JPS63105319A - Combustion control apparatus - Google Patents
Combustion control apparatusInfo
- Publication number
- JPS63105319A JPS63105319A JP61249952A JP24995286A JPS63105319A JP S63105319 A JPS63105319 A JP S63105319A JP 61249952 A JP61249952 A JP 61249952A JP 24995286 A JP24995286 A JP 24995286A JP S63105319 A JPS63105319 A JP S63105319A
- Authority
- JP
- Japan
- Prior art keywords
- amount
- combustion
- air
- temperature
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 71
- 239000000446 fuel Substances 0.000 claims abstract description 41
- 238000010438 heat treatment Methods 0.000 claims abstract description 26
- 239000006200 vaporizer Substances 0.000 claims description 20
- 238000001514 detection method Methods 0.000 claims description 16
- 230000003247 decreasing effect Effects 0.000 claims description 6
- 230000007423 decrease Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- SEPPVOUBHWNCAW-FNORWQNLSA-N (E)-4-oxonon-2-enal Chemical compound CCCCCC(=O)\C=C\C=O SEPPVOUBHWNCAW-FNORWQNLSA-N 0.000 description 1
- LLBZPESJRQGYMB-UHFFFAOYSA-N 4-one Natural products O1C(C(=O)CC)CC(C)C11C2(C)CCC(C3(C)C(C(C)(CO)C(OC4C(C(O)C(O)C(COC5C(C(O)C(O)CO5)OC5C(C(OC6C(C(O)C(O)C(CO)O6)O)C(O)C(CO)O5)OC5C(C(O)C(O)C(C)O5)O)O4)O)CC3)CC3)=C3C2(C)CC1 LLBZPESJRQGYMB-UHFFFAOYSA-N 0.000 description 1
- 241000219122 Cucurbita Species 0.000 description 1
- 235000009852 Cucurbita pepo Nutrition 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
- F23N1/022—Regulating fuel supply conjointly with air supply using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2225/00—Measuring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2225/00—Measuring
- F23N2225/08—Measuring temperature
- F23N2225/20—Measuring temperature entrant temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2233/00—Ventilators
- F23N2233/06—Ventilators at the air intake
- F23N2233/08—Ventilators at the air intake with variable speed
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Combustion (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はガスや石油等の燃料を用いる燃焼機器における
空燃比の制御装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an air-fuel ratio control device for combustion equipment that uses fuel such as gas or oil.
従来の技術
ガスや石油を燃料として燃焼させるとき、燃料と空気量
を最適な比率にして供給することにより逆火や失火、あ
るいは不完全燃焼の発生を防ぎ安定な燃焼を維持できる
。この燃料と空気量の比を空燃比と呼び、従来から燃焼
状態を検知して常に最適な空燃比を保つように燃料、あ
るいは空気量を制御する手段が考えられていた。Conventional technology When burning gas or oil as fuel, stable combustion can be maintained by preventing backfire, misfire, or incomplete combustion by supplying the fuel and air at an optimal ratio. This ratio of the amount of fuel and air is called the air-fuel ratio, and conventional methods have been devised to detect the combustion state and control the amount of fuel or air so as to always maintain an optimal air-fuel ratio.
石油燃焼機器における空燃比制御の方式は、例えば、特
開昭61−24917号公報に記載されているものがあ
る。これは火炎に挿入したフレームロンドにより火炎の
炎イオン電流を検出し、このイオン電流が空燃比により
変化することを利用して空燃比を最適にするように燃料
供給ポンプの駆動周波数を調節する構成である。第3図
に炎イオン電流値ryの一例を示す。横軸は一次空気比
μでここでは空燃比を一次空気比μで説明する。An air-fuel ratio control system for oil-burning equipment is described, for example, in Japanese Patent Laid-Open No. 61-24917. This is a configuration in which the flame ion current of the flame is detected by a flame iron inserted into the flame, and the drive frequency of the fuel supply pump is adjusted to optimize the air-fuel ratio by utilizing the fact that this ion current changes depending on the air-fuel ratio. It is. FIG. 3 shows an example of the flame ion current value ry. The horizontal axis is the primary air ratio μ, and here the air-fuel ratio will be explained in terms of the primary air ratio μ.
