JPS6310469A - Stacked fuel cell - Google Patents

Stacked fuel cell

Info

Publication number
JPS6310469A
JPS6310469A JP61153367A JP15336786A JPS6310469A JP S6310469 A JPS6310469 A JP S6310469A JP 61153367 A JP61153367 A JP 61153367A JP 15336786 A JP15336786 A JP 15336786A JP S6310469 A JPS6310469 A JP S6310469A
Authority
JP
Japan
Prior art keywords
base material
external reservoir
gas
electrolyte
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61153367A
Other languages
Japanese (ja)
Inventor
Kenro Mitsuta
憲朗 光田
Junichi Hosokawa
純一 細川
Ikuyuki Hirata
平田 郁之
Toshiaki Murahashi
村橋 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61153367A priority Critical patent/JPS6310469A/en
Publication of JPS6310469A publication Critical patent/JPS6310469A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To minimize a gas diffusion obstruction and to obtain the sufficient amount of electrolyte reserve and gas diffusion capability by installing a 0.3-0.5mm thick oxidizing agent electrode substrate to which water repellent treatment is applied and a 0.8-3.2mm thick fuel electrode substrate to which no water repellent treatment is applied, and an external reservoir having porous base material. CONSTITUTION:A 0.3-0.5mm thick oxidizing agent electrode substrate 5 to which water repellent treatment is applied, and a 0.8-3.2mm thick fuel electrode substrate 2 to which no water repellent treatment is applied, and an external reservoir 26 which is mounted to a gas separating plate 10 and is in contact with the fuel electrode substrate 2 and has porous base material are installed. The gas diffusion obstruction within the substrates is minimized, and the sufficient amount of electrolyte reserve and gas diffusion capability are obtained. Since the region where gas sealing is required is slightly larger than a rib- installed separator type but far small compared with a rib-installed electrode type or hybrid type, gas sealing is easy. The reserving function of the fuel electrode substrate 2 is increased and supplement of electrolyte from the outside is made easy.

Description

【発明の詳細な説明】 C産業上の利用分野〕 この発明は、積層型燃料電池に関し、特に電池の樽成関
するものである。
DETAILED DESCRIPTION OF THE INVENTION C. Industrial Field of Application The present invention relates to stacked fuel cells, and particularly to the construction of cell barrels.

〔従来の技術〕[Conventional technology]

周知の通り、燃料電池は対向して配置された燃料電極と
酸化剤電極の間に電解質を保持した電解質マトリックス
を介在させ、燃料電極および酸化剤電極にそれぞれ燃料
および酸化剤を供給して運転される一種の発電装置であ
る。
As is well known, a fuel cell is operated by interposing an electrolyte matrix holding an electrolyte between a fuel electrode and an oxidizer electrode arranged opposite each other, and supplying fuel and oxidizer to the fuel electrode and the oxidizer electrode, respectively. It is a type of power generation device.

燃料電池には、■カルノーサイクルの制約がなく高い効
率が期待できる、■電池作動温度に近い比較的高温の有
効利用が容易な廃熱が得られる、■出力を変えても効率
はあまり変わらない、■負蒲変動に対する応答性にすぐ
れているなどの利点があり、都市内もしくは都市近郊に
配電用変電所の規模で分散配置する、あるいは火力発電
所の代替発電装置とするなどの利用形態が考えられてい
る。
Fuel cells are: ■ High efficiency can be expected as there is no Carnot cycle restriction; ■ Waste heat can be obtained at a relatively high temperature close to the cell operating temperature and can be easily used effectively; ■ Efficiency does not change much even if the output is changed. , ■It has the advantage of being highly responsive to negative power fluctuations, and can be used in various ways, such as being distributed within or near cities on the scale of distribution substations, or as an alternative power generation device for thermal power plants. It is considered.

燃料電池は用いられる電解質の種類によってアルカリ型
、リン酸型、溶融炭酸塩型などに分類されるが、このう
ちリン酸型は第一世代と呼ばれ最も開発が進んでおり、
すでに実用規模での試運転が行なわれている。
Fuel cells are classified into alkaline type, phosphoric acid type, molten carbonate type, etc. depending on the type of electrolyte used. Of these, the phosphoric acid type is called the first generation and is the most developed.
Trial runs on a practical scale have already been carried out.

ここで例えばリン酸型燃料電池について説明する。リン
酸型燃料電池で最もオーリドックスな電池構成はリプ付
セパレータ型と呼ばれるタイプで、米国特許3,867
.206号明細書(特公昭58−152号公報)や、米
国特許4,276.355号明細書(特開昭和59−6
6067号公報)に代表的な電池構成が記載されている
。第8図は、リプ付セパレータ型の代表的な構成を示す
断面図であり、図において、+11は電解質保持マトリ
ックス、(4)は燃料電極、(2)は燃料電極の電極基
剤、(3)は燃料電極の触媒層、(7)は酸化剤電極、
(5)は酸化剤電極の電極基剤、(6)は酸化剤電極の
触媒層、(8)は燃料電極の湿潤ガスシール部、(9)
は酸化剤電極の湿潤ガスシール部、αΦはガス分離板(
セパレータ、バイポーラ板、インターコネクターなどと
もよばれている’) 、Qllは酸化剤ガス流路、Oa
は燃料ガス流路(酸化剤ガス流路と直交している)であ
り、(24)は外部リザーバである。ガス分離板01l
llに反応ガス流路αυ、四が形成されていることがら
リプ付セパレータ型と呼ばれている。湿潤ガスシール部
(8)、(9)バンキング材によるガスシールに置き換
えられる場合もある。1.は1つのセルの構成の厚さを
示しており、一般にリプ付セパレータ型の場合、ガス分
離板α1が3mm程度の厚さで基材(2)、(5)が0
.4n+m程度、触媒層(3)、(6)と電解質保持マ
トリックス層+11が合わせて0.6mm程度になるの
で、t、の厚さは4.4mff1程度となる。
Here, for example, a phosphoric acid fuel cell will be explained. The most auridox cell configuration among phosphoric acid fuel cells is a type called a lip separator type, which is disclosed in U.S. Patent No. 3,867.
.. 206 specification (Japanese Patent Publication No. 58-152) and US Patent No. 4,276.355 (Japanese Patent Publication No. 59-6
A typical battery configuration is described in Japanese Patent No. 6067). FIG. 8 is a cross-sectional view showing a typical configuration of a separator type with lips. In the figure, +11 is an electrolyte holding matrix, (4) is a fuel electrode, (2) is an electrode base of the fuel electrode, ) is the catalyst layer of the fuel electrode, (7) is the oxidizer electrode,
(5) is the electrode base of the oxidizer electrode, (6) is the catalyst layer of the oxidizer electrode, (8) is the wet gas seal part of the fuel electrode, (9)
is the wet gas seal part of the oxidizer electrode, αΦ is the gas separation plate (
Qll is also called a separator, bipolar plate, interconnector, etc.
is a fuel gas flow path (orthogonal to the oxidant gas flow path), and (24) is an external reservoir. Gas separation plate 01l
It is called a lip separator type because the reaction gas flow paths αυ and 4 are formed in 11 and 11. The wet gas seal parts (8) and (9) may be replaced with gas seals using banking material. 1. indicates the thickness of one cell structure, and generally in the case of a lip separator type, the gas separation plate α1 is approximately 3 mm thick and the base materials (2) and (5) are 0.
.. Since the total thickness of the catalyst layers (3) and (6) and the electrolyte holding matrix layer +11 is about 0.6 mm, the thickness of t is about 4.4 mff1.

ガス分離板001が不遇気性であるのに対して、基材(
2)、(5)はポーラスになっているので1.の範囲は
充分なガスシールが必要となる。リプ付セパレータ型の
場合t、は約1.41の厚さとなるが、この厚さが厚け
れば厚いほどガスシールが難しくなる。また、ガス分離
板αlが緻密なカーボンで構成されていて熱電導が良い
のに対して、基材(2)、(5)はポーラスで50%以
上が気体(空気や燃料)で占められている為に熱電導が
悪い、また電解質保持マトリックス層(11も熱電導が
悪い。従ってt2は熱電導の悪い領域でもある。積層型
燃料電池は通常5セルおきに冷却板を挿入してセルで発
生する熱を吸収し、セルを冷却してできる均一な動作温
度を保つようにする。従ってt!の厚さが厚ければ厚い
ほど熱電導が困難となり、セルの積層方向及び面内の温
度がばらつき、高温による部材の腐食や低温によるセル
特性の低下などが問題となる。
While the gas separation plate 001 is unfavorable, the base material (
2) and (5) are porous, so 1. A sufficient gas seal is required within this range. In the case of the separator type with a lip, t is approximately 1.41 mm thick, and the thicker the thickness, the more difficult it is to seal the gas. In addition, while the gas separation plate αl is made of dense carbon and has good thermal conductivity, the base materials (2) and (5) are porous and contain more than 50% gas (air or fuel). In addition, the electrolyte retention matrix layer (11) also has poor thermal conductivity.Therefore, t2 is also a region with poor thermal conductivity.In stacked fuel cells, cooling plates are usually inserted every 5 cells. It absorbs the generated heat and cools the cell to maintain a uniform operating temperature.Therefore, the thicker the t! This causes problems such as corrosion of components due to high temperatures and deterioration of cell characteristics due to low temperatures.

