JPS6310468A - Stacked fuel cell - Google Patents

Stacked fuel cell

Info

Publication number
JPS6310468A
JPS6310468A JP61153366A JP15336686A JPS6310468A JP S6310468 A JPS6310468 A JP S6310468A JP 61153366 A JP61153366 A JP 61153366A JP 15336686 A JP15336686 A JP 15336686A JP S6310468 A JPS6310468 A JP S6310468A
Authority
JP
Japan
Prior art keywords
base material
gas
electrode
thickness
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61153366A
Other languages
Japanese (ja)
Inventor
Kenro Mitsuta
憲朗 光田
Ikuyuki Hirata
平田 郁之
Toshiaki Murahashi
村橋 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61153366A priority Critical patent/JPS6310468A/en
Publication of JPS6310468A publication Critical patent/JPS6310468A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To minimize a gas diffusion obstruction and to obtain the sufficient amount of electrolyte reserve and gas diffusion capability by applying water repellent treatment to an oxidizing agent substrate having a thickness of 0.3-0.5mm, and applying no water repellent treatment to a fuel electrode substrate having a thickness of 0.8-3.2mm. CONSTITUTION:An oxidizing agent electrode substrate 5 having a thickness of 0.3-0.5mm to which water repellent treatment is applied and a fuel electrode substrate 2 having a thickness of 0.8-3.2mm to which no water repellent treatment is applied are used. Water treatment is applied to the substrate 5 and no water treatment is applied to the substrate 2. The thickness of the substrate 5 is 0.4mm and that of the substrate 2 is 1.0mm which is two times or more. Thereby, sufficient gas diffusion capability and the sufficient amount of electrolyte reserve are ensured. The region where gas sealing is required is reduced and gas sealing is made easy, and furthermore, installation of external reservoir is easy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、積層型燃料電池に関し、特に電池の構成間
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a stacked fuel cell, and particularly to the structure of the cell.

〔従来の技術〕[Conventional technology]

周知の通)、燃料電池は対向して配置された燃料[極と
酸化剤[極の間に電解質を医持し念電解質マトリックス
を介在させ、燃料T1.極および酸化剤電憧にそれぞれ
燃料および酸化剤を供胎して運転される一種の発電装置
である。
As is well known), a fuel cell consists of a fuel T1. It is a type of power generation device that is operated by supplying fuel and oxidizer to the pole and oxidizer, respectively.

燃料電池には、■カルノーサイクルの制約がなく高い効
率が期待できる、■電池作動温度に近い比較的高温の有
効利用が容易な廃熱が得られる、■出力を変えても効率
はめま)変わらない、■負荷変動に対する応答性にすぐ
れているなどの利点があ)、都市内もしくは都市近郊に
配電用変電所の規模で分散r9装置する、あるいは火力
発電所の代替発電装置とするなどの利用形態が考えられ
ている。
Fuel cells have the following characteristics: ■ High efficiency can be expected as there is no Carnot cycle restriction; ■ Waste heat can be obtained at a relatively high temperature close to the cell operating temperature and can be easily used effectively; ■ Efficiency does not change even if the output is changed. ■It has advantages such as excellent responsiveness to load fluctuations), and can be used for distributed R9 equipment on the scale of distribution substations in or near cities, or as an alternative power generation equipment for thermal power plants. The form is being considered.

燃料電池は用いられる電解質の種類によってアルカリ型
、リン酸型、溶融炭酸塩型などに分類されるが、このう
ちリン酸型は第一世代と呼ばれ最も開発が進んでおり、
すでに実用規模での試運転が行なわれている。
Fuel cells are classified into alkaline type, phosphoric acid type, molten carbonate type, etc. depending on the type of electrolyte used. Of these, the phosphoric acid type is called the first generation and is the most developed.
Trial runs on a practical scale have already been carried out.

ここで例えばリン酸型燃料電池について説明する。リン
酸型燃料電池で最もオーツドックスな電池構成はリプ付
セパレータ型と呼ばれるタイプで、米国特許3.86Z
 、206号明細書(特公昭58−152号公報)や、
米国特許4,276.355号明細書(特開昭59−6
6067号公報)に代表的な電池構成が記載されている
。第8図は、りづ付セパレータ型の代表的な構成を示す
断面図であり、図において、fi+は電解質保持マトリ
ックス、(4)は燃料vIL極、(2)は燃料電極の電
極基材、(3)は燃料taの触媒層、(7)は酸化剤電
極、(5)は酸化剤電極の電極基材、(6)は酸化剤電
極の触媒1 、 (81は燃料gt極の湿潤ガスシール
部、(9)は酸化剤電極の湿潤ガスシール部、叫はガス
分離板(tバし一タ、バイポーラ板、インターコネクタ
ーなどとも呼ばれている) 、(1))Vi酸化剤ガス
流路、α匂は燃料ガス流路(酸化剤ガス流路と直交して
いる)である。ガス分離板−に反応ガス流路(+1)、
(lが形成されていることからリプ付セパレータ型と呼
ばれている。湿潤ガスシール部(81、+91はノヘツ
キ:、Iジ材によるガスシールに置き換えられる場合も
ある。(tl)は1つのセルの構成の厚さを示しておシ
、一般にりづ付セパレータ型の場合、ガス分離板(IC
4が31)1)程度の厚さで基材f21 、+51がそ
れぞれ0.4am程度、触媒層f31 、+61と電解
質保持マトリックス層(1)が合わせて0.61程度に
なるので、(tx)の厚さは4.4 *m程度となる。
Here, for example, a phosphoric acid fuel cell will be explained. The most conventional type of phosphoric acid fuel cell is the lip separator type, which is disclosed in U.S. Patent No. 3.86Z.
, Specification No. 206 (Special Publication No. 58-152),
U.S. Patent No. 4,276.355
A typical battery configuration is described in Japanese Patent No. 6067). FIG. 8 is a cross-sectional view showing a typical configuration of the attached separator type. In the figure, fi+ is an electrolyte holding matrix, (4) is a fuel vIL electrode, (2) is an electrode base material of a fuel electrode, (3) is the catalyst layer of the fuel ta, (7) is the oxidizer electrode, (5) is the electrode base material of the oxidizer electrode, (6) is the catalyst 1 of the oxidizer electrode, (81 is the wet gas of the fuel gt electrode) The seal part, (9) is the wet gas seal part of the oxidizer electrode, and the symbol is the gas separation plate (also called a T-bar, bipolar plate, interconnector, etc.), (1)) Vi oxidizer gas flow. The path and α line are the fuel gas flow path (orthogonal to the oxidant gas flow path). Reactant gas flow path (+1) on gas separation plate -,
(It is called a separator type with a lip because it is formed with a l.) Wet gas seal part (81, +91 may be replaced with a gas seal made of a nohetsuki material. (tl) is a single lip. Indicates the thickness of the cell structure.In general, in the case of glued separator type, the gas separation plate (IC)
4 is about 31) 1), the base materials f21 and +51 are each about 0.4 am, and the total of the catalyst layers f31 and +61 and the electrolyte holding matrix layer (1) is about 0.61 am, so (tx) The thickness is approximately 4.4*m.

ガス分離板−が不透気性であるのに対して、基材(21
,[51はポーラスになっているので(+2)の範囲は
充分なガスシールが必要となる。りづ付セパレータ型の
場合(+2)は約1.4 z慮の厚さとなるが、この厚
さが厚ければ厚いほどガスシールが隔しくなる。また、
ガス分離板001が緻密なカーボンで構成されていて熱
電導が良いのに対して、基材f21.+51はポーラス
で50%以上が気体(空気や燃料)で占められている為
に熱電導が悪い。
While the gas separation plate is air-impermeable, the base material (21
, [51 are porous, so sufficient gas sealing is required in the range (+2). In the case of the attached separator type (+2), the thickness is approximately 1.4 mm, and the thicker the thickness, the more the gas seal becomes spaced apart. Also,
While the gas separation plate 001 is made of dense carbon and has good thermal conductivity, the base material f21. +51 is porous and more than 50% is occupied by gas (air or fuel), so it has poor thermal conductivity.

また、電解質保持マトリックスFig (tltl電熱
が悪い。従って(+2)は熱電導の悪い領域でもある。
In addition, the electrolyte retention matrix Fig (tltl electric heating is poor. Therefore, (+2) is also a region with poor thermal conduction.