代表的なバーナへの入力範囲(5ooo〜1000kc
al/h )において、炎イオン電流値Ifはほぼμ=
0.8〜0.9でピークを持つ分布をしている。Typical burner input range (5ooo~1000kc
al/h), the flame ion current value If is approximately μ=
It has a distribution with a peak at 0.8 to 0.9.
そこでポンプ駆動周波数を調節して、炎イオン電流値I
fが最大値になるように燃料供給量を決めることにより
空燃比制御を行い安定した燃焼状態を維持するものであ
る。Therefore, by adjusting the pump drive frequency, the flame ion current value I
By determining the fuel supply amount so that f becomes the maximum value, air-fuel ratio control is performed to maintain a stable combustion state.
発明が解決しようとする問題点
上記従来例ではμ=0.8〜0.9で最も安定した燃焼
状態を維持できるように構成したバーナを使用したが、
μ=1.6付近で最も安定し・た燃焼状態を維持できる
ように構成したバーナ(以下、全−次燃焼バーナと記す
)もある。全−次燃焼バーナは一般に、火炎温度が低く
、排ガス中の有害成分である窒素酸化物(Nox)が極
めて少ないという特長を有し、クリーン燃焼のためには
効果の大きいバーナ構成であることが知られている。Problems to be Solved by the Invention In the conventional example described above, a burner configured to maintain the most stable combustion state at μ=0.8 to 0.9 was used.
There is also a burner (hereinafter referred to as a full-combustion burner) that is configured to maintain the most stable combustion state around μ=1.6. Full-primary combustion burners generally have low flame temperatures and extremely low levels of nitrogen oxides (Nox), which are harmful components in exhaust gas, and are highly effective burner configurations for clean combustion. Are known.
しかしながき上記の様な従来の空燃比制御手段は、炎イ
オン電流値Xfが最大値になるように燃料供給量を決め
るので、μ=0.8〜0.9に調節してしまい、μ=1
.5付近での安定した燃焼状態の維持ができなく、かつ
、バーナへの入力が小さく燃焼量が少ないときは、Ij
値が小さくかつ変化量は更に少なく検出が困難であると
いう問題点を有していた。However, the conventional air-fuel ratio control means as described above determines the fuel supply amount so that the flame ion current value Xf becomes the maximum value, so it is adjusted to μ = 0.8 to 0.9, and μ = 1
.. If a stable combustion state cannot be maintained near 5 and the input to the burner is small and the combustion amount is small, Ij
The problem is that the value is small and the amount of change is even smaller, making detection difficult.
本発明はかかる従来の問題を解消するもので、全−次燃
焼バーナで、μ=1.6付近に調節し安定した燃焼状態
を維持することを目的とする。The present invention aims to solve such conventional problems, and aims to maintain a stable combustion state by adjusting μ to around 1.6 in a full-primary combustion burner.
問題点を解決するための手段
上記問題点を解決するために本発明の燃焼制御装置は燃
料と空気を供給する手段と、前記供給手段に連結した加
熱手段を有する気化器と、前記気化器に連通した燃焼部
と、前記気化器の少なくとも一部を火炎を形成する前記
燃焼部に近接して位置する受熱部と、前記気化器の温度
を検出し前記加熱手段の加熱を制御する温度制御手段と
、前記加熱手段によシ加える熱量を検出する加熱量検出
手段を備え、前記加熱量検出手段の出力に応じて前記空
気または前記燃料を供給する手段の供給量を増減して調
整する燃焼制御を有する構成とじたものである。Means for Solving the Problems In order to solve the above problems, the combustion control device of the present invention includes means for supplying fuel and air, a vaporizer having a heating means connected to the supply means, and a vaporizer for the vaporizer. a combustion section that communicates with at least a portion of the vaporizer, a heat receiving section that is located close to the combustion section that forms a flame, and a temperature control section that detects the temperature of the vaporizer and controls heating of the heating section. and combustion control, comprising heating amount detection means for detecting the amount of heat added to the heating means, and increasing or decreasing the supply amount of the air or the fuel supplying means according to the output of the heating amount detection means. It is a structure that has the following.