リプ付セパレータ型のメリットの第1は後述する他のタ
イプに比べてt2の厚さが薄い為にガスシールが容易な
ことであり、メリットの第2は同様の理由により熱伝導
が良いことである。
The first advantage of the separator type with lip is that gas sealing is easier because the thickness of t2 is thinner than other types described later, and the second advantage is that it has good heat conduction for the same reason. be.

リプ付セパレータ型の場合、基材(2)、(5)はすぺ
て撥水処理が施される。これは電解質マトリックス内の
電解液が触媒層を通過して基材へ流れ出て基材・の気孔
を閉塞し、反応ガスの透過性が阻害されるのを防止する
口約で行なわれている。基材への撥水処理の方法につい
ては、特開昭60−220565号公報、特開昭604
33663号公報に詳しく記述されている。
In the case of the lipped separator type, the base materials (2) and (5) are all subjected to water repellent treatment. This is done to prevent the electrolyte in the electrolyte matrix from flowing out through the catalyst layer to the substrate, blocking the pores of the substrate and inhibiting the permeability of the reactant gas. Regarding methods of water-repellent treatment of base materials, see JP-A-60-220565 and JP-A-604.
It is described in detail in the 33663 publication.

また同じ基材でも縁部には炭化ケイ素などの親水性の材
料を充填して電解液を保持させ、湿潤ガスシール部とす
る場合が多い。従ってリブ付セパレータ型の場合電解液
に占められた部分は、電解質保持マトリックス(1)と
触媒層(3)、(6)それに湿潤ガスシール部(8)、
(9)である、しかし、長期間の運転の間には電解液が
飛散、蒸発などにより不足して(る、そこでガス分離板
Qlの一部に外部リサーバ(24)を設けて、湿潤ガス
シール部(8)、(9)やマトリックス(11に当接さ
せ、外部からマトリックス(1)への電解液の補給を可
能にしている。外部リサーバについては特開昭58−1
61269号、特開昭59−−211969号公報に詳
しく記述されている。外部リザーバを形成するには2〜
3ffiI11程変の厚さの不遇気性の部位が必要であ
り、ガス分離板α0は外部リザーバを形成する部位とし
て、最も適しており、外部リザーバ(24)の形成が容
易なことがリブ付セパレータ型の第3のメリットとなっ
ている。
Furthermore, even in the case of the same base material, the edges are often filled with a hydrophilic material such as silicon carbide to retain the electrolyte and serve as a wet gas sealing part. Therefore, in the case of the ribbed separator type, the part occupied by the electrolyte consists of the electrolyte holding matrix (1), the catalyst layer (3), (6) and the wet gas seal part (8).
(9) However, during long-term operation, the electrolyte becomes insufficient due to scattering, evaporation, etc. Therefore, an external reservoir (24) is provided in a part of the gas separation plate Ql, and the wet gas It is brought into contact with the seal parts (8), (9) and the matrix (11), making it possible to replenish electrolyte from the outside to the matrix (1).For external reservoirs, see Japanese Patent Laid-Open No. 58-1
It is described in detail in No. 61269 and Japanese Unexamined Patent Publication No. 59-211969. To form an external reservoir 2~
The gas separation plate α0 is most suitable as a part for forming an external reservoir, and the ribbed separator type is easy to form the external reservoir (24). This is the third advantage.

一方、リブ付セパレータ型のデメリットは、電解液の膨
張に対する吸収機能が不充分なことである。燃料電池は
動作中に水を発生するので、この発生水が電解液を希釈
してマトリックスに収納される以上に電解液の体積を増
大させ、動作圧力、動作温度、電流密度、反応ガス利用
率などの動作条件によって電解液の体積は大きく変化す
る。この体積の増加分はマトリ、クス内を移動して湿潤
シール部(8)、(9)や外部リザーバ(24)に収納
されるが、セルの大きさが大きくなりマトリックス内の
移動距離が長くなると、体積の膨張速度に比してマトリ
ックス内の電解液の移動が間に合わなくなり、体積の増
加分は触媒層(3)、(6)に入ってフランディングを
起こしたり、さらにtB水処理された基材内(2)、(
5)に入ってマトリックスに戻れな(なるなり、次に体
積が収縮したときにマトリックス内の電解液が不足して
クロスオーバが生じるなど極めて深刻な事態を生じた。
On the other hand, the disadvantage of the ribbed separator type is that its ability to absorb expansion of the electrolytic solution is insufficient. Since fuel cells generate water during operation, this generated water dilutes the electrolyte and increases the volume of the electrolyte beyond what is contained in the matrix, thereby increasing the operating pressure, operating temperature, current density, and reactant gas utilization rate. The volume of the electrolyte varies greatly depending on the operating conditions. This increased volume moves within the matrix and box and is stored in the wet seal parts (8), (9) and the external reservoir (24), but the size of the cells increases and the distance traveled within the matrix becomes longer. When this happens, the movement of the electrolyte within the matrix becomes slower than the rate of expansion of the volume, and the increased volume enters the catalyst layers (3) and (6), causing flooding, and further tB water treatment. Inside the base material (2), (
5) and could not return to the matrix (which caused an extremely serious situation, such as the next time the volume contracted, the electrolyte in the matrix became insufficient and a crossover occurred).

マトリックスから触媒層を通じて基材へ電解液が流出す
るのを防ぐ為にta水性を強化した層を触媒層と基材と
の間に設けることが特開昭50−101837号、特開
昭和60−170168号、特開昭60−241655
号公報などで開示されているが、その効果は充分ではな
く、セルの面積が大′きくなればなるほどリブ付セパレ
ータ型においてはこの電解液の膨張に対する吸収機能の
不備がごとんど致命的な欠陥となっていた。この欠陥の
改良案として電極基材内部や後方に電解液の膨張に対す
る収納機能(リザーブ機能)を持たせようとする試みは
古くから行なわれている。まず特開昭47−31137
号公報にはマトリックスに対し、燃料電極の後方に多孔
性板とさらにその後方に電解液室を配置して”ピン”で
電解液を流通させマトリックス内の電解液量のコントロ
ールをするという構成が記述されている。また特開昭5
0−101836号公報にはマトリックス材料を燃料種
の触媒層や電極基材を貫通して基材裏面にまで配置して
リザーブ機能を持たせた構成が′記述されており、特開
昭53−32352号公報(米国特性第4 、064、
.322号)や特開昭53−32353号公報(米国特
性第4,038,463号)には基材内部に親水域と疎
水域とを形成しリザーブ機能を持たせた構成が記述され
ている。しかしこれらの構成はいずれも極めて複雑でこ
れら構成を実現するには数多くの工程を必要とする為高
コストにつきしかもこれらの構成には基材での反応ガス
の拡散性を阻害する要素が多く含まれており、リザーブ
機能についても必ずしも充分ではなかった。
In order to prevent the electrolyte from flowing out from the matrix to the base material through the catalyst layer, a layer with enhanced TA aqueous properties is provided between the catalyst layer and the base material, as disclosed in JP-A-50-101837 and JP-A-60-60. No. 170168, JP 60-241655
However, the effect is not sufficient, and as the area of the cell increases, in the ribbed separator type, the lack of absorption function against the expansion of the electrolyte becomes fatal. It was defective. As a solution to this defect, attempts have been made for a long time to provide a storage function (reservation function) for the expansion of the electrolytic solution inside or behind the electrode base material. First, Japanese Patent Application Publication No. 47-31137
The publication describes a matrix configuration in which a porous plate is placed behind the fuel electrode and an electrolyte chamber is placed further behind it, and the electrolyte is circulated using "pins" to control the amount of electrolyte in the matrix. It has been described. Also, JP-A-5
0-101836 describes a configuration in which a matrix material is provided through the catalyst layer of the fuel species and the electrode base material to the back surface of the base material to provide a reserve function, Publication No. 32352 (U.S. Characteristics No. 4, 064,
.. 322) and Japanese Unexamined Patent Publication No. 53-32353 (US Pat. No. 4,038,463) describe a structure in which a hydrophilic area and a hydrophobic area are formed inside the base material to provide a reserve function. . However, all of these configurations are extremely complex and require numerous steps to realize these configurations, resulting in high costs.Moreover, these configurations include many elements that inhibit the diffusivity of the reactant gas in the base material. However, the reserve function was not necessarily sufficient.

一方特開昭53−30747号(米国特性第4,035
,55mm号)公報に記載されている構成は非常にシン
プルで単に基材に撥水処理をしないというものであり、
基材は上記明細書の実施例よれば厚さQ、3mm =0
.5Ml11気孔率75〜88χ平均小孔寸法14〜8
3μmのカーボンペーパーを使用しこの基材の小さな気
孔が電解液に対するリザーブ機能を有し」りの大きな気
孔が反応ガスの通路として働くというもので基材にはマ
トリックスの最大小孔よりも小さな小孔を有していては
ならないとしている。この+R成によれぼリブ付セパレ
ータ型においてガス拡散性阻害の影響の14Xさな燃料
1掻側の基材の10水処理をしないというだシナでリブ
付セパレータ型にリザーブ機能を付加することができる
が上記明細書の実bfF。
On the other hand, Japanese Patent Application Publication No. 53-30747 (U.S. Patent No. 4,035
, No. 55mm) The configuration described in the publication is very simple and simply does not provide water repellent treatment to the base material.
According to the example in the above specification, the base material has a thickness of Q, 3 mm = 0
.. 5Ml11 Porosity 75~88χ Average pore size 14~8
3 μm carbon paper is used, and the small pores in this base material have a reserve function for the electrolyte, while the larger pores act as passages for the reactant gas. It states that it must not have holes. Due to this +R configuration, it is possible to add a reserve function to the ribbed separator type without having to treat the base material on the fuel side by 14X, which has the effect of inhibiting gas diffusivity. Yes, but the actual bfF in the above specification.

