業株式会社 Method for manufacturing amorphous silicon solar cell
JPS62190778A (en) * 1986-02-18 1987-08-20 Tech Res Assoc Conduct Inorg Compo Photoelectric conversion device
JPS6340383A (en) * 1986-08-06 1988-02-20 Hitachi Ltd Manufacture of amorphous solar cell
JPH0815220B2 (en) * 1987-03-10 1996-02-14 三井東圧化学株式会社 Method for manufacturing photoelectric conversion element
KR910007465B1 (en) * 1988-10-27 1991-09-26 삼성전관 주식회사 Making method of solar cell of amorphous silicon
US5070027A (en) * 1989-02-23 1991-12-03 Matsushita Electric Industrial Co., Ltd. Method of forming a heterostructure diode
JP2644901B2 (en) * 1990-01-19 1997-08-25 株式会社日立製作所 Method for manufacturing pin type amorphous silicon solar cell
AU632241B2 (en) * 1990-09-06 1992-12-17 Mitsui Toatsu Chemicals Inc. Amorphous silicon solar cell and method for manufacturing the same
JP3025179B2 (en) * 1995-09-28 2000-03-27 キヤノン株式会社 Method for forming photoelectric conversion element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150876A (en) * 1980-04-24 1981-11-21 Sanyo Electric Co Ltd Photovoltaic device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150876A (en) * 1980-04-24 1981-11-21 Sanyo Electric Co Ltd Photovoltaic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154679U (en) * 1988-04-19 1989-10-24

Also Published As

Publication number Publication date
JPS59107574A (en) 1984-06-21

Similar Documents

Publication Publication Date Title
US6566159B2 (en) Method of manufacturing tandem thin-film solar cell
US6368892B1 (en) Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US7560750B2 (en) Solar cell device
EP2439780B1 (en) Photovoltaic cell
US6383898B1 (en) Method for manufacturing photoelectric conversion device
US20100132774A1 (en) Thin Film Silicon Solar Cell Device With Amorphous Window Layer
KR101631450B1 (en) Solar cell
EP1503427A1 (en) Method for fabricating tandem thin film photoelectric converter
JP5314697B2 (en) Silicon-based thin film solar cell and method for manufacturing the same
US5437734A (en) Solar cell
JPS6310591B2 (en)
JP3416364B2 (en) Photovoltaic element and method for manufacturing the same
JP2007115916A (en) Compound solar cell and method of manufacturing same
JPH04296063A (en) Solar cell element
Desrues et al. Ultra-thin Poly-Si/SiOx passivating contacts integration for high efficiency solar cells on n-type cast mono silicon wafers
CN111739970B (en) Stacked single-sheet positive-deterioration ground-type concentrating solar cell
JPH05275725A (en) Photovoltaic device and its manufacture
US4672148A (en) Thin-film solar cells
JPH0878709A (en) Solar battery
JPH0823114A (en) Solar cell
KR102661526B1 (en) Hetero-Junction Solar Cell And The Manufacturing Method Thereof
US4366334A (en) Photovoltaic cell usable as a solar cell
JP2001007356A (en) Thin-film solar cell
JPH04290274A (en) Photoelectric transducer
JP3753556B2 (en) Photoelectric conversion element and manufacturing method thereof