作用
本発明は、上記した構成によって、空気比の変化により
燃焼火炎から受熱部に伝熱する量が変化する。加熱量検
出手段により燃焼火炎より気化器に受熱する量を測定で
きるため、この出力を予め設定した値に空気または燃料
を供給する手段の供給量を増減して調節することにより
空燃比を任意に設定でき、空燃比をμm1.5付近で安
定した燃焼状態を維持するものである。Effects According to the present invention, with the above-described configuration, the amount of heat transferred from the combustion flame to the heat receiving section changes due to a change in the air ratio. Since the amount of heat received by the carburetor from the combustion flame can be measured by the heating amount detection means, the air-fuel ratio can be arbitrarily adjusted by increasing or decreasing the supply amount of the means for supplying air or fuel to a preset value. It can be set to maintain a stable combustion state at an air-fuel ratio of around 1.5 μm.
実施例
以下、本発明の実施例を添付図面にもとすいて説明する
。実施例では石油気化式バーナによる室内開放燃焼型温
風暖房器(ファンヒータ)を例にして説明する。第1図
は本発明のシステムブロック図を示す。1は燃焼部で多
数Ω小孔1&を有するパ/チ/グ板からなる簡1bの外
側に金網1cで炎孔を形成した全−次燃焼バーナであり
、燃料タンク2から燃料ポンプ3により供給された燃料
と送風機4により供給された空気を気化器5に供給され
る。気化器6には加熱ヒータ6とサーミスタ等の温度検
知部7のコントロールにより一定の高温に維持され前記
供給燃料は気化し空気と混合し燃焼部1に混合ガスとし
て供給し燃焼部1で燃焼する。8は気化器6の受熱部で
燃焼部1に近接し燃焼部1に生じる火炎に加熱されるよ
うに突起しており、燃焼熱を気化器6に伝熱する。9は
気化器に設けた加熱ヒータ6の加熱量検出子部であり加
熱ヒータ6の電流値と電圧値よシ入カワットを演算する
。10は温度検出する温度検知手段であ゛り熱電対また
はサーミスタで構成し、送風機4より供給される空気の
温度を測定し温度検出部11に出力する。燃料ポンプ3
により供給する燃料の量は、負荷に応じて設定されその
供給量に応じた出力を燃焼量入力部12へ出力する。1
3は演算比較部であり加熱量検出部9と温度検出部11
と燃焼量入力部12より入力した値に応じて予め比較値
を記憶している値と比較し空気量制御部14に出力する
。空気量制御部14は演算比較部13からの入力に応じ
て送風機40回転数を制御し空気量を増減する。Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the embodiment, an indoor open combustion hot air heater (fan heater) using an oil vaporization burner will be described as an example. FIG. 1 shows a system block diagram of the present invention. Reference numeral 1 denotes a full-primary combustion burner in which a flame hole is formed with a wire mesh 1c on the outside of a simple 1b made of a perforation plate having a large number of Ω small holes 1& in the combustion part, and is supplied from a fuel tank 2 by a fuel pump 3. The fuel and the air supplied by the blower 4 are supplied to the carburetor 5. The vaporizer 6 is maintained at a constant high temperature by controlling a heater 6 and a temperature detection unit 7 such as a thermistor, and the supplied fuel is vaporized, mixed with air, and supplied to the combustion section 1 as a mixed gas, where it is combusted. . Reference numeral 8 denotes a heat-receiving portion of the vaporizer 6 that protrudes near the combustion portion 1 so as to be heated by the flame generated in the combustion portion 1, and transfers combustion heat to the vaporizer 6. Reference numeral 9 denotes a heating amount detector section of the heater 6 provided in the vaporizer, which calculates the input wattage based on the current value and voltage value of the heater 6. Reference numeral 10 denotes a temperature detecting means for detecting temperature, which is composed of a thermocouple or a thermistor, and measures the temperature of the air supplied from the blower 4 and outputs it to the temperature detecting section 11. fuel pump 3
The amount of fuel supplied is set according to the load, and an output corresponding to the supplied amount is output to the combustion amount input section 12. 1
3 is an arithmetic comparison section, which includes a heating amount detection section 9 and a temperature detection section 11.