例の範囲内ではリザーブ機能は不充分であった。The reserve function was insufficient within the scope of the example.

またリブ付セパレータ型の第2のデメリットとしてガス
分離板に形成された反応ガス流路の凸部(リブ)直下の
融解層に対して反応ガスは基材を横方向に流れる必要が
ある為、ガスの拡散性は不充分であるとの見方もあるが
、特開昭59−73852号公報に記載されているよう
に一般に用いられている溝巾llll11〜1.5mm
 、基材の厚さ0.3a+m −0,4mmの構成では
ほとんどこの問題を生じない。しかし特開昭59−40
471号公報に記載されているような基材の厚さ0.4
m+wに対して内部にまで触媒層を浸み込ませたもので
はこのデメリットは深刻である。
In addition, the second disadvantage of the ribbed separator type is that the reaction gas must flow horizontally through the base material to the molten layer directly below the convex portion (rib) of the reaction gas flow path formed on the gas separation plate. Although there is a view that the gas diffusivity is insufficient, the generally used groove width 11 to 1.5 mm is described in Japanese Patent Application Laid-open No. 73852/1983.
, this problem hardly occurs when the thickness of the base material is 0.3a+m -0.4mm. However, JP-A-59-40
Base material thickness 0.4 as described in Publication No. 471
Compared to m+w, this disadvantage is serious in those in which the catalyst layer is penetrated into the inside.

また先に説明した燃料1掻側の基材いt8水処理をせず
リザーブ機能を付加したものについても基材の厚さが薄
い為に電解液がリザーブされた場合にガスの拡散性に問
題があった。
Also, regarding the base material on the fuel 1 side described earlier, which has a reserve function added without T8 water treatment, there is a problem with gas diffusivity when the electrolyte is reserved because the base material is thin. was there.

リブ付セパレータ型に次いで代表的な電池構成はリブ付
電極型である。このタイプについては米国特許4,11
5,627号、同4.165.349号及び特開昭58
−68881号公報に詳しく記載されている。第9図は
リブ付電極型の代表的な構成を示す断面図である。
Next to the ribbed separator type, the most typical battery configuration is the ribbed electrode type. For this type, US Patent 4,11
No. 5,627, No. 4.165.349 and JP-A-58
It is described in detail in JP-A-68881. FIG. 9 is a sectional view showing a typical structure of the ribbed electrode type.

リブ付電極型では基材(2)、(5)の厚さを厚くして
これに反応ガス流路Oυ、叩を形成している。従ってガ
ス分離亭反OIはフラットな薄い不遇気性の牟反となっ
ている。
In the ribbed electrode type, the thickness of the base materials (2) and (5) is increased, and the reaction gas flow path Oυ and grooves are formed therein. Therefore, Gas Separate Tei OI is a flat, thin and unfavorable Mutan.

リブ付電極型の最大宣つ唯一のメリットは電解液の膨張
に対する吸収機能があることである。特開昭58−68
881号公報によれば、リブ付基材の平坦なシート部の
平均ボア径を25〜45μmとし、リブ付基材のリブ部
の平均ボア径をシート部の60〜75%つまり15〜3
4μmとすることでマトリ・ノクスだらあふれた電解液
を選択的にマトリ・ノクスに次いテ毛管吸引力の大きな
リブ部に収納できるとしている。またマトリックスに電
解液が不足した場合にはリブ部に収納されていた電解液
がシート部、触媒層を経てマトリックスに供給されると
している。
The single greatest advantage of the ribbed electrode type is its ability to absorb expansion of the electrolyte. Japanese Unexamined Patent Publication 1986-1968
According to Publication No. 881, the average bore diameter of the flat seat portion of the ribbed base material is 25 to 45 μm, and the average bore diameter of the rib portion of the ribbed base material is 60 to 75% of the seat portion, that is, 15 to 3 μm.
By setting the thickness to 4 μm, the electrolyte overflowing with Matri-Nox can be selectively stored in the rib portion, which has a large capillary suction force next to Matri-Nox. Furthermore, when the matrix runs out of electrolyte, the electrolyte stored in the rib portion is supplied to the matrix via the sheet portion and the catalyst layer.

リブ付基材の厚さは一般に1 、8mm程度、ガス分離
板が0.8mm程度で触媒層と電解質保持マトリックス
層が合わせて0.6m1I程度になるので、1.の厚さ
は5.01程度とリブ付セパレータ型よりも多少厚くな
る。これはリブ付基材の機械強度が弱い為にリブ付基材
のウェブをなかなか薄くできないことによる。またリブ
付基材はポーラスであるからガスシールの必要な領域t
2はリブ付セパレータ型よりもずっと増えて4.2mm
 と3倍の厚さになる従ってガスシールが難しい。これ
がリブ付電極型の第1のデメリットである。また熱伝導
の悪い領域も同じくリブ付セパレータ型の3倍の厚さに
なる為、より高性能な冷却器を必要とし高コストになる
これが°ノブ付電極型の第2のデメリットである。
The thickness of the ribbed base material is generally about 1.8 mm, the gas separation plate is about 0.8 mm, and the total of the catalyst layer and electrolyte holding matrix layer is about 0.6 m1I, so 1. The thickness is approximately 5.01 mm, which is slightly thicker than the ribbed separator type. This is because the web of the ribbed base material cannot be made thin because the mechanical strength of the ribbed base material is weak. In addition, since the ribbed base material is porous, the area t where gas sealing is required
2 is 4.2mm, which is much larger than the ribbed separator type.
It is three times as thick as it is, so gas sealing is difficult. This is the first disadvantage of the ribbed electrode type. Furthermore, the area with poor heat conduction is also three times thicker than that of the ribbed separator type, which requires a cooler with higher performance, resulting in higher costs.This is the second disadvantage of the knobbed electrode type.

またリブ付基十オはポーラスで機械強度が弱い上に溝を
形成しているので溝と平方な方向で割れやすくハンドリ
ングが難しこれがリブ付電極型の第3のデメリットであ
る。
In addition, the ribbed base is porous and has low mechanical strength, and since it has grooves, it tends to break in a direction square to the grooves and is difficult to handle.This is the third disadvantage of the ribbed electrode type.

さらにまたリブ付電極型ではガス不透気性のガス分離板
の厚さが0.81と薄い為に外部リザーバを設けること
ができない。またポーラスをリブ付基材に外部リザーバ
を設けることは難しく設けることができたとしても高コ
ストになる。従って電解液の外部補給が難しい。リブ付
電極型に対する電解液の補給方法としては、特開昭61
−47073号及び開開61−47074号公報に記載
されているように積層型燃料電池の上から下へ電解液を
たれ流してリブ付基材に電解液を吸収させる方法がとら
れている。しかし、この方法だとセルごとに補給される
電解液の量の把握が難しくまた補給後運転する際に積層
体の上から下まで縁部が電解1夜でぬれている為にリー
フ電流が流れ電池を損う恐れもある。
Furthermore, in the ribbed electrode type, the thickness of the gas impermeable gas separation plate is as thin as 0.81 mm, making it impossible to provide an external reservoir. Further, it is difficult to provide an external reservoir on a porous ribbed base material, and even if it could be provided, the cost would be high. Therefore, external replenishment of electrolyte is difficult. As a method of replenishing electrolyte for the ribbed electrode type, Japanese Patent Application Laid-open No. 61
As described in Japanese Patent No. 47073 and Japanese Patent Application Laid-open No. 61-47074, a method is used in which the electrolytic solution is allowed to flow from the top to the bottom of the stacked fuel cell and the ribbed base material absorbs the electrolytic solution. However, with this method, it is difficult to grasp the amount of electrolyte to be replenished for each cell, and when operating after replenishment, leaf current flows because the edges of the stack from top to bottom are wet due to electrolysis overnight. There is also a risk of damaging the battery.

従って外部リザーバを設けることが難しいことは第4の
デメリットである。
Therefore, the fourth disadvantage is that it is difficult to provide an external reservoir.