積層型燃料電池は通常5セルおきに冷却板を挿入してセ
ルで発生する熱を吸収し、セルを冷却してできるだけ均
一な動作温度を保つようにする。従って(+2)の厚さ
が厚ければ厚いほど熱電導が困難となり、セルの積層方
向及び面内の温度がばらつき、高温による部材の腐食や
低温によるセル特性の低下などが問題となる。
Stacked fuel cells typically include cooling plates inserted every fifth cell to absorb the heat generated by the cells and cool them to maintain as uniform an operating temperature as possible. Therefore, the thicker the (+2) thickness, the more difficult it becomes to conduct heat, which causes variations in temperature in the cell stacking direction and in the plane, causing problems such as corrosion of members due to high temperatures and deterioration of cell characteristics due to low temperatures.

りづ付セパレータ型のメリットの第1は後述する他のタ
イプに比べて(+2)の厚さが薄い為に、ガスシールが
容易なことであり、メリットの第2は同様の理由により
熱伝導が良いことである。
The first advantage of the attached separator type is that it is thinner (+2) than other types described later, so gas sealing is easy, and the second advantage is that it has good heat conduction for the same reason. is a good thing.

りづ付t J’lレータ゛謀の場合、基材はすべて撥水
処理が施される。これは電解質マトリックス内の電解液
が触媒層を通過して基材へ流れ出て基材の気孔を閉塞し
、反応ガスの透過性が阻害されるのを防止する目的で行
なわれている。基材への撥水処理の方法については、特
開昭60−220565号公報、特開昭60−1336
63号公報に詳しく記述されている。
In the case of a t J'l layer strategy, all base materials are treated to be water repellent. This is done in order to prevent the electrolytic solution in the electrolyte matrix from flowing out into the substrate through the catalyst layer and blocking the pores of the substrate, thereby inhibiting the permeability of the reaction gas. Regarding methods of water-repellent treatment of base materials, see JP-A-60-220565 and JP-A-60-1336.
It is described in detail in Publication No. 63.

を九同じ基材でも縁部には炭化ケイ素などの親水性の材
料を充填して電解液を保持させ、湿潤ガスシール部とす
る場合が多い。従ってりづ付セパレータ型の場合電解液
に占められ九部分は電解質保持マトリックス(1)と触
媒層(:ll 、(81それに湿潤ガスシール部(1)
) 、+9+である。しかし長期間の運転の間には電解
液が飛散、蒸発などによシネ足してくる。そこでガス分
離板(!(2)の一部に外部リザーバを設けて湿潤ガス
シール部(81、(91やマトリックス(1)に当接さ
せ、外部からマトリックス+1)への電解液の補給を可
能にしている。外部リザーバについては特開昭58−1
61269号、特開昭59−21)969号公報に詳し
く記述されている。外部リザーバを形成するには2〜3
龍程度の厚さの不遇気性の部位が必要であシガス分離板
[+01は外部リザーバを形成する部位として最も適し
ており外部リザーバの形成が容易なことがりづ付セパレ
ータ型の第3のメリットとなっている。
Even with the same base material, the edges are often filled with a hydrophilic material such as silicon carbide to retain the electrolyte and serve as a wet gas seal. Therefore, in the case of the attached separator type, nine parts occupied by the electrolyte are the electrolyte holding matrix (1), the catalyst layer (:ll, (81) and the wet gas seal part (1)).
), +9+. However, during long-term operation, the electrolyte accumulates due to scattering and evaporation. Therefore, by providing an external reservoir in a part of the gas separation plate (! (2)) and bringing it into contact with the wet gas seal part (81, (91) or matrix (1), it is possible to replenish the electrolyte from the outside to the matrix +1). Regarding the external reservoir, see Japanese Patent Application Laid-open No. 58-1.
It is described in detail in No. 61269 and Japanese Unexamined Patent Publication No. 59-21)969. 2-3 to form an external reservoir
It is necessary to have an unfavorable part as thick as a dragon, and the gas separation plate [+01 is most suitable as a part for forming an external reservoir, and the third advantage of the separator type with screws is that it is easy to form an external reservoir. It has become.

一方、リプ付セパレータ型のデメリットは、電解液の膨
張に対する吸収機能が不充分なことである。燃料電池は
動作中に水を発生するので、この発生水が電解液を希釈
してマトリックスに収納される以上に電解液の体積を増
大させ動作圧力、動作温度、電流密度9反応月ス利用率
などの動作条件によって電解液の体積は大きく変化する
。この体積の増加分はマトリックス内を移動して湿潤シ
ール部(81,t91や外部リザーバに収納されるが、
セルの大きさが大きくなりマトリックス内の移動距喝が
長くなると、体積の膨張速度に比してマトリックス内の
電解液の移動が間に合わなくなシ、体積の増加分は触媒
層[31、[61に入ってフラツデイングを起こし九)
、さらに撥水処理され九基材内(21,f51に入って
マトリックスに戻れなくなるなシ、次に体積が収縮し念
ときにマトリックス内の電解液が不足してり03才−バ
ーが生じるなど極めて深刻な事態を生じた。マトリック
スから触謀、1を通じて基材へ電解液が流出するのを防
ぐ為に撥水性を強化した層を触媒層と基材との間に設け
ることが、特開昭50−101837号、特開昭60−
170168号、特開昭60−241655号公報など
で開示されているが、その効果は充分ではなく、セルの
面積が大きくなればなるほどりづ付セパレータ型におい
てはこの電解液の膨張に対する吸収機能の不備がほとん
ど致命的な欠陥となっていた。
On the other hand, the disadvantage of the separator type with lips is that its ability to absorb expansion of the electrolytic solution is insufficient. Since fuel cells generate water during operation, this generated water dilutes the electrolyte and increases the volume of the electrolyte beyond that contained in the matrix. The volume of the electrolyte varies greatly depending on the operating conditions. This increased volume moves within the matrix and is stored in the wet seal section (81, t91 or external reservoir).
As the size of the cell increases and the distance traveled within the matrix becomes longer, the movement of the electrolyte within the matrix becomes slower than the rate of expansion of the volume, and the increased volume is absorbed by the catalyst layer [31, [61] 9)
, Furthermore, the water repellent treatment is applied to the inside of the base material (21, F51, so that it cannot return to the matrix).Then, the volume shrinks, and in case the electrolyte in the matrix is insufficient, a 03-year-old bar occurs, etc. This caused an extremely serious situation.In order to prevent the electrolyte from leaking from the matrix to the base material through 1, a layer with enhanced water repellency should be provided between the catalyst layer and the base material, as disclosed in Japanese Patent Publication No. No. 101837, 1982, JP-A-60-
170168 and Japanese Patent Application Laid-Open No. 60-241655, etc., but the effect is not sufficient, and as the area of the cell increases, the absorption function against the expansion of the electrolyte decreases in the attached separator type. The deficiencies were almost fatal flaws.

この欠°陥の改良案として電極基材内部や後方に電解液
の膨張に対する吸収機能(リザーブ機能)を・持たせよ
うとする試みは古くから行なわれている。
As a solution to this defect, attempts have been made for a long time to provide an absorption function (reservation function) for the expansion of the electrolytic solution inside or behind the electrode base material.

まず特開昭47−31)37号公報にはマトリックスに
対し、燃料電極の後方に多孔性板とさらにその後方に電
解液室を配置して1ピン″で電解液を流通させマトリッ
クス内の電解液量のコントロールをするという構成が記
述されている。また特開昭50−101836号公報に
はマトリックス材料を燃料極の触媒層やtW基材を貫通
して基材裏面にまで配置してリザーブ機能を持光せた構
成が記述されておシ、特開昭53−32352号公報(
米国特許第4.064.322号)や特開昭53−32
353号公報(米国特許第4.038.463号)には
、基材内部に親水域と疎水域とを形成し、リザーブ機能
を持たせ九構成が記述されている。しかしこれらの構成
はいずれも蓮めて複雑でこれら構成を実現するには数多
くの工程を必要とする為高コストにつき、しかもこれら
の構成には基材での反応ガスの拡散性を阻害する要素が
多く含まれておシ、リザーブ機能についても必ずしも充
分ではなかった。
First, JP-A-47-31)37 discloses that a porous plate is placed behind the fuel electrode and an electrolyte chamber is placed behind the fuel electrode, and the electrolyte is passed through a pin 1'' to cause electrolysis within the matrix. A configuration for controlling the liquid amount is described.In addition, in JP-A-50-101836, a matrix material is placed through the catalyst layer of the fuel electrode and the tW base material to the back surface of the base material to create a reserve. A structure with a function is described in Japanese Patent Application Laid-open No. 53-32352 (
U.S. Patent No. 4.064.322) and JP-A-53-32
No. 353 (US Pat. No. 4,038,463) describes nine configurations in which a hydrophilic area and a hydrophobic area are formed inside the base material and a reserve function is provided. However, all of these configurations are extremely complex and require numerous steps to realize these configurations, resulting in high costs.Moreover, these configurations include elements that inhibit the diffusivity of the reactant gas in the base material. However, the reserve function was not necessarily sufficient.