The comparison value is compared with a previously stored value according to the value inputted from the combustion amount input section 12, and is output to the air amount control section 14. The air amount control section 14 controls the number of revolutions of the blower 40 in accordance with the input from the arithmetic comparison section 13 to increase or decrease the air amount.
第2図に全−次燃焼バーナにおいての加熱量検出部すな
わち気化器6の加熱ヒータ6の電気入力量(以後入力W
と記す)の特性を示す。入力Wは一次空気比μが増加す
るにしたがい、又燃焼量が増大するに従い多くなる。こ
れは燃焼量及び−次空気比μが増大すると燃焼ガスの量
が増大し、炎孔からの噴出速度が早くなることと一次空
気比μの増大により燃焼速度が遅くなるため、火炎が炎
孔より離れた位置に形成するため受熱部8の温度が低く
なるためである。受熱部8からの気化器5に伝熱する熱
量は、受熱部8の火炎からの距離と受熱部8の形状によ
り決まる。同じ受熱部8の場合は、燃料の蒸発、空気中
の温度変化の影響は少なく空気量による燃焼速度の変化
と炎孔からの噴出速度のみにより決まる0そのため、−
次空気比μが大きい程、また燃焼量が多い程火炎が受熱
部8より離れ加熱ヒータ6による入力Wが大きくなる。FIG. 2 shows the electrical input amount (hereinafter input W
). The input W increases as the primary air ratio μ increases and as the combustion amount increases. This is because as the combustion amount and the primary air ratio μ increase, the amount of combustion gas increases, and the ejection speed from the flame hole becomes faster, and the combustion speed slows down due to an increase in the primary air ratio μ. This is because the temperature of the heat receiving part 8 becomes lower because it is formed at a more distant position. The amount of heat transferred from the heat receiving section 8 to the vaporizer 5 is determined by the distance of the heat receiving section 8 from the flame and the shape of the heat receiving section 8. In the case of the same heat receiving part 8, the influence of fuel evaporation and temperature change in the air is small and is determined only by the change in combustion speed due to the amount of air and the ejection speed from the flame hole. Therefore, -
The larger the secondary air ratio μ and the larger the combustion amount, the farther the flame is from the heat receiving section 8 and the larger the input W to the heater 6 becomes.
気化器6かもの熱は内部を流れる空気と気化器5の外部
に放熱し、外部に放熱する量は気化器6の温度が一定で
あるため常に一定となる。前記空気量が増加するに応じ
てこの空気に放熱する量が増加し同時に受熱部8からの
伝熱量は減少する。The heat from the vaporizer 6 is radiated to the air flowing inside and to the outside of the vaporizer 5, and the amount of heat radiated to the outside is always constant because the temperature of the vaporizer 6 is constant. As the amount of air increases, the amount of heat radiated to the air increases, and at the same time, the amount of heat transferred from the heat receiving section 8 decreases.