さらにもう一つリブ付量ti型では酸化剤電極基社内で
の酸化剤ガスの拡散性が間通になる。リブ付基材のウェ
ブの厚さが機械強度の面からリブ付セパレータ型の基材
の厚さく0.3〜0.4mm)にまで薄くすることがで
きないことから、まず酸化剤電極基材に撥水処理を施し
た場合には1ご水剤によって基材の気孔率が低下したり
基材繊維間にn水剤のフィルムの膜が生して酸化剤ガス
の拡散性がある程度阻害されるが、リブ付電極型の場合
ウェブの厚さが厚いだけ拡散性阻害の程度がリブ付パレ
ーク型よりも大きく、その分セルの出力電圧が低下する
。次に酸化剤電極基材にt8水処理を施さない場合には
、酸化剤電極基材に初期電解液をリザーブしない場合で
も電極基材の気孔容積の5χ程度の電解液はマトリック
スから酸化剤電極基材内を介して酸化剤電極基材に移動
し、In水剤と同様に酸化剤ガスの拡散性が阻害され、
その分セルの出力電圧が低下する。燃料電Ff1基材中
に電解液とリザーブした場合に比して酸化剤電極基材で
のリザーブの許容値が小さいのは、特開昭53−307
47号公報に記載されているように燃料ガスに多く含ま
れている水素と酸化剤ガスに含まれている酸素との拡散
性の違いによると考えられる。従って酸化剤電極基材内
での酸化剤ガスの拡散−性が不充分な為に出力電圧が低
下することがリブ付電極型の第5のデメリットとなって
いる。この為特開昭58−68881号公報に記されて
いるようにウェブの気孔径をできるだけ大きくして電解
液が保持されないようにしたり、特開昭59−2746
6号公報に記されているようにウェブにリブよりも長い
炭素繊維を用いるなどリブ付基材で素材を変化させる必
要があり富コストになっていた。
Furthermore, in the ribbed amount ti type, the diffusivity of the oxidant gas within the oxidizer electrode base is limited. Because the web thickness of the ribbed base material cannot be made as thin as the thickness of the ribbed separator type base material (0.3 to 0.4 mm) from the viewpoint of mechanical strength, we first decided to use the oxidizer electrode base material. When water repellent treatment is applied, the porosity of the base material decreases due to the water repellent, and a film of the water reagent forms between the base fibers, inhibiting the diffusion of oxidant gas to some extent. However, in the case of the ribbed electrode type, the greater the thickness of the web, the greater the degree of diffusivity inhibition than in the ribbed parquet type, and the output voltage of the cell decreases accordingly. Next, if the oxidizer electrode base material is not subjected to T8 water treatment, even if the initial electrolyte is not reserved in the oxidizer electrode base material, the electrolyte in an amount of about 5χ of the pore volume of the electrode base material will be transferred from the matrix to the oxidizer electrode. The oxidizer moves to the electrode base material through the inside of the base material, and the diffusivity of the oxidant gas is inhibited, similar to the In water solution.
The output voltage of the cell decreases accordingly. The reason why the allowable reserve value in the oxidizer electrode base material is smaller than that in the case where the electrolyte and the electrolyte are reserved in the fuel cell Ff1 base material is disclosed in Japanese Patent Application Laid-Open No. 53-307.
This is thought to be due to the difference in diffusivity between hydrogen, which is contained in a large amount in the fuel gas, and oxygen, which is contained in the oxidizing gas, as described in Japanese Patent No. 47. Therefore, the fifth disadvantage of the ribbed electrode type is that the output voltage decreases due to insufficient diffusion of the oxidant gas within the oxidant electrode base material. For this reason, as described in JP-A No. 58-68881, the pore diameter of the web is made as large as possible to prevent the electrolyte from being retained, and JP-A No. 59-2746
As described in Publication No. 6, it was necessary to change the material for the ribbed base material, such as using carbon fiber longer than the ribs for the web, resulting in increased costs.

リブ付セパレータ型とリブ付置掻型以外に、この2つの
タイプの折中史的なタイプがハイブリッド型と称せられ
て特開昭58−94768号公報などに開示されている
。第10図はこのハイブリッド型の構成を示す断面図で
ある。ハイブリッド型では酸化剤電極側にリブ付セパレ
ータ型の構成を用い、燃料電極側にリブ付電極型の構成
を用いている。ハイブリッド型では燃料電極側に電解液
の膨張に対する吸収機能を持たせると共に酸化剤電極側
に薄い基材を持ってくることで、リブ付電極型の第5の
デメリットである酸化剤電極基材でのガス拡散性を改善
している。またガス分離板はリブ付セパレータ型に比べ
れば薄いが、外部リザーバを形成することができなくは
ない。またガスシール及び熱電導の悪い領域t2とセル
の厚さt、はリブ付電極型よりも多少改善されている。
In addition to the ribbed separator type and the ribbed scraper type, a historical type of these two types is called a hybrid type and is disclosed in Japanese Patent Application Laid-Open No. 58-94768. FIG. 10 is a sectional view showing the configuration of this hybrid type. In the hybrid type, a ribbed separator type structure is used on the oxidizer electrode side, and a ribbed electrode type structure is used on the fuel electrode side. In the hybrid type, the fuel electrode side has a function of absorbing the expansion of the electrolyte, and the oxidizer electrode side has a thin base material, which eliminates the fifth disadvantage of the ribbed electrode type, which is the oxidizer electrode base material. Improves gas diffusivity. Although the gas separation plate is thinner than the ribbed separator type, it is still possible to form an external reservoir. In addition, the region t2 with poor gas sealing and thermal conductivity and the cell thickness t are somewhat improved compared to the ribbed electrode type.

しかしハイブリッド型ではガス分離板の片側にのみ溝を
形成する為に、ガス分離板がゆがみやすく割れやすく、
面圧をかけても平滑になりにくいという欠点があり、こ
れがほとんど致命的なデメリットとなっている。またガ
ス分離板と基材の両方に溝加工をしなければならない為
高コストにならざるを得ないというデメリットもある。
However, in the hybrid type, the grooves are formed only on one side of the gas separation plate, so the gas separation plate is easily distorted and easily cracked.
It has the disadvantage that it is difficult to smooth even when surface pressure is applied, and this is an almost fatal disadvantage. Another disadvantage is that it requires high cost because grooves must be formed on both the gas separation plate and the base material.

以上説明したように上記の3つのタイプのいずれをとっ
てもまだ問題点があった。
As explained above, there are still problems with any of the above three types.

〔発明が解決しようとする問題点) 従来の積層型燃料電池は以上のようにいずれの構成にお
いても数々の問題点が残されていた。
[Problems to be Solved by the Invention] As described above, conventional stacked fuel cells have a number of problems regardless of their configuration.

この発明は上記のような問題点を解消するためになされ
たもので、充分なガスの拡散性と電解質リザーブ量を有
すると共に、ガスシールの必要な領域も小さくてガスシ
ールが容易であると共に、熱伝導性にも優れており、さ
らに外部がらの電解質の補給も容易であるなど従来より
も総合的に見て優れた積層型燃料電池を得ることを目的
とする。
This invention was made to solve the above-mentioned problems, and it has sufficient gas diffusivity and electrolyte reserve amount, and the area required for gas sealing is small, making gas sealing easy. The objective is to obtain a stacked fuel cell that is comprehensively superior to conventional ones, such as superior thermal conductivity and easy external electrolyte replenishment.

〔問題点を解決するための手段〕[Means for solving problems]

この発明−に係る積層型燃料電池は、厚さが0.3mf
f以上0.5mm以下でfa水処理が施された酸化剤電
極基剤と、厚さが0.81以上3.21以下で1B水処
理が施されていない燃料電極基材と、ガス分離板に配設
されて燃料電極基材に当接し、多孔質基材を有する外部
リザーバとを備えたものである。
The stacked fuel cell according to this invention has a thickness of 0.3 mf.
An oxidizer electrode base material that has been subjected to fa water treatment with a thickness of f or more and 0.5 mm or less, a fuel electrode base material that has a thickness of 0.81 or more and 3.21 or less and that has not been subjected to 1B water treatment, and a gas separation plate. and an external reservoir having a porous base material, which is disposed in the fuel electrode base material and comes into contact with the fuel electrode base material.

〔作用〕[Effect]

この発明における酸化剤電極基材は厚さが0.3mm以
上0.5mm以下で撥水処理が施されているので、基材
内でのガスの拡散性阻害が最小限にとどめられる。また
、燃料電極基材は厚さが0.8mm以上3.21以下で
撥水処理いないので、充分な電解質リザーブ量とガスの
拡散性が得られ、ガスシールの必要な領域もリブ付セパ
レータ型より少し大きいがリブ付電極型やハイブリッド
型よりもはるかに小さいため、ガスシールが容易で熱伝
導率も良い。
Since the oxidant electrode base material in this invention has a thickness of 0.3 mm or more and 0.5 mm or less and has been subjected to water repellent treatment, inhibition of gas diffusivity within the base material can be kept to a minimum. In addition, since the fuel electrode base material has a thickness of 0.8 mm or more and 3.21 mm or less and is not water-repellent treated, a sufficient amount of electrolyte reserve and gas diffusivity can be obtained, and the area where gas sealing is required can be sealed using a ribbed separator type. Although it is slightly larger than the ribbed electrode type and hybrid type, it is much smaller than the ribbed electrode type and hybrid type, so it is easy to seal gas and has good thermal conductivity.

さらに、燃料TL電極基材当接する外部リザーバは燃料
電極基材のリザーブa、能を高めると共に外部からの電
解質の補給を容易にする。
Further, the external reservoir in contact with the fuel TL electrode base material increases the reserve capacity of the fuel electrode base material and facilitates replenishment of electrolyte from the outside.

〔実施例〕〔Example〕

以下、この発明の一実施例を図をもとに説明する。第1
図はこの発明の一実施例による積層型燃料電池を示す断
面図である。図において、(25)は酸化剤電極基材(
5)の電池反応領域の周縁部に設けられたバッキング材
によるガスシール部、(26)はガス分離板qlに配設
され、多孔質基材を有する外部リザーバであり、この例
では燃料電極基材(2)はその電池反応領域の周縁部に
湿潤ガスシール部(9)を有し、外部リザーバ(26)
は湿潤ガスシール部(9)とこの湿潤ガスシール部(9
)の内側の燃料電極基材(2)の両方にまたがって当接
している。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a sectional view showing a stacked fuel cell according to an embodiment of the present invention. In the figure, (25) is the oxidant electrode base material (
5) is a gas sealing part made of a backing material provided at the periphery of the cell reaction area; (26) is an external reservoir provided on the gas separation plate ql and having a porous base material; in this example, the fuel electrode base The material (2) has a wet gas seal (9) at the periphery of its cell reaction area and an external reservoir (26).
is the wet gas seal part (9) and this wet gas seal part (9).
) is in contact with both of the inner fuel electrode base materials (2).