一方、特開昭53−30747号(米国特許第4.03
5.551号)公報に記載されている構成は非常にシン
プルで単に基材に撥水処理をしないというものであり、
基材は上記公報の実施例によれば厚さ0.3 @m〜0
.5龍、気孔率75〜88%、平均小孔寸法14〜83
μmのカーボンペーパーを使用しこの基材の小さな気孔
が電解液に対するリザーづ機能を有し残りの大きな気孔
が反応ガスの通路として働くというもので基材にはマト
リックスの最大小孔よりも小さな小孔を有していてはな
らないとしている。この構成によればりづ付セパレータ
型においてガス拡散性阻害の影響の小さな燃料電極側の
基材の撥水処理をしないというだけでリプ付セパレータ
型にリザーブ機能を付加することができるが上記明細書
の実施例の範囲内ではリザーブ機能は不充分であった。
On the other hand, Japanese Patent Application Publication No. 53-30747 (U.S. Patent No. 4.03
5.551) The configuration described in the publication is very simple and simply does not provide water repellent treatment to the base material.
According to the examples in the above publication, the base material has a thickness of 0.3 m to 0.
.. 5 dragons, porosity 75-88%, average pore size 14-83
Micron carbon paper is used, and the small pores in this base material act as a reservoir for the electrolyte, and the remaining large pores act as passages for the reactant gas. It states that it must not have holes. According to this configuration, a reserve function can be added to the lip separator type by simply not applying water repellent treatment to the base material on the fuel electrode side, which has a small effect of inhibiting gas diffusivity. The reserve function was insufficient within the range of the embodiment.

またリプ付セパレータ型の第2のデメリットとしてガス
分離板に形成された反応ガス流路の凸部(リプ)直下の
触媒層に対して反応ガスは基材を演方向に流れる必要が
める為、ガスの拡散性が不充分であるとの見方もあるが
、特開昭59−73852号公報に記載されているよう
に一般に用いられている溝巾1電麿〜1.5龍、基材の
厚さ0.3〜0.41の構成ではほとんどこの問題を生
じない。しかし特開昭59−40471号公報に記載さ
れているような基材の厚さ0.41に対して内部にまで
触媒層を浸み込ませたものではこのデメリットは深刻で
ある。また先に説明した燃料電極側の基材に撥水処理を
せずリザーブ機能を付加したものについても、基材の厚
さが薄い為に電解液がリザーブされた場合にガスの拡散
性に問題があつ念。
The second disadvantage of the lip separator type is that the reaction gas must flow in the direction of the catalyst layer directly under the protrusion (rip) of the reaction gas flow path formed on the gas separation plate. Although there is a view that the diffusibility of the material is insufficient, as described in JP-A No. 59-73852, the generally used groove width of 1 to 1.5 yen and the thickness of the base material are This problem hardly occurs in a configuration with a diameter of 0.3 to 0.41. However, this disadvantage is serious in the case of a substrate having a thickness of 0.41 mm as described in Japanese Patent Application Laid-Open No. 59-40471, in which the catalyst layer is penetrated into the inside. In addition, even with the base material on the fuel electrode side described above that is not treated with water repellent treatment and has a reserve function, there is a problem with gas diffusivity when the electrolyte is reserved due to the thin thickness of the base material. I feel sorry for that.

リづ付セパレータ型に次いで代表的な電池構成はりづ付
電極型である。このタイプについては米国特許4,1)
5,627号、同4,165.349号及び特開昭58
−68881号公報に詳しく記載されている。
The second most typical battery configuration is the separator type with a separator and an electrode with a separator. For this type, US patent 4,1)
No. 5,627, No. 4,165.349 and JP-A-58
It is described in detail in JP-A-68881.

第9図はりづ付電極型の代表的な構成を示す断面図であ
る。
FIG. 9 is a cross-sectional view showing a typical configuration of a beveled electrode type.

りづ付電極型では基材[21、[5)の厚さを4くして
これに反応ガス流路(Ill 、j+2)を形成してい
る。従ってガス分離板(10)はフラットな薄い不透気
性の板となっている。
In the attached electrode type, the thickness of the base material [21, [5] is increased to 4, and a reaction gas flow path (Ill, j+2) is formed therein. Therefore, the gas separation plate (10) is a flat, thin, air-impermeable plate.

りづ付電極型の最大且つ唯一のメリットは、電解液の膨
張に対する吸収機能があることである。
The biggest and only advantage of the attached electrode type is that it has the ability to absorb expansion of the electrolyte.

特開昭58−68881号公報によればりづ付基材の平
担なシート部の平均ノ代ア径を25〜45μ2nとし、
リプ付基材のりづ部の平均ボア径をシート部の60〜7
5%つまシ15〜34μmとすることでマトリックスか
らあふれた電解液を選択的にマトリックスに次いで毛管
吸引力の大きなりづ部に収納できるとしている。ま念マ
トリックスに電解液が不足し念場合にはりづ部に収納さ
れていた電解液がシート部。
According to Japanese Unexamined Patent Publication No. 58-68881, the average diameter of the flat sheet portion of the attached base material is 25 to 45 μ2n,
The average bore diameter of the mounting part of the base material with lip is 60 to 7 of the seat part.
It is said that by setting the 5% cap to 15 to 34 μm, the electrolyte overflowing from the matrix can be selectively stored in the ridge portion which has a large capillary suction force next to the matrix. Just in case there is a shortage of electrolyte in the matrix, the electrolyte stored in the fitting will be transferred to the seat.

触媒層を経てマトリックスに供給されるとしている。It is said that it is supplied to the matrix via the catalyst layer.

りづ付基材の厚さは一般に1.8 ff1m程度、f5
ス分場板が0.81程度で触媒層と電解質品持マトリッ
クス層が合わせて0.6 arm程度になるので(tl
)の厚さは5.0 +u程度とりづ付℃パレータ型よシ
も多少厚くなる。これはリプft基材の機械強度が弱い
為にりづ付基材のウニづをなかなか薄くできないことに
こる。またリプ付基材はポーラスであるからガスシール
の必要な領域ic−シはりづ付℃パレータ型よりもずっ
と増えて4.2mmと3音の厚さになる。従ってガスシ
ールが難しい。これがりづ付ttm型の第1のデメリッ
トである。また熱云導の悪い領域も1同じくりづけセパ
レータ型の3倍の厚さiてなる為、よシ高性能な冷却器
を必要とし高コストVてなる。
The thickness of the mounting base material is generally about 1.8 ff1m, f5
The total arm strength of the catalyst layer and electrolyte quality matrix layer is approximately 0.6 arm (tl
) is about 5.0 + u, and the pallet type is also slightly thicker. This is because the mechanical strength of the Rip-ft base material is weak, so it is difficult to make the seams of the RIP base material thin. Furthermore, since the base material with a lip is porous, the area where gas sealing is required is much larger than that of the pallet type with a gas seal, and the thickness is 4.2 mm, which is 3 mm. Therefore, gas sealing is difficult. This is the first disadvantage of the attached TTM type. In addition, since the area with poor heat conduction is also three times thicker than that of the glued separator type, a high-performance cooler is required and the cost is high.

これがりづ付′PI極型の第2のデメリットである。This is the second disadvantage of the attached PI pole type.

またリプは基材はポーラスで機械強度か弱い上に溝を形
成しているので溝と平方な方向で割れやすくハンドリン
クが離しい。これがりづ付54.層型の第3のデメリッ
トである。
In addition, the base material of RIP is porous and has weak mechanical strength, and since grooves are formed, it is easy to break in the direction square to the grooves, making it difficult to separate the hand link. 54. This is the third disadvantage of the layered type.