この伝熱量は前記空気量と相関して変化し、入力W=前
記放熱量−前記伝熱量であるため人力Wの増加量は前記
空気の変化量と相関する。入力Wは加熱量検出部9で検
出する。加熱ヒータを流れる電気の電流、電圧を逐次測
定する加熱量検出部9より演算部13に出力する。演算
比較部13には、予め燃焼量と空気比μを変化させたと
きの一次空気托μと入力Wの各値を記憶させである。燃
焼量入力部12よ!ll燃焼量を、入力することによシ
、前記値と比較することにより一次空気比μが判る。The amount of heat transfer changes in correlation with the amount of air, and since the input W=the amount of heat radiation−the amount of heat transfer, the amount of increase in human power W correlates with the amount of change in the air. The input W is detected by the heating amount detection section 9. The heating amount detection section 9 sequentially measures the electric current and voltage flowing through the heater, and outputs it to the calculation section 13. The arithmetic comparison unit 13 is made to store in advance the values of the primary air pressure μ and the input W when the combustion amount and the air ratio μ are changed. Burning amount input section 12! By inputting the combustion amount, the primary air ratio μ can be determined by comparing it with the above value.
そして、設定した一次空気比μと比較し、設定値の一次
空気比μと異なる時は空気制御部14より送風機4の回
転数を増減させて調整する。このため空気比は自由に最
適値設定が可能であるため一次空気比μ=1.6の様な
全−成域においても設定できる。また、炎イオン電流は
、室内の酸素濃度、煙草等信のガスの影響を受けるのに
対し、供給空気の温度上昇による熱量を測る本発明は、
温度上昇が空気の質量流量と相関するため上記の影響を
受けることがない。本実施例では、全−次燃焼バーナに
ついて述べたが部分予混合燃焼バーナの場合も同じ様に
一次空気比μを検知制御でき、また入力温度て室温等を
代用してもよい。Then, it is compared with the set primary air ratio μ, and if the primary air ratio μ is different from the set value, the air control unit 14 adjusts the rotation speed of the blower 4 by increasing or decreasing it. Therefore, since the air ratio can be freely set to an optimum value, it can be set even in the entire range such as the primary air ratio μ=1.6. In addition, while the flame ion current is affected by the oxygen concentration in the room and gases such as cigarettes, the present invention, which measures the amount of heat due to the temperature rise of the supplied air,
Since the temperature rise is correlated with the air mass flow rate, it is not affected by the above effects. In this embodiment, a full-primary combustion burner has been described, but in the case of a partially premixed combustion burner, the primary air ratio μ can be detected and controlled in the same way, and room temperature or the like may be substituted for the input temperature.
また、供給する空気の温度を温度検知手段10により温
度検出部11に出力し、気化器6からの前記空気に放熱
する量を演算比較部13で補正すると更に高度なコント
ロールが可能になる。Moreover, if the temperature of the supplied air is outputted to the temperature detection section 11 by the temperature detection means 10 and the amount of heat radiated to the air from the vaporizer 6 is corrected by the arithmetic comparison section 13, even more advanced control becomes possible.
上記構成に於て、設定した一次空気比μと燃焼量に応じ
た値と、第1の値が同じになるように送風機4を調節し
て供給空気量を制御するように作用して一次空気比を一
定(例えばμ=1.5)に保ち良好な燃焼状態を維持で
べろ。本実施例では石油ファンヒータで説明したが、フ
ァンヒータ以外の燃焼機器やガス燃焼であっても同様の
効果が有り、一定温度を保つ気化器の代わりに加熱器と
加熱温度を検知する手段を設けても同様である。In the above configuration, the blower 4 is adjusted so that the value corresponding to the set primary air ratio μ and the combustion amount is the same as the first value, and the amount of supplied air is controlled. Keep the ratio constant (for example μ = 1.5) to maintain good combustion conditions. Although this example has been explained using an oil fan heater, the same effect can be achieved even with combustion devices other than fan heaters or gas combustion, and instead of a vaporizer that maintains a constant temperature, a heater and a means for detecting the heating temperature are used. The same applies even if it is provided.