この実施例において特徴的なことは、酸化剤電極基材(
5)と燃料電極基材(2)とで仕様が大きく異なること
である。まず酸化剤電極基材(5)が山水処理されてい
るのに対して燃料電極基材(2)は山水処理されていな
い、また酸化剤電極の電極基材(5)が0.41の厚さ
であるのに対して燃料雪掻の電極基材(2)は2倍以上
の1.01である。この2つの特徴のうち特に厚さにつ
いては電池の性能に対して極めて重要な意味を持ってい
る。その効果については本発明者らが行なったいくつか
の要素試験の結果を基にして説明する。
The characteristic feature of this example is that the oxidant electrode base material (
5) and the fuel electrode base material (2) are significantly different in specifications. First, the oxidizer electrode base material (5) has been subjected to Sansui treatment, while the fuel electrode base material (2) has not been Sansui treated, and the electrode base material (5) of the oxidizer electrode has a thickness of 0.41 mm. In contrast, the electrode base material (2) for fuel snow shoveling has a value of 1.01, which is more than twice that. Of these two characteristics, thickness in particular has an extremely important meaning for battery performance. The effect will be explained based on the results of several elemental tests conducted by the present inventors.

実験1 表に示した全< ta水処理していない5mmffi*
の基材について4cm X 4cIlの試験片を各々1
0枚前後作リすセトン中で超音波にかけて洗浄し、乾燥
した。
Experiment 1 Total < ta water shown in the table 5mmffi* without water treatment
One 4 cm x 4 cIl specimen for each substrate.
Approximately 0 sheets were produced, washed with ultrasonic waves in seton, and dried.

基材Aは一般にカーボンペーパーと呼ばれているもので
紙のように柔軟性があり、一般にリブ付セパレータ型の
電極基材として用いられているものである。また基材B
−Eは共にカーボン類でリブ付電極型の電極基材として
一般に用いられているものでポーラスな板状で柔軟性は
全くない。これらの基材は105重量パーセントのリン
酸を所定量加え190℃で一昼夜保持した後、21.5
φの穴をあけたアルミハクを両面テープを用いて基材に
はりつけてB型ガーレ式デーソメータを使って室温でガ
ス透気度を測定しガスの拡散性の評価を行なった。この
実験の目的は各々の基材に電解液が保持された場合にガ
スの拡散性がどの程度阻害されるかを調べることにあっ
た。第2図にその結果をグラフにして示した。横軸がリ
ン酸型1 (sg/c■2〕(105W10H3PO4
)、縦軸が透気度(ml/min、cm”、smAg)
を示す。リン酸を保持していない場合には厚さが薄く気
孔率の大きな基材Aが飛びぬけて透気度が大きく、極め
てガス拡散性が良いことを示している。しかしリン酸が
保持された場合には、基材Aは他の基材に比べわずかな
リン酸の保持量で急速に透気度が低下している。透気度
については別の実験から20m1/min、cn”、m
m Ag以下の透気度だと酸化剤電極での空気の拡散性
が不充分になってセル特性が低下し、7n+I/min
、cm”、mm Ag以下の透気度になると燃料電極で
の水素の拡散性が不充分になってセル特性が低下するこ
とがわかっている。
The base material A is generally called carbon paper, is flexible like paper, and is generally used as a ribbed separator type electrode base material. Also, base material B
-E are both carbons that are generally used as electrode base materials for ribbed electrodes, and are porous and plate-like and have no flexibility at all. These base materials were prepared by adding a predetermined amount of 105% by weight phosphoric acid and holding at 190°C for a day and night.
An aluminum plate with a hole of φ was attached to a base material using double-sided tape, and gas permeability was measured at room temperature using a B-type Gurley desometer to evaluate gas diffusivity. The purpose of this experiment was to investigate to what extent gas diffusivity is inhibited when electrolyte is retained on each base material. Figure 2 shows the results in a graph. The horizontal axis is phosphoric acid type 1 (sg/c■2) (105W10H3PO4
), the vertical axis is the air permeability (ml/min, cm”, smAg)
shows. When phosphoric acid is not retained, base material A, which is thin and has a high porosity, has an outstandingly high air permeability, indicating that it has extremely good gas diffusivity. However, when phosphoric acid is retained, the air permeability of base material A rapidly decreases with a small amount of retained phosphoric acid compared to other base materials. The air permeability is 20m1/min, cn”, m from another experiment.
If the air permeability is less than 7n+I/min, the air diffusivity at the oxidizer electrode will be insufficient and the cell characteristics will deteriorate.
, cm", mm It is known that when the air permeability is less than Ag, the hydrogen diffusivity at the fuel electrode becomes insufficient and the cell characteristics deteriorate.

基材Aではわずか10■g/cs+”のリン酸保持量で
急速にガス透過性が低下しはじめるが、通常触媒層(3
)、(6)及びマトリックスTll中に保持されている
リン酸量は40vg/cm”程度であるからリザーブ量
としてはわずか25χにすぎない、触媒層やマトリック
スからリン酸があふれた場合に引き取り、触媒層やマト
リックスにリン酸が不足した場合に補充する機能性から
考えると、特開昭53−30747号明細書P230に
記載されているようにリザーブ量が2〜3倍つまり80
〜120 mg7cm”必要であるとするのは多過ぎる
惑じかするが、リン酸の膨張率とリン酸の消失を考える
と触媒層やマトリックスに含まれるリン酸量と同程度つ
まり40mg/cm”程度は必要であり、最低でも20
+ag/cm”程度のリザーブ量は必要と考えられる。
In base material A, gas permeability begins to decrease rapidly with a retained amount of phosphoric acid of only 10 g/cs+";
), (6) and the amount of phosphoric acid held in the matrix Tll is about 40 vg/cm'', so the reserve amount is only 25χ. Considering the functionality of replenishing phosphoric acid when it is insufficient in the catalyst layer or matrix, the reserve amount is 2 to 3 times, that is, 80
~120 mg/cm" It may be misleading to say that it is necessary, but considering the expansion rate of phosphoric acid and the disappearance of phosphoric acid, it is about the same amount as the amount of phosphoric acid contained in the catalyst layer and matrix, or 40 mg/cm." degree is necessary, at least 20
A reserve amount of approximately +ag/cm" is considered necessary.

なお基材Aは特開昭53−30747号明細書の表1に
示されたA−Dの基材とほぼ同じ規格と考えられるが、
1011g/cIlzのリン酸の体積は基材Aの気孔率
の約25χに相当する。
Note that the base material A is considered to be of almost the same standard as the base materials A to D shown in Table 1 of JP-A-53-30747;
A volume of 1011 g/cIlz of phosphoric acid corresponds to a porosity of substrate A of about 25χ.

実験2 リン酸を含浸した場合の透気度について基材厚さの影響
を調べる為に基材Aと同じ材質で厚さの異なったものに
つ、いてリン酸を気孔率の12χ相当含浸し、実験1と
同様にガス透過性の評価を行なった。この結果を第3図
にグラフで示した。横軸が基材厚み〔■〕、縦軸が透気
度(ml/1llin、cm”、msAg)を示す、基
材厚みが厚くなるにつれて透気度は悪くなるが、急激な
低下は見られなかった。この実験は実際の電池について
言えば、流路凹部から直上の基材を透過する反応ガスの
ガス透過性の評価に相当する。第5図、第6図は基材が
薄い場合と厚い場合とにおいて反応ガスが反応ガス流路
(22)から触媒N(3)へ達する様子を示したもので
あり、実験2のガスの流れは図中破線矢印に相当する。
Experiment 2 In order to investigate the effect of base material thickness on air permeability when impregnated with phosphoric acid, the same material as base material A but with a different thickness was impregnated with phosphoric acid equivalent to the porosity of 12χ. , Gas permeability was evaluated in the same manner as in Experiment 1. The results are shown graphically in FIG. The horizontal axis shows the base material thickness [■], and the vertical axis shows the air permeability (ml/1llin, cm", msAg). As the base material thickness increases, the air permeability worsens, but no rapid decrease is observed. In terms of actual batteries, this experiment corresponds to the evaluation of the gas permeability of the reaction gas that passes through the base material directly above the channel recess.Figures 5 and 6 show the results when the base material is thin and This figure shows how the reactant gas reaches the catalyst N (3) from the reactant gas flow path (22) in the thick case and in the thick case, and the gas flow in Experiment 2 corresponds to the broken line arrow in the figure.

しかし反応は反応ガス流路凸部(23)直上の触媒層(
3)でも起こり、この場合には実験2とは逆に基材が薄
くなるほどガスが透過しにくくなると予想される(図中
実線矢印)。そこで横方向へのガス透過性を調べるべく
次に示す実験3を行なうた。
However, the reaction takes place in the catalyst layer (
3), and in this case, contrary to Experiment 2, it is predicted that the thinner the base material is, the more difficult it is for gas to permeate (solid line arrow in the figure). Therefore, in order to investigate the gas permeability in the lateral direction, the following experiment 3 was conducted.