さらにま九りづ付電極型ではガス不透気性のガス分離板
の厚さが0.8龍と薄い為に外部リザーバを設けること
ができない。またポーラスなりづ付基材に外部リザーバ
を設けることは難しく設けることができ念としても高コ
ストになる。従って電解液の外部補給が難しい。りづ付
電極型に対する電解液の補給方法としては、特開昭61
−47073号及び同昭61−47074号公報に記載
されているように、積層型燃料電池の上から下へ電解液
を之れ流してリプ付基材に電解液を吸収させる方法がと
られている。しかし、この方法だとセルごとに補給され
る電解液の量の把握が難しく、t*m飴後運転する際に
積層体の上から下まで縁部が電解液でぬれている為にリ
ーク電流が流れ電池を損う恐れもある。従って外部リザ
ーバを設けることが難しいことは第4のデメリットであ
る。
Furthermore, in the case of the electrode type with a magnifying hole, an external reservoir cannot be provided because the thickness of the gas impermeable gas separation plate is as thin as 0.8 mm. Further, it is difficult to provide an external reservoir in a porous substrate, and even if it is possible, the cost is high. Therefore, external replenishment of electrolyte is difficult. As a method of replenishing electrolyte for the attached electrode type, there is a method described in JP-A-61
As described in No. 47073 and No. 61-47074, a method has been adopted in which the electrolytic solution is allowed to flow from the top to the bottom of the stacked fuel cell and the electrolytic solution is absorbed into the base material with lips. There is. However, with this method, it is difficult to grasp the amount of electrolyte to be replenished for each cell, and when operating after t*m candy, the edges of the stack from top to bottom are wet with electrolyte, resulting in leakage current. There is also a risk that the battery may be damaged. Therefore, the fourth disadvantage is that it is difficult to provide an external reservoir.

さらにもう一つリプ付電極型では酸化剤電極基材内での
酸化剤ガスの拡散性が問題に↑る。リプ付基材のウニづ
の厚さが機株強度の面からりづ付セパレータ型の基材の
厚さく0.3〜0.4 sn )にまで薄くすることが
できないことから、まず酸化剤電極基材に撥水処理を施
した場合には撥水剤によって基材の気孔率が低下したシ
基材繊維間に撥水剤のフィルムの膜が生じて酸化剤ガス
の拡散性がある程度阻害されるが、リプ付電極型の場合
う工づの厚さが厚いだけ拡散性阻害の程度がりづ付セパ
レータ型よシも大きく、その分セルの出力電圧が低下す
る。次に酸化剤電極基材に撥水処理を施さない場合には
、酸化剤電極基材に初期電解液をリザーブしない場合で
も電極基材の気孔容積の5%程度の電解液はマトリック
スから酸化剤電極触媒層を介して酸化剤電極基材に移動
し、撥水剤と同様に酸化剤ガスの拡散性が阻害されその
分セルの出力電圧が低下する。燃料電極基材中に電解液
をリザーブした場合に比して酸化剤vL電極基材のリザ
ーブの許容値が小さいのは、特開昭53−30747号
公報に記載されているように燃料ガスに多く含まれてい
る水素と酸化剤ガスに含まれている酸素との拡散性の違
いによると考えられる。従って酸化剤電極基材内での酸
化剤ガスの拡散性が不充分な為に出力電圧が低下するこ
とがりづ付電柩型の第5のデメリットとなっている。こ
の為特開昭58−68881号会報に記されているよう
にウェブの気孔径をできるだけ大きくして電解液が保持
されないようにし九シ、特開昭59−27466号公報
に記されているようにウェブにリプよシも長い炭素繊雅
を用いるなどりづ付基材内で素材を変化させる必要があ
)高コストてなっていた。
Another problem with the electrode type with lips is the diffusivity of the oxidant gas within the oxidant electrode base material. Since it is not possible to reduce the thickness of the lip-attached base material to the thickness of the lip-attached separator type base material (0.3 to 0.4 sn) from the viewpoint of machine strength, first of all, an oxidizing agent is used. When water repellent treatment is applied to the electrode base material, the porosity of the base material is reduced by the water repellent, and a film of water repellent is formed between the base material fibers, which inhibits the diffusion of oxidant gas to some extent. However, in the case of the lipped electrode type, the greater the thickness of the groove, the greater the degree of diffusion inhibition compared to the lipped separator type, and the output voltage of the cell decreases accordingly. Next, if the oxidizer electrode base material is not subjected to water repellent treatment, even if the initial electrolyte is not reserved in the oxidizer electrode base material, about 5% of the electrolyte of the pore volume of the electrode base material will be removed from the oxidizer from the matrix. The oxidizing agent moves to the electrode base material through the electrode catalyst layer, and like the water repellent, the diffusivity of the oxidizing agent gas is inhibited, and the output voltage of the cell decreases accordingly. The reason why the allowable reserve value of the oxidizer vL electrode base material is smaller than that when the electrolyte is reserved in the fuel electrode base material is because the fuel gas is This is thought to be due to the difference in diffusivity between hydrogen, which is contained in large amounts, and oxygen, which is contained in the oxidant gas. Therefore, the fifth disadvantage of the electric coffin type is that the output voltage decreases due to insufficient diffusion of the oxidant gas within the oxidant electrode base material. For this purpose, the pore diameter of the web should be made as large as possible to prevent the electrolyte from being retained, as described in JP-A-58-68881, and as described in JP-A-59-27466. Adding to the web also requires changing the material within the base material (using long carbon fibers), which is expensive.

リプ付セパレータ型とりづ付!!極型以外に、この2つ
のタイプの折中案的なタイプかへイブリット型と称せら
れて特開昭58−94768号公報などに開示されてい
る。第10図はこのハイブリッド型の構成を示す断面図
である。ハイブリッド型では酸化剤電極側にりづ付t 
J<レータ型の構成を用い、燃料電極側にリプ付電極型
の構成を用いている。
Comes with a separator mold and lip! ! In addition to the polar type, there is a hybrid type which is a compromise between these two types and is disclosed in Japanese Patent Laid-Open No. 58-94768. FIG. 10 is a sectional view showing the configuration of this hybrid type. In the hybrid type, there is a strip on the oxidizer electrode side.
A J<rate type configuration is used, and a lipped electrode type configuration is used on the fuel electrode side.

ハイブリッド型では燃料電極側に電解液の膨張に対する
吸収機能を持たせると共に酸化剤電極側に薄い基材を持
ってくることでりづ付電憧型の第5のデメリットである
酸化剤電極基材でのガス拡散性を改善している。
In the hybrid type, the fuel electrode side has a function of absorbing the expansion of the electrolyte, and the oxidizer electrode side has a thin base material, which is the fifth disadvantage of the oxidizer electrode base material. Improved gas diffusivity.

またガス分離板はりプ付セパレータ型に比べれば薄いが
、外部リザーバを形成することができなくはない。また
ガスシール及び熱伝導の眼い領域t2とセルの厚さtl
はリプ付電極型よりも多少改善されている。
Also, although it is thinner than the separator type gas separation plate with a beam, it is possible to form an external reservoir. Also, the gas seal and heat conduction eye area t2 and the cell thickness tl
is somewhat improved over the electrode type with lip.

しかしハイブリッド型ではガス分離板の片側にのみ溝を
形成する為にガス分離板がゆがみやすく割れやすく、面
圧をかけても平滑になシにぐいという欠点があ)、これ
がほとんど致命的なデメリットとなっている。またガス
分離板と基材の両方に溝加工をしなければならない為高
コストにならざるを得ないというデメリットもある。
However, in the hybrid type, the grooves are formed only on one side of the gas separation plate, so the gas separation plate is easily distorted and cracked, and it does not remain smooth even when surface pressure is applied.This is an almost fatal disadvantage. It becomes. Another disadvantage is that it requires high cost because grooves must be formed on both the gas separation plate and the base material.

以上説明し念ように上記の3つのタイプのいずれをとっ
てもまだ問題点があった。
As explained above, there are still problems with any of the three types mentioned above.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の積層型燃料電池は以上のようにいずれの構成にお
いても数々の問題点が残されてい念。
Conventional stacked fuel cells have a number of problems, as described above, regardless of their configuration.