また、気化器の一部を燃焼室に臨ませ燃焼熱を気化器に
フィードバックさせると、−次空気比μが増大するに従
い火炎は温度が低下し、かつ炎孔から離れるため、入力
Wとμの変化はより増大する。また炎孔部が変形を生じ
た時や、燃焼部出口の閉塞等異常時、気化器の温度が上
昇し空気量を増加させ危険を防止できる。Furthermore, if a part of the carburetor faces the combustion chamber and the combustion heat is fed back to the carburetor, the temperature of the flame decreases as the -order air ratio μ increases, and the flame moves away from the flame hole, so the input W and μ The change in will increase more. Furthermore, when the flame hole is deformed or there is an abnormality such as a blockage of the combustion section outlet, the temperature of the vaporizer rises, increasing the amount of air and preventing danger.
また、本実施例では、空気量を増減して一次空気比μを
最適に調整したが、燃料の供給量を増減して調整した場
合も同骸であり、燃料が気体の場合も同様である。In addition, in this example, the primary air ratio μ was optimally adjusted by increasing or decreasing the amount of air, but the same result is obtained if the amount of fuel supplied is increased or decreased, and the same is true when the fuel is gas. .
発明の効果
以上のように本発明の燃焼制御装置によれば次の効果が
得られる。Effects of the Invention As described above, the combustion control device of the present invention provides the following effects.
(1)空燃比を最適点に自動設定できるため、手動の調
整手段が不要で常に安定した燃焼状態を維持できる。(1) Since the air-fuel ratio can be automatically set to the optimal point, a stable combustion state can be maintained at all times without the need for manual adjustment.
(2)燃焼量に応じて空燃比を設定できるため良好な燃
焼で可変でき燃焼量可変幅が拡大し、負荷に応じて燃焼
量をコントロールできる。(2) Since the air-fuel ratio can be set according to the amount of combustion, it can be varied with good combustion, and the range of variable combustion amount can be expanded, making it possible to control the amount of combustion according to the load.
(3) μ=1.4〜1,8で調整できるためNOx
の低い全−次燃焼バーナでの燃焼制御に応用できる。(3) Since it can be adjusted by μ=1.4 to 1.8, NOx
It can be applied to combustion control in full combustion burners with low combustion.
4)炎イオン電流のように燃焼状態によらず、供給空気
の質量流量値に応じた温度で制御するため、室温度、燃
焼状態の影響を受けることなく、正確な空気比制御が可
能である。4) Unlike flame ion current, the temperature is controlled according to the mass flow rate value of the supplied air, regardless of the combustion state, so accurate air ratio control is possible without being affected by room temperature or combustion state. .
(6気化器の入力量に応じて供給空気手段を制御するた
め応答速度が早く、また空気フィルタがごみ等により半
閉塞の場合も空気比がずれても瞬時に調整できる。(6) Since the supply air means is controlled according to the input amount of the carburetor, the response speed is fast, and even if the air filter is partially clogged with dust etc., even if the air ratio shifts, it can be adjusted instantly.
第1図は本発明の一実施例の燃焼制御装置の制御ブロッ
ク図、第2図は一次空気比と気化器の加熱入力量の特性
図、第3図は従来の空燃比制御方式の特性図である。
1・・・・・・燃焼部、3・・・・・・燃料ポンプ、4
・・・・・・送風機、5・・・・・・気化器、6・・・
・・・加熱ヒー゛夕、7・川・・温度検知部、8・・・
・・・受熱部、9・・・・・・加熱量検出部、12・・
・・・・燃焼l入力部、13・・・・・・比較演算部、
14・・・・・・空気量制御部。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
−−!1ffi焼稈
4−−一送X瓢機
Hl 図 5−−−%、(
ヒ117−−−加煕量我出郷Fig. 1 is a control block diagram of a combustion control device according to an embodiment of the present invention, Fig. 2 is a characteristic diagram of the primary air ratio and heating input amount of the carburetor, and Fig. 3 is a characteristic diagram of a conventional air-fuel ratio control method. It is. 1... Combustion part, 3... Fuel pump, 4
...Blower, 5... Carburizer, 6...