実験3 先に行なった実験2と同じサンプルについて21.5φ
の穴をあけたアルミハクをはりつけたままでさらに裏面
全体にアルミハクをはり、ガスが垂直には透過できずに
横方向にのみ透過するようにして透気度を調べこの結果
を第4図に示した。ただしこの場合の横方向の透気度は
単位として先の縦方向の透気度と同様に扱ってはいるが
定義が異なるので数値の絶対値を第3図と第4図とで比
較することはできない、結果は、基材厚さが0.8mm
以下になると透気度が急激に低下するというもので、そ
の低下の急激さは予想外のものであった。この結果は、
基材の気孔率のわずか12χがリン酸によって占められ
た場合にも基材厚さが0.8mm未満であれば流路凸部
(23)直上におけるガス透過性が不充分になり、全体
のセル特性が低下することを示唆している・。
Experiment 3 For the same sample as Experiment 2 conducted earlier, 21.5φ
With the aluminum foil with the holes still attached, we covered the entire back side with aluminum foil so that gas could only pass through horizontally and not vertically.The air permeability was measured and the results are shown in Figure 4. . However, in this case, the horizontal air permeability is treated as a unit in the same way as the vertical air permeability, but the definition is different, so the absolute value of the numerical value should be compared in Figures 3 and 4. The result is that the base material thickness is 0.8 mm.
Below that, the air permeability decreases rapidly, and the rapidity of this decrease was unexpected. This result is
Even if only 12χ of the porosity of the base material is occupied by phosphoric acid, if the base material thickness is less than 0.8 mm, the gas permeability directly above the channel convex portion (23) will be insufficient, and the overall This suggests that the cell characteristics deteriorate.

以上の要素試験から電池の構成について決定的な示唆が
得られた。つまり基材にリザーブ機能を持たせるには基
材の厚さは0.8mm以上でなければならないというこ
とである。このことはリブ付七′パレータ型に限らすリ
ブ付電極型についても言える。リブ付電極型では基材に
流路が形成されているが、基材の流路凸部(リブ部)に
電解質が含浸されている場合にはやはり基材の流路凸部
でのガスの拡散が問題である。従って特開昭58−68
881号明細書にて記載されているように平坦なシート
部のボア径をリプ部よりも大きくしてシート部に電解質
が含浸されないような構造上の複雑な改良が必然的に必
要になっているのである。
From the above elemental tests, definitive suggestions regarding the structure of the battery were obtained. In other words, in order for the base material to have a reserve function, the thickness of the base material must be 0.8 mm or more. This also applies to the ribbed electrode type, which is limited to the ribbed 7' pallet type. In the ribbed electrode type, a flow path is formed in the base material, but if the convex part of the flow path (rib part) of the base material is impregnated with electrolyte, the gas flow at the convex part of the flow path of the base material is also impregnated. Diffusion is the problem. Therefore, JP-A-58-68
As described in the specification of No. 881, complicated structural improvements such as making the bore diameter of the flat seat part larger than the lip part so that the seat part is not impregnated with electrolyte are inevitably required. There is.

また、リプ付セパレータ型で基材にリザーブ機能を付加
したものは特開昭53−30747号公報に明示されて
以降今日に至るまで実用化に至っておらず、大半の研究
機関でリブ付電極型が選ばれている。
In addition, the ribbed separator type with a reserve function added to the base material has not been put into practical use since it was disclosed in JP-A-53-30747, and most research institutes are using the ribbed electrode type. is selected.

これはリプ付セパレータ型において、常に0.4−一前
後のカーボンペーパーが用い1られ、さらに厚い基材に
ついて試みられなかった為に、リブ付セパレータ型にお
いて基材にリザーブ機能を持たせることは無理であり不
充分であると判定されたことによるのではないかと推定
される。
This is because in the separator type with ribs, carbon paper of around 0.4-1 is always used, and thicker base materials have not been attempted, so it is impossible to give the base material a reserve function in the separator type with ribs. It is presumed that this was because it was judged to be impossible and insufficient.

しかし第1図に示した本発明の一実施例による構成にお
いてはリプ付セパレータを用いているが、過去のどの型
よりも総合的に見て優れた性能とリザーブ機能を有して
いる。
However, in the configuration according to the embodiment of the present invention shown in FIG. 1, which uses a separator with lips, it has overall superior performance and reserve function than any of the past types.

すなわち、第1図の実施例においては燃料電極の基材を
1.0mmとすることによって充分なリザーブ量とガス
の拡散性が得られており、リブ付セパレータを用いた場
合のデメリットが消滅している。
That is, in the example shown in Fig. 1, by setting the base material of the fuel electrode to 1.0 mm, sufficient reserve amount and gas diffusivity are obtained, and the disadvantages of using a ribbed separator are eliminated. ing.

またガスシールの必要な領域t2は2 、0+Wffi
 となりリブ付セパレータ型(第8図)の1.4mmよ
りも少し大きいが、リブ付電極型(第9図)の4.2m
mやハイブリッド型(第10図)よりもはるかに小さい
Also, the area t2 where gas sealing is required is 2,0+Wffi
It is slightly larger than the 1.4 mm of the ribbed separator type (Figure 8), but the ribbed electrode type (Figure 9) has a length of 4.2 mm.
It is much smaller than the hybrid type (Fig. 10).

ガスシールの必要な領域t2の上限をリブ付電極型と同
じ4.2+i+*とすれば、第1図の実施例の場合燃料
電極の基材の厚さは3.2mmまで厚くすることが可能
である。一方燃料電極の基材の厚さをガス拡散からの許
容値ぎりぎりの0.8mm とすれば、ガスシール領域
1.は1.8II1mまで下げることができる。
If the upper limit of the region t2 where gas sealing is required is 4.2+i+*, which is the same as the ribbed electrode type, the thickness of the fuel electrode base material can be increased to 3.2 mm in the example shown in Figure 1. It is. On the other hand, if the thickness of the base material of the fuel electrode is set to 0.8 mm, which is the limit for gas diffusion, the gas seal area 1. can be lowered to 1.8II1m.

従ってガスシール性と熱伝導についても本発明の構造は
良好であると考えられる。
Therefore, the structure of the present invention is considered to be good in terms of gas sealing properties and heat conduction.

一方全体の厚さについては第1図では5.0mmとなり
リプ付セパレータ型(第8図)の4.411111より
も少し大きいがリプ付電極型(第9図)の5.0mmと
同じである。
On the other hand, the overall thickness is 5.0 mm in Figure 1, which is slightly larger than the 4.411111 of the separator type with lips (Figure 8), but the same as 5.0 mm of the electrode type with lips (Figure 9). .

また、基材は平板であるからリプ付電極と比べて、ハン
ドリングが容易であり、0.8mm以上と厚いので充分
な強度を持っている。またリプ付セパレータについては
従来と変わらないので外部リザーバ(26)を形成する
こともできる。さらに基材に凹凸を形成する必要がない
から低コストである。
Furthermore, since the base material is a flat plate, it is easier to handle compared to electrodes with lips, and because it is thick at 0.8 mm or more, it has sufficient strength. Furthermore, since the separator with lip is the same as the conventional one, an external reservoir (26) can also be formed. Furthermore, since there is no need to form irregularities on the base material, the cost is low.

一方酸他剤電極については基材の厚さを0.4ffi+
*とし、撥水処理をすることによって、基材内でのガス
の拡散性阻害を最小限にとどめている。!Ω水処理は4
フツ化エチレン樹脂や4フフかエチレン−67フ化プロ
ピレン共重合樹脂などの疏水性樹脂やフッ化黒鉛などの
撥水性を有する材料を基材繊維に付着あるいはコーティ
ングすることによって行なわれてよい。これは例えば特
開昭61−99272号公報等に示す従来のリプ付セパ
レータ型の場合と同じである。ta水処理した酸化剤電
極の基材の厚さについては、これに相対するセパレータ
の流路の凹凸によるガスの拡散性から見て第3図と第4
図の実験と同様の観点から0.3〜0.5mmが許容範
囲である。
On the other hand, for the acid and other agent electrodes, the thickness of the base material is 0.4ffi+
*By applying water repellent treatment, inhibition of gas diffusion within the base material is kept to a minimum. ! Ω water treatment is 4
This may be carried out by attaching or coating a water-repellent material such as a hydrophobic resin such as a fluorinated ethylene resin or a 4-fluorinated ethylene-67 fluorinated propylene copolymer resin, or fluorinated graphite to the base fiber. This is the same as in the case of the conventional lip separator type disclosed in, for example, Japanese Unexamined Patent Publication No. 61-99272. The thickness of the base material of the oxidizing agent electrode treated with ta water is as shown in Figs.
From the same viewpoint as the experiment shown in the figure, the allowable range is 0.3 to 0.5 mm.

なお、リプ付電極型について言えば、酸化剤電極の基剤
をt8水処理した場合にも撥水処理しないで電解質をリ
ザーブ(初期リザーブしてなくても燃料極側でリザーブ
していれば移動してバランスする)した場合にも基材で
のガスの拡散性阻害があり0□ゲイン(M他剤として用
いるガスが酸素(0,)での特性と空気での特性の出力
電圧の差)が90mv前後になる。これに対して本発明
の実施例の場合02ゲインは80sv前後であり、出力
電圧はリプ付電極型に比べ10mVも改善されている。
Regarding the electrode type with lip, even if the base material of the oxidizer electrode is treated with T8 water, the electrolyte is reserved without water repellent treatment (even if it is not initially reserved, if it is reserved on the fuel electrode side, it can be moved). Even in the case where the gas is balanced by 0, the diffusivity of the gas in the base material is inhibited and 0□gain (difference in output voltage between the characteristics when the gas used as the other agent is oxygen (0,) and the characteristic when air is used) is around 90 mv. On the other hand, in the case of the embodiment of the present invention, the 02 gain is around 80 sv, and the output voltage is improved by 10 mV compared to the lipped electrode type.