この発明は上記のような問題点を解消するためになされ
たもので、充分なガスの拡散性と電解質リザーブ量を有
すると共に、ガスシールの必要な領域も小さくてガスシ
ールが容易であると共に熱伝導性にも優れておシ、さら
にガス分離板に外部リザーバの形成が容易であるなど従
来よシも総合的に見て優れた積層型燃料電池を得ること
を目的とする。
This invention was made to solve the above-mentioned problems, and it has sufficient gas diffusivity and electrolyte reserve, and the area required for gas sealing is small, making gas sealing easy and heat-resistant. The object of the present invention is to obtain a stacked fuel cell that is superior in terms of overall conductivity compared to conventional methods, such as superior conductivity and the ease of forming an external reservoir on the gas separation plate.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る積層型燃料電池は、厚さが0.3mm以
上0.5 wm以下で撥水処理が施された酸化剤電極基
材と、厚さが0.8 sn以上3.2u以下で撥水処理
が施されていない燃料電極基材とを有するものである。
The stacked fuel cell according to the present invention includes an oxidizer electrode base material having a thickness of 0.3 mm or more and 0.5 wm or less and treated with water repellency, and a thickness of 0.8 sn or more and 3.2 u or less. It has a fuel electrode base material that has not been subjected to water repellent treatment.

〔作用〕[Effect]

この発明における酸化剤電極基材は厚さが0.3mm以
上0.5 am以ヱで撥水処理が施されているので、基
材内でのガスの拡散t4:阻害が最小限にとどめられる
。また、燃料電極基材は厚さが0.8 wm以上3.2
u以下で覆水処理が施されていないので、充分な電解質
リザーブ量とガスの拡散性が得られ、ガスシールの必要
な領域t2もリプ付セパレータ型よシ少し大きいがりづ
付電極型やハイブリッド型よシもはるかに小さい念め、
ガスシールが容易で熱伝導率も良い。さらに、りづ付セ
パレータ型であるので、ガス分離板に外部リザーバの形
成が容易であるなど多くのメリットが生じる。
Since the oxidizer electrode base material in this invention has a thickness of 0.3 mm or more and 0.5 am or less and is treated with water repellent treatment, gas diffusion t4 within the base material can be minimized. . In addition, the fuel electrode base material has a thickness of 0.8 wm or more and 3.2
Since water-covering treatment is not performed below u, a sufficient amount of electrolyte reserve and gas diffusivity can be obtained, and the region t2 where gas sealing is required is also suitable for use with lip-attached separator types, slightly larger lip-attached electrode types, and hybrid types. Yoshi is also much smaller,
Gas sealing is easy and thermal conductivity is good. Furthermore, since it is a separator type with a mounting plate, there are many advantages such as the ease of forming an external reservoir on the gas separation plate.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例による積層型燃料電池を示す断
面図である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a sectional view showing a stacked fuel cell according to an embodiment of the present invention.

この図において特徴的な事は酸化剤電極のt種基材(I
slと燃料電極基材(2)とで仕様が大きく異なること
である。まず酸化剤1!極の′gLi基材(5)が撥水
処理されているのに対して燃料電極基材(2)は撥水処
理されていない。を念酸化剤電極の電極基材(6)が0
.4 amの厚さであるのに対して燃料電憧の電極基材
(2)は2倍以上の1.0 mmである。この2つの特
徴のうち特に厚さについては電池の性能に対して愼めて
重要な意味を持っている。その効果については本発明者
らが行なったいくつかの要素試験の結果を基にして説明
する。
What is distinctive about this figure is the t-type base material (I) of the oxidizer electrode.
The specifications of the sl and the fuel electrode base material (2) are significantly different. First, oxidizer 1! While the 'gLi base material (5) of the electrode is treated to be water repellent, the fuel electrode base material (2) is not treated to be water repellent. The electrode base material (6) of the peroxidant electrode is 0
.. The thickness of the fuel electrode base material (2) is 1.0 mm, which is more than twice as thick as that of the fuel cell electrode base material (2). Of these two characteristics, the thickness in particular has a very important meaning for the performance of the battery. The effect will be explained based on the results of several elemental tests conducted by the present inventors.

実験1 表に示した全く撥水処理していない5種類の基材につい
て4 mX 4 cmの試験片を各々10枚前後作り。
Experiment 1 About 10 test pieces of 4 m x 4 cm were made for each of the 5 types of base materials shown in the table that had not been treated with any water repellent treatment.

アセトン中で超音波にかけて洗浄し乾燥し念。基材Aは
一般にカーボンペーパーと呼ばれているもので紙のよう
に柔軟性があシ一般にりづ付セパレータ型の[種基材と
して用いられているものである。また基材B、Iは共に
カーボン製でりづ付電極型の電極基材として一般に用い
られているもので、ポーラスな板状で柔軟性は全くない
Clean by ultrasonication in acetone and dry thoroughly. The base material A is generally called carbon paper, which is flexible like paper and is generally used as a seed base material of a glued separator type. Further, both base materials B and I are made of carbon and are generally used as electrode base materials of the attached electrode type, and are porous plate-like and have no flexibility at all.

これらの基材は105重量パーセントのリン酸を所定量
加え190℃で一引l持した後、21.5φの穴をあけ
たアル三ハクを両面テープを用いて基材にはシつけてB
mガーレ式デンソメータを使って室温でガス透気質を測
定し、ガスの拡散性の評価を行なった。この実験の目的
は各々の基材に電解液が保持され念場合にガスの拡散性
がどの程度阻害されるかを調べることにあった。第2図
にその結果をクラブにして示し念。
These base materials were prepared by adding a predetermined amount of 105% by weight phosphoric acid and keeping at 190°C for a while, then attaching an aluminum plate with a hole of 21.5φ to the base material using double-sided tape.
Gas permeability was measured at room temperature using a Gurley densometer, and gas diffusivity was evaluated. The purpose of this experiment was to investigate to what extent gas diffusivity would be inhibited if electrolyte was retained on each base material. Figure 2 shows the results as a club.

槓軸がリン酸重量Ctrq/cd) (iosw//、
H,po、)、縦軸が透気度(ml/ oa i n 
、crl、印Age)を示す。
The hammer shaft is phosphoric acid weight Ctrq/cd) (iosw//,
H, po, ), the vertical axis is the air permeability (ml/oa in
, crl, mark Age).

リン酸を保持していない場合には、厚さが薄く気孔率の
大きな基材人が飛びぬけて透気度が大きく、極めてガス
拡散性が良いことを示している。
In the case where phosphoric acid is not retained, the base material is thin and has a high porosity, and the air permeability is extremely high, indicating extremely good gas diffusivity.

しかしリン酸が保持され九場合には、基材Aは他の基材
に比べわずかなリン酸の保持量で急速に透気度が低下し
ている。透気度については別の実験から20d/ m 
l n 、 d 、 mmAg以下の透気度だと酸化剤
電極での空気の拡散性が不充分になってセル特性が低下
し7 d/min、 a/l゛、 mmAg以下の透気
度になると燃料電極での水素の拡散性が不充分になって
セル特性が低下することがわかっている。基材Aではわ
ずか10 Mq/−のリン酸医持量で急速にガス透過性
が低下しはじめ石が、通常触媒層+31.+61及びマ
トリックス+1)中に保持されているリン酸量は40y
y/i程度であるからリザーブ量としてはわずか25%
にすぎない。触媒層やマトリックスからリン酸があふれ
た場合に引き取り、触媒層やマトリックスにリン酸が不
足した場合に補充する機能性から考えると、特開昭53
−30747号明細書P 230に記載されているよう
にリザーブ量が2〜3倍つまシ80〜x20M9/−必
要であるとするのit多過ぎる感じがするが、リン酸の
膨張率とリン酸の消失を考えると触媒層やマトリックス
に含まれるリン酸量と同程度つまシ40〜/cd程度は
必要であり、最低でも20〜/−程度のリザーブ量は必
要と考えられる。
However, in the case where phosphoric acid is retained, the air permeability of base material A rapidly decreases due to a small amount of retained phosphoric acid compared to other base materials. The air permeability is 20 d/m from another experiment.
If the air permeability is below 7 d/min, a/l゛, mmAg, the air diffusivity at the oxidizer electrode will be insufficient and the cell characteristics will deteriorate. It is known that if this happens, hydrogen diffusivity at the fuel electrode becomes insufficient and cell characteristics deteriorate. In base material A, gas permeability begins to decrease rapidly with a phosphoric acid content of only 10 Mq/-; The amount of phosphoric acid retained in +61 and matrix +1) is 40y
Since it is about y/i, the reserve amount is only 25%.
It's nothing more than that. Considering the functionality of collecting phosphoric acid when it overflows from the catalyst layer or matrix and replenishing it when there is insufficient phosphoric acid in the catalyst layer or matrix, JP-A-53
30747 Specification P 230, it seems that it is too much if the reserve amount is required to be 2 to 3 times the amount of 80 to 20 M9/-, but the expansion rate of phosphoric acid and the phosphoric acid Considering the disappearance of phosphoric acid, it is thought that a reserve amount of about 40~/cd is required, which is the same as the amount of phosphoric acid contained in the catalyst layer or matrix, and a reserve amount of at least about 20~/cd is required.