... Heating heater, 7. River... Temperature detection section, 8...
...Heat receiving part, 9... Heating amount detection part, 12...
... Combustion l input section, 13... Comparison calculation section,
14... Air amount control section. Name of agent: Patent attorney Toshio Nakao and 1 other person/-
--! 1ffi culm 4--one feed X gourd machine Hl Figure 5---%, (
Hi117 --- Kahiryo Garadego
Claims (2)
結した加熱手段を有する気化器と、前記気化器に連通し
た燃焼部と、前記気化器の少なくとも一部を前記燃焼部
に近接して位置させた受熱部と、前記気化器の温度を検
出し前記加熱手段の加熱を制御する温度制御手段と、前
記加熱手段により加える熱量を検出する加熱量検出手段
を備え、前記加熱量検出手段の出力に応じて前記空気ま
たは前記燃料を供給する手段の供給量を増減した燃焼制
御装置。(1) A vaporizer having a means for supplying fuel and air, a heating means connected to the supply means, a combustion section communicating with the vaporizer, and at least a part of the vaporizer located close to the combustion section. a heat receiving section located at a temperature of 100 m, a temperature control means for detecting the temperature of the vaporizer and controlling heating of the heating means, and a heating amount detecting means for detecting the amount of heat applied by the heating means, the heating amount detecting means A combustion control device that increases or decreases the supply amount of the means for supplying the air or the fuel according to the output of the combustion control device.
と、この温度検知手段の出力と加熱量検出手段の出力に
応じて前記空気または前記燃料を供給する手段の供給量
を増減した特許請求の範囲第1項記載の燃焼制御装置。(2) A patent that includes a temperature detection means provided in the means for supplying fuel and air, and the supply amount of the air or fuel supply means is increased or decreased according to the output of the temperature detection means and the output of the heating amount detection means. A combustion control device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61249952A JPS63105319A (en) | 1986-10-21 | 1986-10-21 | Combustion control apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61249952A JPS63105319A (en) | 1986-10-21 | 1986-10-21 | Combustion control apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63105319A true JPS63105319A (en) | 1988-05-10 |
Family
ID=17200622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61249952A Pending JPS63105319A (en) | 1986-10-21 | 1986-10-21 | Combustion control apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63105319A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04100645U (en) * | 1990-12-28 | 1992-08-31 |
-
1986
- 1986-10-21 JP JP61249952A patent/JPS63105319A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04100645U (en) * | 1990-12-28 | 1992-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU710622B2 (en) | Flame ionization control apparatus and method | |
JPS5966616A (en) | Gas combustion apparatus | |
EP3492812A2 (en) | System and method for avoiding harmonic modes of gas burners | |
EP0619865B1 (en) | Thermoelectric sensor | |
JPS63105319A (en) | Combustion control apparatus | |
JP3104994B2 (en) | Gas burner device, gas burner and combustion control method | |
JP2003042444A (en) | Water heater | |
JP2002162028A (en) | Combustion control method and combustion apparatus | |
JPS63105318A (en) | Combustion control apparatus | |
JPH0712331A (en) | Method and device for controlling combustion of combustor | |
JPS6332218A (en) | Burning control device | |
JPS63169422A (en) | Combustion control | |
JPH0367918A (en) | Controller of burner | |
JPS6349619A (en) | Combustion control device | |
JPS6349623A (en) | Combustion device | |
JPS62258928A (en) | Combustion control device | |
JPS6349624A (en) | Combustion device | |
JPS63290321A (en) | Combustion device | |
JPS6349622A (en) | Combustion device | |
JP2681709B2 (en) | A combustion amount control method for a heater and a combustion amount control device for a heater. | |
JP2644415B2 (en) | Forced air combustion device | |
JPH0378528B2 (en) | ||
KR940004177B1 (en) | Heating controller | |
JPS63153316A (en) | Combustion control device | |
JP2540383B2 (en) | Combustion control device |