さて、第1図に示すこの発明の一実施例において従来例
に比べて特徴的なことは以上説明してきた基材の撥水処
理の有無と基材の厚さという2つの特徴の他に外部リザ
ーバ(26)がta水処理していない基材叩に当接され
しかも湿潤シール部(9)と基材(2)にまたがってい
るという特徴がある。従来リプ付セパレータ型では第8
図に示すように外部リザーバ(24)から湿潤シール部
(9)を経てマトリックスfl+に電解液が供給される
。従って電池の中央付近に電解液を供給するにはマトリ
ックス中を長い距離移動しなければならず電解液の補給
に極めて長い時間が必要であった。しかし本発明の電池
構成によれば、例えば湿潤シール部(9)にのみ外部リ
ザーバ(24)を当接した場合に外部リザーバから湿潤
シール部(9)へ移動した電解液はマトリックスよりも
電解液の移動速度の大きな未18水の基材(2)に移動
する。基材(2)内での電解液の移動はすみやかに行な
われるので電解液は電池面方向に移動し、触媒層を介し
てマトリックスに電解液が移動する。
Now, the characteristics of the embodiment of this invention shown in FIG. It is characterized in that the reservoir (26) is in contact with a base material that has not been treated with TA water, and that it straddles the wet seal portion (9) and the base material (2). In the conventional separator type with lip, the 8th
As shown in the figure, electrolyte is supplied to the matrix fl+ from an external reservoir (24) through a wet seal (9). Therefore, in order to supply the electrolyte near the center of the battery, it had to travel a long distance through the matrix, and an extremely long time was required to replenish the electrolyte. However, according to the battery configuration of the present invention, for example, when the external reservoir (24) is brought into contact only with the wet seal part (9), the electrolyte that has moved from the external reservoir to the wet seal part (9) is larger than the electrolyte in the matrix. It moves to the non-18 water base material (2) with a high movement speed. Since the electrolytic solution moves quickly within the base material (2), the electrolytic solution moves in the direction of the battery surface, and the electrolytic solution moves to the matrix via the catalyst layer.

従って従来に比べて電解液の補給速度は飛躍的に向上す
る。従来、基材にリザーブ機能を持たせる場合には外部
リザーバは配設されなかったが、電解液の凍結を防止す
る為に水を加えて、電池全体の電解液の濃度を低下させ
るなどの用途に対しても補給速度の速い外部リザーバ機
構を用いることは有効である。1!解液の補給について
は基材にリザーブ機能を持たせたリブ付電極型で行なわ
れる特開昭61−47074号に記載されているような
積層型燃料電池の上から下へ電解液をたれ流してリプ付
電極基材に電解液を吸収させる方法よりも本発明の実施
例のように外部リザーバ機構を用いた方が補給される電
解液の量の把握が容易でありより確実性がある。
Therefore, the electrolyte replenishment speed is dramatically improved compared to the conventional method. Conventionally, an external reservoir was not installed when the base material had a reserve function, but it can be used to reduce the concentration of the electrolyte in the entire battery by adding water to prevent the electrolyte from freezing. It is also effective to use an external reservoir mechanism that has a fast replenishment speed. 1! To replenish the electrolyte, the electrolyte is dripped from the top to the bottom of a stacked fuel cell as described in JP-A No. 61-47074, which uses a ribbed electrode type in which the base material has a reserve function. Using an external reservoir mechanism as in the embodiment of the present invention is easier and more reliable in determining the amount of electrolyte to be replenished than the method of absorbing the electrolyte into the electrode base material with a lip.

さらに外部リザーバは湿潤ガスシール部の電解液を不足
させないという役目も持っており、湿潤ガスシール部に
当接された外部リザーバはこの役目を充分に果たす。し
かし湿潤シール部を介して基材へ電解液が移動する場合
、温潤シール部での移動速度が比較的遅い為に本来の基
材での移動速度よりも遅くなる。しかし第1図の実施例
のように両方にまたがった外部リザーバ(26)を配設
した場合には湿潤ガスシール部(9)への電解液の補給
を行ないながら湿潤ガスシール部(9)を介さずに基材
(2)へ電解液が移動できる為に移動速度をさらに速め
ることができる効果がある。なお第1図では酸化剤電極
側のガスシールをバッキング材(25)によるシールと
しているが湿潤ガスシールであってもよい。
Furthermore, the external reservoir also has the role of preventing the electrolyte in the wet gas seal from running out, and the external reservoir that is in contact with the wet gas seal fully fulfills this role. However, when the electrolytic solution moves to the base material through the wet seal part, the moving speed in the warm seal part is relatively slow, so that it is slower than the original moving speed in the base material. However, if an external reservoir (26) is provided that spans both sides as in the embodiment shown in FIG. Since the electrolytic solution can be moved to the base material (2) without going through it, there is an effect that the moving speed can be further increased. In FIG. 1, the gas seal on the oxidizer electrode side is a seal made of a backing material (25), but it may be a wet gas seal.

第7図はこの発明の他の実施例による積層型燃料電池を
示す断面図である。この実施例では湿潤ガスシール部(
9)に当接した第1外部リザーバ(27)の他にもう一
つ基材(2)に直接当接した第2外部リザーバ(28)
を配設している。すなわち、第1の外部リザーバ(27
)を湿潤シール部(9)でのガスシール性保持専用とし
て用い、第2の外部リザーバ(28)を基材(2)への
電解液補給、水の補給にする電解液の希釈、基材(2)
のリザーブ機能の拡張等として用いることができ、機能
の文化によりさらに機能性を高めることができる。
FIG. 7 is a sectional view showing a stacked fuel cell according to another embodiment of the present invention. In this example, the wet gas seal part (
In addition to the first external reservoir (27) in contact with the base material (2), there is another second external reservoir (28) in direct contact with the base material (2).
has been set up. That is, the first external reservoir (27
) is used exclusively for maintaining the gas sealing property in the wet seal part (9), and the second external reservoir (28) is used to supply electrolyte to the base material (2), to dilute the electrolyte to replenish water, and to dilute the electrolyte to the base material. (2)
It can be used as an extension of the reserve function, etc., and the functionality can be further enhanced by the culture of the function.

なお外部リザーバに配設される多孔質部材については、
基材に電解液を供給するという役割から多孔質部材の平
均気孔径は燃料電極の電極基材の平均気孔径以上である
ことが望ましいが、湿潤ガスシール部(9)でのガスシ
ール性保持専用第1の外部リザーバ(27)については
多孔質部材の平均気孔径はむしろ電極基材の平均気孔径
よりも小さく充分に電解液が保持されていることが望ま
しい。一方策2の外部リザーバ(28)についてはここ
に電解液が必ずしも保持されている必要はなくここに配
設される多孔質部材の平均気孔径はさらに大きくてよい
Regarding the porous member installed in the external reservoir,
It is desirable that the average pore diameter of the porous member is greater than or equal to the average pore diameter of the electrode base material of the fuel electrode due to its role of supplying electrolyte to the base material, but it is important to maintain gas sealing properties in the wet gas sealing part (9). Regarding the dedicated first external reservoir (27), it is preferable that the average pore diameter of the porous member is smaller than the average pore diameter of the electrode base material so that the electrolyte is sufficiently retained. Regarding the external reservoir (28) of the second option, the electrolytic solution does not necessarily need to be held there, and the average pore diameter of the porous member disposed here may be even larger.