なお基材人は特開昭53−30747号明細書の表1に
示されたA−Dの基材とほぼ同じ規格と考えられるが、
10η/dのリン酸の体積は基材Aの気孔率の約25%
に相当する。
The base material is considered to be of almost the same standard as the base materials A to D shown in Table 1 of JP-A-53-30747;
The volume of 10η/d phosphoric acid is approximately 25% of the porosity of base material A.
corresponds to

表 実験2 リン酸を含浸した場合の透気度について基材厚さの影響
を調べる為に基材λと同じ材質で厚さの異なつ念ものに
ついてリン酸を気孔率の12%相当含浸し、実験1と同
様にガス透過性の評価を行なつ九。この結果を第3図に
クラブで示した。槓軸が基材厚み(、、)、縦軸が透気
度(ml/ mi n 、 cyl 、 mmAg)を
示す。基材厚みが厚くなるにつれて透気度は悪くなるが
急激な低下は見られなかった。この実験は実際の電池に
ついて言えば、流路凹部から直上の基材を透過する反応
ガスのガス透過性の評価に相当する。第5図、第6図は
基材が薄い場合と厚い場合とにおいて反応ガスが反応ガ
ス流路■から触媒層(3)へ達する様子を示したもので
あり、実験2のガスの流れは図中破線矢印に相当する。
Table Experiment 2 In order to investigate the effect of base material thickness on air permeability when impregnated with phosphoric acid, a material of the same material as the base material λ but with a different thickness was impregnated with phosphoric acid equivalent to 12% of the porosity. 9. Gas permeability was evaluated in the same manner as in Experiment 1. The results are shown in Figure 3 using clubs. The axis shows the base material thickness (,,), and the vertical axis shows the air permeability (ml/min, cyl, mmAg). Although the air permeability worsened as the base material thickness increased, no rapid decrease was observed. In terms of an actual battery, this experiment corresponds to evaluating the gas permeability of the reaction gas that passes through the base material directly above the channel recess. Figures 5 and 6 show how the reaction gas reaches the catalyst layer (3) from the reaction gas flow path (■) when the base material is thin and when the base material is thick. Corresponds to a medium-dashed arrow.

しかし反応は反応ガス流路凸部乃直上の触媒層(3)で
も起こシ、この場合には実験2とは逆に基材が薄くなる
ほどガスが透過しにくくなると予想される(図中実線矢
印)。そこで虞方向へのガス透過性を調べるべく次に示
す実験3を行なった。
However, the reaction also occurs in the catalyst layer (3) directly above the convex part of the reaction gas flow path, and in this case, contrary to Experiment 2, it is predicted that the thinner the base material is, the more difficult it is for gas to permeate (solid line arrow in the figure). ). Therefore, the following experiment 3 was conducted to investigate the gas permeability in the direction of fear.

実験3 先に行なった実験2と同じサンプルについて21.5φ
の穴をあけたアル三ハクをはカつけたままでさらに裏面
全体にアルミハクをは)・ガスが垂直には透過できずに
横方向にのみ透過するようにして透気度を調べ、この結
果を第4図に示した。
Experiment 3 For the same sample as Experiment 2 conducted earlier, 21.5φ
(Leave the aluminum plate with the holes in it open and then cover the entire back side with aluminum plate.) Check the air permeability by making sure that gas cannot pass through vertically but only horizontally. It is shown in Figure 4.

念だしこの場合の横方向の透気度は単位として先の縦方
向の透気度と同様に扱ってはいるが、定義が異なるので
数値の絶対値を第3図と第4図とで比較することはでき
ない。結果は基材jγさが0.8 am以下になると透
気度が急激に低下するというもので、その低下の急激さ
は予想外のものであっ念。
As a reminder, the horizontal air permeability in this case is treated as a unit in the same way as the vertical air permeability, but the definitions are different, so the absolute values of the numerical values are compared in Figures 3 and 4. I can't. The results showed that when the base material jγ was 0.8 am or less, the air permeability decreased rapidly, and the rapidity of this decrease was unexpected.

この結果は基材の気孔率のわずか12%がリン酸によっ
て占められた場合にも、基材厚さが0.81未満であれ
ば流路凸部4直上におけるガス透過性が不充分に々シ、
全体のセル特性が低下することを示唆している。
This result shows that even if only 12% of the porosity of the base material is occupied by phosphoric acid, if the base material thickness is less than 0.81, the gas permeability directly above the channel convex portion 4 will be insufficient. C,
This suggests that the overall cell properties are degraded.

以上の要素試験から電池の構成について決定的な示唆が
得られた。っま)基材にリザーブ機能を持たせるには基
材の厚さは0.8 am以上でなければならないという
ことである。このことはりづ付セパレータ型に限らすり
づ付wL極型についても言える。
From the above elemental tests, definitive suggestions regarding the structure of the battery were obtained. ) In order for the base material to have a reserve function, the thickness of the base material must be 0.8 am or more. This applies not only to the separator type with grooves but also to the wL pole type with grooves.

リプ付電極型では基材に流蕗が形成されているが、基材
の流路凸部(りづ部)に電解質が含浸されている場合に
はやは9基材の流路凸部でのガスの拡散が問題である。
In the lip-equipped electrode type, a groove is formed on the base material, but if the convex part of the flow path of the base material is impregnated with electrolyte, the convex part of the flow path of the base material is no longer the same. The problem is gas diffusion.

従って、特開昭58−68881号明i書に記載されて
いるように平担なシート部のボア径をりづ部よりも大き
くしてシート部に電解質が含浸されないような構造上の
複雑な改良が必然的に必要になっているのである。
Therefore, as described in JP-A No. 58-68881, the bore diameter of the flat seat part is made larger than that of the rib part to prevent the seat part from being impregnated with electrolyte. Improvements are inevitably needed.

また、りづ付セパレータ型で基材にリザーづ機能を付加
し念ものは特開昭53−30747号公報に明示されて
以降今日に至るまで実用化に至っておらず、大半の研究
機関でりづ付を種型が選ばれている。これはりづ付セパ
レータ型において、常に0.4龍前後のカーボンペーパ
ーが用いられ、さらに厚い基材について試みられなかつ
念為に、りづ付セパレータ型において基材にリザーブ機
能を持たせることは無理であシネ充分であると判定され
たことによるのではないかと推定される。
In addition, the idea of adding a reservoir function to the base material with a separator type has not been put into practical use since it was disclosed in Japanese Patent Application Laid-Open No. 53-30747, and it has not been put to practical use in most research institutes. The tane type has been selected for the dzutsuke. This is because carbon paper of around 0.4 mm is always used in the separator type with adhesive, and no attempt has been made to use thicker base materials, and it is impossible to give the base material a reserve function in the separator with adhesive. It is presumed that this is due to the fact that the film was judged to be sufficient.

しかし第1図に示した本発明の一実施例による構成にお
いてはリプ付セパレータを用いているが、過去のどの型
よシも総合的に見て優れた性能とリザーブ機能を有して
いる。すなわち、第1図の実施例においては、燃料電極
の基材を1.Ozwとすることによって充分なリザーブ
量とガスの拡散性が得られておフ、リプ付セパレータを
用い穴場合のデメリットが消滅している。またガスシー
ルの必要な領域t2は2.Osnとなシリづ付セパレー
タ型(第8図)の1.41よシも少し大きいが、りづ付
置極型(第9図)の4.2mmやハイブリッド型(第1
0図)よシもはるかに小さい。ガスシールの必要な領域
も2の上限をリプ付W、極型と同じ4.2酊とすれば、
第1図の実施例の場合燃料電極の基材の厚さは3.21
まで厚くすることが可能である。一方燃料電極の基材の
厚さをガス拡散からの許容値ぎシぎシの0.8龍とすれ
ば、ガスシール領域t2は1.8mmまで下げることが
できる。従ってガスシール性と熱伝導についても本発明
の構造は良好であると考えられる。
However, although the structure according to the embodiment of the present invention shown in FIG. 1 uses a separator with a lip, it has overall superior performance and reserve function compared to any of the past types. That is, in the embodiment shown in FIG. 1, the base material of the fuel electrode is 1. OZW provides a sufficient reserve amount and gas diffusivity, and the disadvantages of using a separator with lips and holes are eliminated. Also, the area t2 that requires gas sealing is 2. The diameter of 1.41 mm for the separator type with a series (Fig. 8) is also a little larger, but it is 4.2 mm for the separator type with a series (Fig. 9) and the hybrid type (1.4 mm).
Figure 0) The diameter is also much smaller. If the upper limit of 2 is the same as W with lip and pole type, the area where gas seal is required is 4.2.
In the case of the embodiment shown in Fig. 1, the thickness of the fuel electrode base material is 3.21 mm.
It is possible to make it thicker. On the other hand, if the thickness of the base material of the fuel electrode is set to 0.8 mm, which is the tolerance value from gas diffusion, the gas seal area t2 can be reduced to 1.8 mm. Therefore, the structure of the present invention is considered to be good in terms of gas sealing properties and heat conduction.

一方全体の厚さについては第1図では0.5 mmとな
シリづ付セパし一夕型(第8図)の4.4 amよシも
少し大きいが□りづ付置仮型(第9図)の5.0mmと
同じである。
On the other hand, the overall thickness is 0.5 mm in Figure 1, and 4.4 am for the Separated Overnight type (Figure 8), which is a little larger. It is the same as 5.0mm in Figure).

f&基材は平板であるからりづ付置極と比べてハンドリ
ンクが容易であり、0.8龍以上と厚いので充分な強度
を持っている。またりづ付セパし一タについては従来と
変わらないので外部リザーバを形成することもできる。
The f& base material is easier to link by hand compared to the flat plate with Karadzu-attached poles, and is thick at 0.8 mm or more, so it has sufficient strength. Since the separator with the attached separator is the same as the conventional one, an external reservoir can also be formed.

さらに基材に凹凸を形成する必要がないから低コストで
ある。
Furthermore, since there is no need to form irregularities on the base material, the cost is low.

一方酸化剤電極については基材の厚さを0.4amとし
、撥水処理をすることによって、基材内でのガスの拡散
性阻害を最小限にとどめている。撥水処理は4フッ化エ
チレン樹脂や4フッ化エチレン−6フッ化プロピレン共
重合樹脂などの疎水性樹脂やフッ化黒鉛などの撥水性を
有する材料を基材繊維に付着あるいはコーティングする
ことによって行なわれてよい。これは例えば特開昭61
−99272号公報等に示す従来のりづ付セパレータ型
の場合と同じである。撥水処理した酸化剤wL甑の基材
の厚さについては、これに相対するセパレータの流路の
凹凸によるガスの拡散性から見て第3図と第4図の実験
と同様の観点から0.3〜0.5+ymが許容範囲であ
る。
On the other hand, as for the oxidizer electrode, the thickness of the base material is 0.4 am, and by applying water repellent treatment, inhibition of gas diffusivity within the base material is kept to a minimum. Water-repellent treatment is performed by attaching or coating the base fibers with hydrophobic resins such as tetrafluoroethylene resin, tetrafluoroethylene-hexafluoropropylene copolymer resin, or water-repellent materials such as fluorinated graphite. It's fine. This is, for example, JP-A-61
This is the same as the case of the conventional glued separator type shown in Japanese Patent No. -99272. Regarding the thickness of the base material of the water-repellent oxidizing agent wL koshi, from the same viewpoint as in the experiments shown in Figs. 3 and 4, the thickness of the base material of the oxidizing agent wL koshi is 0. .3 to 0.5+ym is an acceptable range.

なお、りづ付置極型について言えば、酸化剤電極の基材
を撥水処理した場合にも撥水処理しないで電解質をリザ
ーブ(初期リザーブしていなくても燃料極側でリザーブ
していれば移動してバランスする)した場合にも基材で
のガスの拡散性阻害があ’) % o2ゲイン(酸化剤
として用いるガスが酸素(02)での特性と空気での特
性の出力電圧の差)が90mv:Q後になる。これに対
して本発明の実施例の場合02ゲインは8Qmv前後で
あり、出力電圧ばりづ付置極型に比べl Qmvも改善
されている。
Regarding the fixed electrode type, even if the base material of the oxidizer electrode is water-repellent, the electrolyte is reserved without water-repellent treatment (even if it is not initially reserved, if it is reserved on the fuel electrode side) % o2 gain (difference in output voltage between characteristics when the gas used as an oxidizing agent is oxygen (02) and air). ) will be after 90mv:Q. On the other hand, in the case of the embodiment of the present invention, the 02 gain is around 8Qmv, and lQmv is also improved compared to the output voltage burr poled type.

さて、第1図に示す本発明の一実施例による電池構成に
よシ、リン酸型燃料電池の有効面積100dの単セルを
作って常圧190℃の条件下で運転し、運転途中で燃料
極側の性能を調べ基材にリザーブしたリン酸の量100
%H3P04190℃での基材へのリン酸の占有率(初
期含浸量)〔V/。〕と燃燃ガスの拡散阻害の程度との
関係を調べ念。燃料極側の性能はf(2ゲイン(燃料ガ
スとして水素(H2)を用い次場合と水素80体積バー
セント二酸化炭素20体積パーセントを用いた場合との
出力電圧の差’) (mV:lで評価し穴。この結果を
第7図に示した。なお燃料極側の基材は表のEと同じ組
成のものを用い酸化剤電極側の基材は人と同じ組成のち
のを用いた。H2ゲインが大きいほど基材におけるガス
拡散性阻害の程度が大きいと判定されるが基材厚さ1 
wxと1.8+uのいずれの場合にも基材の気孔率の3
0%までリザーブされても燃料極側の基材でのjス拡散
性の阻害はほとんど起きていないことが明らかになった
。このリザーブ量は、第2図と対比させていえば厚さ1
)冨の場合で35■/洲、1.8龍の場合で60η/−
のリン酸すザーづi (105重量)I3po、 )に
相当し、リザーづ量としては充分な量である。
Now, according to the cell configuration according to an embodiment of the present invention shown in FIG. 1, a single cell of a phosphoric acid fuel cell with an effective area of 100 d is made and operated under normal pressure conditions of 190°C, and during operation, fuel Check the performance of the pole side and the amount of phosphoric acid reserved in the base material 100
%H3P041 Occupancy rate of phosphoric acid on the substrate at 90°C (initial impregnation amount) [V/. ] and the degree of inhibition of combustion gas diffusion. The performance of the fuel electrode side is f(2 gain (difference in output voltage between the following case using hydrogen (H2) as the fuel gas and the case using 80 volume percent hydrogen and 20 volume percent carbon dioxide) (evaluated in mV:l) The results are shown in Figure 7.The base material on the fuel electrode side had the same composition as E in the table, and the base material on the oxidizer electrode side had the same composition as the human body.H2 The larger the gain, the greater the degree of inhibition of gas diffusivity in the base material.
3 of the porosity of the base material in both wx and 1.8+u
It has become clear that even when reserved to 0%, there is almost no inhibition of js diffusivity in the base material on the fuel electrode side. In contrast to Figure 2, this reserve amount is equivalent to a thickness of 1
) 35■/su in the case of Tomi, 60η/- in the case of 1.8 dragon
This corresponds to the amount of phosphoric acid (105 weight) I3po, ), which is a sufficient amount as a reservoir.