なお、上記実施例では酸化剤電極と燃料電極の位置関係
を酸化剤電極側を上にしたが逆であってもよく同様の効
果がある。
In the above embodiment, the oxidant electrode and the fuel electrode are positioned with the oxidant electrode facing upward, but the same effect may be obtained even if the position is reversed.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、厚さが0.31以上
0.5suw以下でtθ水処理が施された酸化剤電極基
材と、0.81以上3.21以下で撥水処理が施されて
いない燃料電極基材と、ガス分離板に配設されて燃料電
極基材に当接し、多孔質基材を有する外部リザーバとを
備えたので、酸化剤電極においては基材内でのガス拡散
性阻害が最小限にとどめられ、燃料電極においては充分
な電解質リザーブ量とガスの拡散性が得られ、ガスシー
ルの必要な領域もリブ付セパレータ型より少し大きいが
、リブ付電極型やハイブリッド型よりもはるかに小さい
ため、ガスシールが容易で熱伝導性にも優れており、さ
らに、外部リザーバにより燃料電極基材の電解質リザー
ブ機能がより高められると共に外部からの電解質の補給
が容易になるなど、総合的に見て優れた性能を有する積
層型燃料電池が得られる効果がある。
As described above, according to the present invention, the oxidizing agent electrode base material has a thickness of 0.31 or more and 0.5suw or less and has been subjected to tθ water treatment, and a thickness of 0.81 or more and 3.21 or less and that has undergone water repellent treatment. Since the oxidizer electrode includes a fuel electrode base material that is not coated, and an external reservoir that is disposed on the gas separation plate and abuts the fuel electrode base material and has a porous base material, the oxidant electrode has a Gas diffusivity inhibition is kept to a minimum, sufficient electrolyte reserve amount and gas diffusivity are obtained at the fuel electrode, and the area required for gas sealing is slightly larger than that of the ribbed separator type. Because it is much smaller than the hybrid type, gas sealing is easy and it has excellent thermal conductivity.Furthermore, the external reservoir further enhances the electrolyte reserve function of the fuel electrode base material and makes it easy to replenish electrolyte from the outside. This has the effect of providing a stacked fuel cell with overall excellent performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による積層型燃料電池を示
す断面図、第2図〜第4図はそれぞれこの発明の一実施
例による要素試験の結果を示す特性図、第5図、第6図
はそれぞれこの発明の一実施例による要素試験を説明す
る説明図、第7図はこの発明の他の実施例による積層型
燃料電池を示す断面図、第8図〜第10図はそれぞれ従
来の積層型燃料電池を示す断面図である。 図において、(1)は電解質保持マトリックス、(2)
、(5)は電極基材、(3)、(6)は触媒層、(4)
は燃料電極、(7)は酸化剤電極、(9)は湿潤ガスシ
ール部、αのはガス分離板、αυは酸化剤ガス流路、叩
は燃料ガス流路、(24)、 (26)、 (27) 
、 (28)は外部リザーバである。 なお、各図中同一符号は同一または相当部分を示すもの
とする。
FIG. 1 is a sectional view showing a stacked fuel cell according to an embodiment of the present invention, FIGS. 2 to 4 are characteristic diagrams showing the results of element tests according to an embodiment of the present invention, and FIGS. 6 is an explanatory diagram illustrating an element test according to one embodiment of the present invention, FIG. 7 is a sectional view showing a stacked fuel cell according to another embodiment of the present invention, and FIGS. FIG. 2 is a cross-sectional view showing a stacked fuel cell. In the figure, (1) is the electrolyte retention matrix, (2)
, (5) is an electrode base material, (3), (6) is a catalyst layer, (4)
is the fuel electrode, (7) is the oxidizing agent electrode, (9) is the wet gas seal, α is the gas separation plate, αυ is the oxidizing gas flow path, and is the fuel gas flow path, (24), (26) , (27)
, (28) is an external reservoir. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (9)

【特許請求の範囲】[Claims] (1)多孔性の電極基材とこれに設けた触媒層とを有す
る酸化剤電極および燃料電極を、電解質保持マトリック
スを介在し、上記触媒層同士を対向させて配置する単電
池と、上記酸化剤電極に対設する酸化剤ガス流路および
上記燃料電極に対設する燃料ガス流路を有するガス分離
板とを交互に複数個積層して積層体を構成する積層型燃
料電池において、上記酸化剤電極基材は厚さが0.3m
m以上0.5mm以下で撥水処理が施されたものであり
、上記燃料電極基材は厚さが0.8m以上3.2mm以
下で撥水処理が施されていないものであり、かつ上記ガ
ス分離板には多孔質材を有し、上記燃料電極基材に当接
している外部リザーバが配設されていることを特徴とす
る積層型燃料電池。
(1) A unit cell in which an oxidizer electrode and a fuel electrode each having a porous electrode base material and a catalyst layer provided thereon are arranged with the catalyst layers facing each other with an electrolyte retention matrix interposed therebetween; In a stacked fuel cell in which a plurality of oxidant gas flow channels facing the oxidizing agent electrode and gas separation plates each having a fuel gas flow path facing the fuel electrode are alternately laminated to form a laminate, the oxidizing The thickness of the electrode base material is 0.3m.
m or more and 0.5 mm or less, and the fuel electrode base material has a thickness of 0.8 m or more and 3.2 mm or less and has not been subjected to water repellent treatment, and A stacked fuel cell characterized in that the gas separation plate has a porous material and an external reservoir is disposed in contact with the fuel electrode base material.
(2)燃料電極基材はその電池反応領域の周縁部にガス
シール部を有する特許請求の範囲第1項記載の積層型燃
料電池。
(2) The stacked fuel cell according to claim 1, wherein the fuel electrode base material has a gas seal portion at the periphery of the cell reaction area.
(3)外部リザーバはガスシール部の内側の燃料電極基
材に当接して設けられている特許請求の範囲第2項記載
の積層型燃料電池。
(3) The stacked fuel cell according to claim 2, wherein the external reservoir is provided in contact with the fuel electrode base material inside the gas seal portion.
(4)ガスシール部は湿潤ガスシール部であり、外部リ
ザーバは上記湿潤ガスシール部に当接して設けられてい
る特許請求の範囲第2項記載の積層型燃料電池。
(4) The stacked fuel cell according to claim 2, wherein the gas seal portion is a wet gas seal portion, and the external reservoir is provided in contact with the wet gas seal portion.
(5)外部リザーバは湿潤ガスシール部およびこの湿潤
ガスシール部の内側の燃料電極基材の両方にたがって当
接する特許請求の範囲第2項記載の積層型燃料電池。
(5) The stacked fuel cell according to claim 2, wherein the external reservoir is in contact with both the wet gas seal portion and the fuel electrode base material inside the wet gas seal portion.
(6)外部リザーバは、湿潤ガスシール部に当接する第
1外部リザーバと第1外部リザーバと分離して設けられ
上記湿潤ガスシール部の内側の燃料電極基材に当接する
第2外部リザーバとを有する特許請求の範囲第2項きさ
いの積層型燃料電池。
(6) The external reservoir includes a first external reservoir that comes into contact with the wet gas seal and a second external reservoir that is provided separately from the first external reservoir and comes into contact with the fuel electrode base material inside the wet gas seal. Claim 2: A small-sized stacked fuel cell.
(7)外部リザーブの多項質材の平均気孔径の大きさは
燃料電極基材の平均気孔径の大きさ以上である特許請求
の範囲第1項ないし第6項の何れかに記載の積層型燃料
電池。
(7) The laminated type according to any one of claims 1 to 6, wherein the average pore diameter of the polymorphic material of the external reserve is greater than or equal to the average pore diameter of the fuel electrode base material. Fuel cell.
(8)第1外部リザーバの多項質材の平均気孔径は電極
基材の平均気孔径より小さい特許請求の範囲第6孔記載
の積層型燃料電池。
(8) The stacked fuel cell according to claim 6, wherein the average pore diameter of the polymorphous material of the first external reservoir is smaller than the average pore diameter of the electrode base material.
(9)第2外部リザーバの多孔質基材の平均気孔径は第
1外部リザーバの多孔質基材の平均気孔径より大きい特
許請求の範囲第8項記載の積層型燃料電池。
(9) The stacked fuel cell according to claim 8, wherein the average pore diameter of the porous base material of the second external reservoir is larger than the average pore diameter of the porous base material of the first external reservoir.
JP61153367A 1986-06-30 1986-06-30 Stacked fuel cell Pending JPS6310469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61153367A JPS6310469A (en) 1986-06-30 1986-06-30 Stacked fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61153367A JPS6310469A (en) 1986-06-30 1986-06-30 Stacked fuel cell

Publications (1)

Publication Number Publication Date
JPS6310469A true JPS6310469A (en) 1988-01-18

Family

ID=15560903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61153367A Pending JPS6310469A (en) 1986-06-30 1986-06-30 Stacked fuel cell

Country Status (1)

Country Link
JP (1) JPS6310469A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068323A (en) * 2001-08-29 2003-03-07 Honda Motor Co Ltd Film/electrode structural body and fuel cell
JP2005503643A (en) * 2001-05-15 2005-02-03 ハイドロジェニクス コーポレイション Apparatus and method for forming a seal in a fuel cell and fuel cell stack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005503643A (en) * 2001-05-15 2005-02-03 ハイドロジェニクス コーポレイション Apparatus and method for forming a seal in a fuel cell and fuel cell stack
JP2003068323A (en) * 2001-08-29 2003-03-07 Honda Motor Co Ltd Film/electrode structural body and fuel cell

Similar Documents

Publication Publication Date Title
US4345008A (en) Apparatus for reducing electrolyte loss from an electrochemical cell
JP4505144B2 (en) Improved membrane electrode assembly for PEM type fuel cells
US6485857B2 (en) Fuel cell hybrid flow field humidification zone
JP2922132B2 (en) Polymer electrolyte fuel cell
EP1889323A2 (en) Carbonate fuel cell and components thereof for in-situ delayed addition of electrolyte
JP2001283879A (en) Solid polymer fuel cell stack and air vent valve
JPH01217861A (en) Fuel cell
US8470483B2 (en) Wettable gas diffusion layer for a wet seal in a fuel cell
US20080241607A1 (en) Water removal system for non-reactive regions in pefmc stacks
JP2007509461A (en) Internal water management for PEM fuel cells
CN110739466B (en) Bipolar plate of fuel cell and fuel cell
KR20240019092A (en) 4-fluid bipolar plate for fuel cells
CN101533923B (en) Fuel cell stack
JPS6310469A (en) Stacked fuel cell
JPS6334855A (en) Laminate type fuel cell
JPS6310468A (en) Stacked fuel cell
JP2829184B2 (en) Fuel cell
US20090123807A1 (en) Single plate pem fuel cell
EP0262961B1 (en) Fuel cell with electrolyte matrix assembly
JP2004228089A (en) Micro fuel cell having positive and negative micro fluid channel and method relating the same
US20070224476A1 (en) Fuel cell with electrolyte condensation zone
JP2008525959A (en) Fuel cell with electrolyte condensation zone
JPH0473866A (en) Molten carbonate fuel cell
JPH07326374A (en) Fuel cell
JPS5975568A (en) Fuel cell