燃料電池を構成する電極基材には基材の気孔体積の20
〜30%の容積の電解質が運転時に含浸されていること
が好ましい。
The electrode base material constituting the fuel cell has a pore volume of 20
Preferably, ~30% of the volume of electrolyte is impregnated during operation.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、多孔性の電極基材と
これに設は九触謀71とを有する酸化剤電極および燃料
電極を、電解質保持マトリックスを介在し、上記触t!
X、FfJ同士を対向させて配置する単電池と、上記酸
化剤電極に対設する酸化剤ガス流路および上記燃料電極
に対設する燃料ガス流路を有するガス分離板とを交互に
複数個積層して積層体を構成する積層型燃料電池におい
て、上記酸化剤電極基材は厚さが0.3龍以上0.5m
g以下で撥水処理が施されたものであり、上記燃料電極
基材は厚さが0.81以上3.2朋以下で撥水処理が施
されていないものであるので、酸化剤電極においては基
材内でのガスの拡散性阻害が最小限にとどめられ、燃料
電極においては充分な電解質リザーブ量とガスの拡散性
が得られ、ガスシールの必要な領域もりづ付セパレータ
型より少し大きいが、りづ付置極型やハイづリット型よ
シもけるかに小さいため、ガスシールが容易で熱伝導性
にも優れている。さらにガス分離板に外部リザーバの形
成が容易であるなど、総合的に見て優れた性能を有する
積層型燃料電池が得られる効果がある。
As described above, according to the present invention, an oxidizing agent electrode and a fuel electrode each having a porous electrode base material and nine electrodes 71 arranged thereon are interposed with an electrolyte holding matrix,
X, a plurality of unit cells in which FfJs are arranged facing each other, and gas separation plates each having an oxidizing gas flow path opposite to the oxidizer electrode and a fuel gas flow path opposite to the fuel electrode are alternately arranged. In a stacked fuel cell in which layers are stacked to form a laminate, the oxidant electrode base material has a thickness of 0.3 m or more and 0.5 m.
The fuel electrode base material has a thickness of 0.81 to 3.2 mm and is not treated to be water repellent. The gas diffusivity inhibition within the base material is kept to a minimum, and sufficient electrolyte reserve and gas diffusivity are obtained in the fuel electrode, and the area where gas sealing is required is slightly larger than the separator type. However, it is much smaller than the fixed electrode type and high-density type, so it is easy to seal with gas and has excellent thermal conductivity. Furthermore, it is possible to easily form an external reservoir on the gas separation plate, and as a result, a stacked fuel cell having excellent overall performance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による積層型燃料電池を示
す断面図、第2図〜第4図、第7図はそれぞれこの発明
の一実施例による要素試験の結果を示す特性図、第5図
、第6図はそれぞれこの発明の一実施例による要素試験
を説明する説明図、第8図〜第10図はそれぞれ従来の
積層型燃料電池を示す断面図である。 図において、mは電解賀保持マトリックス、(2)。 (5)は電極基材、[31、[61は触媒層、(4)は
燃料電極、(7)は酸化剤電極、+101 Viガス分
離板、(1))は酸化剤ガス流路、0′4は燃料ガス流
路である。 なお、各図中同一符号は同一ま念は相当部分を示すもの
とする。
FIG. 1 is a sectional view showing a stacked fuel cell according to an embodiment of the present invention, FIGS. 2 to 4, and 7 are characteristic diagrams showing the results of element tests according to an embodiment of the present invention. FIGS. 5 and 6 are explanatory views for explaining element tests according to an embodiment of the present invention, and FIGS. 8 to 10 are cross-sectional views showing conventional stacked fuel cells, respectively. In the figure, m is the electrolytic retention matrix (2). (5) is an electrode base material, [31, [61 is a catalyst layer, (4) is a fuel electrode, (7) is an oxidizer electrode, +101 Vi gas separation plate, (1)) is an oxidant gas flow path, 0 '4 is a fuel gas flow path. Note that the same reference numerals in each figure indicate corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)多孔性電極基材とこれに設けた触媒層とを有する
酸化剤電極および燃料電極を、電解質保持マトリックス
を介在し、上記触媒層同士を対向させて配置する単電池
と、上記酸化剤電極に対設する酸化剤ガス流路および上
記燃料電極に対設する燃料ガス流路を有するガス分離板
とを交互に複数個積層して積層体を構成する積層型燃料
電池において、上記酸化剤電極基材は厚さが0.3mm
以上0.5mm以下で撥水処理が施されたものであり、
上記燃料電極基材は厚さが0.8mm以上3.2mm以
下で撥水処理が施されていないものであることを特徴と
する積層型燃料電池。
(1) A unit cell in which an oxidant electrode and a fuel electrode each having a porous electrode base material and a catalyst layer provided thereon are arranged with the catalyst layers facing each other with an electrolyte holding matrix interposed therebetween; In a stacked fuel cell in which a plurality of oxidant gas flow paths facing the electrodes and gas separation plates having fuel gas flow paths facing the fuel electrodes are alternately laminated to form a laminate, the oxidizer The electrode base material has a thickness of 0.3mm
It has been treated to be water repellent to a depth of 0.5 mm or less,
A stacked fuel cell characterized in that the fuel electrode base material has a thickness of 0.8 mm or more and 3.2 mm or less and is not subjected to water repellent treatment.
(2)酸化剤電極基材は電解質に対して撥水性であり、
燃料電極基材は電解質に対して親水性である特許請求の
範囲第1項記載の積層型燃料電池。
(2) The oxidizer electrode base material is water repellent to the electrolyte,
The stacked fuel cell according to claim 1, wherein the fuel electrode base material is hydrophilic to the electrolyte.
(3)酸化剤電極基材はその気孔に疎水性樹脂を含浸し
、上記疎水性樹脂を溶融凝固させて基材繊維を被覆した
ものである特許請求の範囲第1項または第2項記載の積
層型燃料電池。
(3) The oxidizer electrode base material has its pores impregnated with a hydrophobic resin, and the hydrophobic resin is melted and solidified to cover the base fibers. Stacked fuel cell.
(4)疎水性樹脂は4フッ化エチレン樹脂および4フッ
化エチレン−6フッ化プロピレン共重合樹脂の少なくと
も一種である特許請求の範囲第3項記載の積層型燃料電
池。
(4) The stacked fuel cell according to claim 3, wherein the hydrophobic resin is at least one of a tetrafluoroethylene resin and a tetrafluoroethylene-hexafluoropropylene copolymer resin.
JP61153366A 1986-06-30 1986-06-30 Stacked fuel cell Pending JPS6310468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61153366A JPS6310468A (en) 1986-06-30 1986-06-30 Stacked fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61153366A JPS6310468A (en) 1986-06-30 1986-06-30 Stacked fuel cell

Publications (1)

Publication Number Publication Date
JPS6310468A true JPS6310468A (en) 1988-01-18

Family

ID=15560881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61153366A Pending JPS6310468A (en) 1986-06-30 1986-06-30 Stacked fuel cell

Country Status (1)

Country Link
JP (1) JPS6310468A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311945A (en) * 1989-06-08 1991-01-21 Hitachi Ltd Supervisory control method and device for power system
JPH04296455A (en) * 1991-03-27 1992-10-20 Toshiba Corp Fuel cell
WO2008023822A1 (en) * 2006-08-24 2008-02-28 Toyota Jidosha Kabushiki Kaisha Fuel cell
US8153307B1 (en) 2004-02-11 2012-04-10 Quallion Llc Battery including electrolyte with mixed solvent

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311945A (en) * 1989-06-08 1991-01-21 Hitachi Ltd Supervisory control method and device for power system
JPH04296455A (en) * 1991-03-27 1992-10-20 Toshiba Corp Fuel cell
US8153307B1 (en) 2004-02-11 2012-04-10 Quallion Llc Battery including electrolyte with mixed solvent
WO2008023822A1 (en) * 2006-08-24 2008-02-28 Toyota Jidosha Kabushiki Kaisha Fuel cell
US8568939B2 (en) 2006-08-24 2013-10-29 Toyota Jidosha Kabushiki Kaisha Fuel cell including fluid-permeable members of differing thermal resistances with respect to an electrolytic membrane

Similar Documents

Publication Publication Date Title
JP4439076B2 (en) Polymer electrolyte fuel cell stack
US5541015A (en) Fuel cell using a separate gas cooling method
JP2922132B2 (en) Polymer electrolyte fuel cell
JPH08138692A (en) Fuel cell
JP2009043493A (en) Fuel cell stack
US8470483B2 (en) Wettable gas diffusion layer for a wet seal in a fuel cell
JP2008192368A (en) Fuel cell stack
US20100291453A1 (en) Fuel cell separator with heat conducting member or cooling fluid passages in a peripheral region of the cell
JP2010021056A (en) Fuel cell and method for manufacturing same
JPH10284096A (en) Solid high polymer electrolyte fuel cell
CA2693522C (en) Fuel cell with non-uniform catalyst
JPS6310468A (en) Stacked fuel cell
JP2006512733A (en) Reversible fuel cell power plant
JP5364980B2 (en) Fuel cell
US6306530B1 (en) System for preventing gas pocket formation in a PEM coolant flow field
JP2009259779A (en) Fuel cell and fuel cell system
JPS6334855A (en) Laminate type fuel cell
JP2011119061A (en) Fuel cell
JP2005197150A (en) Fuel cell
JP2005302472A (en) Fuel cell
JP2005071763A (en) Fuel cell separator
JPS6310469A (en) Stacked fuel cell
JP3603871B2 (en) Polymer electrolyte fuel cell
JPH07326374A (en) Fuel cell
JP2009048905A (en) Fuel cell