JPS63104029A - Electrochromic device - Google Patents

Electrochromic device

Info

Publication number
JPS63104029A
JPS63104029A JP61251213A JP25121386A JPS63104029A JP S63104029 A JPS63104029 A JP S63104029A JP 61251213 A JP61251213 A JP 61251213A JP 25121386 A JP25121386 A JP 25121386A JP S63104029 A JPS63104029 A JP S63104029A
Authority
JP
Japan
Prior art keywords
electrode
cobalt phthalocyanine
layer
electrolyte
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61251213A
Other languages
Japanese (ja)
Inventor
Tomoo Iwata
岩田 友夫
Kazuki Yanagiuchi
柳内 一樹
Noboru Kosho
古庄 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61251213A priority Critical patent/JPS63104029A/en
Publication of JPS63104029A publication Critical patent/JPS63104029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To obtain a low-cost EC device of a large area by vapor-depositing a cobalt phthalocyanine layer on a transparent electrode to form an EC electrode and by holding an electrolyte between the EC electrode and a counter electrode. CONSTITUTION:A prescribed amt. of cobalt phthalocyanine is charged into a boat as a vapor deposition source and a cobalt phthalocyanine layer 3 is vapor-deposited on a glass substrate 1 having an ITO (indium tin oxide) film 2 by a resistance heating method to form an EC electrode. After a resist layer 4 is formed on the layer 3, the EC electrode is combined with a counter electrode 6 of platinum such as a platinum wire and a satd. aq. soln. 5 of potassium chloride as an electrolyte to obtain an EC device. Since the cobalt phthalocyanine layer 3 of a proper thickness is formed on the transparent electrode, the EC device has a polychromatic EC function. The polychromatic EC device can be easily produced at a low cost.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、適当に制御された電圧印加により光吸収特性
の変化する現象であるエレクトロクロミズムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to electrochromism, which is a phenomenon in which light absorption characteristics change by appropriately controlled voltage application.

〔従来技術とその問題点〕[Prior art and its problems]

近年、著しいエレクトロニクスの進展に伴い表示素子の
果たす役割はますます重要なものとなっできている。こ
うした表示素子には、エレクトロルミネセンス等の自発
発光型のものと液晶等の非発光型のものに大別される。
In recent years, with the remarkable progress of electronics, the role played by display elements has become increasingly important. These display elements are broadly classified into spontaneous light-emitting types such as electroluminescence and non-light-emitting types such as liquid crystal.

エレクトロニクスズA (Electrochromi
sm以下ECと略す)は電気化学的な可逆的着消色反応
を利用したもので、前述の後者の非発光型のものに属す
る。
Electronics A
sm (hereinafter abbreviated as EC) utilizes an electrochemical reversible coloring/decoloring reaction and belongs to the latter non-luminous type mentioned above.

EC材料には、現在までに数多くのものが開発されてお
り、最も代表的なものにタングステンなどの金pA酸化
物がある。酸化タングステンは、電気化学的還元によっ
て着色し、電気化学的酸化によって消色することがんら
れていて、その着消色機構は一般に、 WO3+ xM + Xe −+ MxWO3(無色)
     (青色) + とされている。但し、ここでN1 は電解質の対イオン
でH、L+ 、 Na  等である。
Many EC materials have been developed to date, and the most representative one is gold pA oxide such as tungsten. It is believed that tungsten oxide is colored by electrochemical reduction and decolored by electrochemical oxidation, and the coloring/decoloring mechanism is generally WO3+ xM + Xe −+ MxWO3 (colorless).
(Blue) It is said to be +. However, here, N1 is a counter ion of the electrolyte, such as H, L+, Na, etc.

このように着消色の機構も解明され、表示素子への災用
的な開発も盛んに行われている金属酸化物がある一方で
、有機物のEC材も広く研究されている。有機物のEC
材は、着消色の機構の解明や表示素子への適用という点
で前述の金属酸化物のEC材よりもたち遅れが認めらI
]るが、金属酸化物に比べて低価格で大面積のシートが
作りやすく成型。
In this way, the mechanism of coloring and fading has been elucidated, and while there are metal oxides that are actively being developed for use in display elements, organic EC materials are also being widely studied. organic matter EC
It has been recognized that EC materials are lagging behind the aforementioned metal oxide EC materials in terms of elucidation of the coloring/decoloring mechanism and application to display elements.
], but compared to metal oxides, it is cheaper and easier to make and mold into large-area sheets.

切断などの加工性もよく、塗布できるものもあるなどの
利点を有している。
It has the advantage of being easy to process, such as cutting, and can be coated in some cases.

代表的な有機物のEC材には、ビオロゲンやフタロシア
ニン化合物がある。ビオロゲンは、電解質が溶液型の素
子構成で無色から青もしくは紫に単色変化することが知
られている。
Typical organic EC materials include viologen and phthalocyanine compounds. It is known that viologen changes monochromatically from colorless to blue or violet when the electrolyte is a solution type device.

また、EC現象を示す電解重合膜としてポリピロールや
ポリチオフェンがある。これらは、LiBF4やLiC
lO4を含んだアセトニトリルなどの電解液中で酸化す
ると膜中にBF′;やC10″4  がドープされ膜が
導電性を示すとともに色変化を示す。
Furthermore, polypyrrole and polythiophene are examples of electrolytically polymerized films exhibiting the EC phenomenon. These are LiBF4 and LiC
When oxidized in an electrolytic solution such as acetonitrile containing lO4, the film is doped with BF' or C10''4, and the film exhibits conductivity and a color change.

一方、フタロシアニン化合物である例えば希土類系のル
テチウムシフタロジアニン(Lu(Pc)z)やエルビ
ウム氷菓シフタロジアニン(ErH(Pc)2 ) す
どは、電解質が赤から青にわたって多色変化することが
知られている。
On the other hand, it is known that the electrolyte of phthalocyanine compounds such as rare earth lutetium siphthalodianine (Lu(Pc)z) and erbium ice cream siphthalodianine (ErH(Pc)2) changes color from red to blue. ing.

通常、EC素子は透明電極である酸化スズ(Sn02)
や酸化インジウム(In2O3)  などの透明導電膜
基板上に蒸着法などでEC薄膜層が形成され、このEC
電極と対極とそれらの間に配された電解質でEC素子が
構成される。
Usually, EC elements are made of tin oxide (Sn02), which is a transparent electrode.
An EC thin film layer is formed on a transparent conductive film substrate such as indium oxide (In2O3) or indium oxide (In2O3) by a vapor deposition method.
An EC element is composed of an electrode, a counter electrode, and an electrolyte placed between them.

本発明者らは、フタロシアニン化合物の一種でアルコバ
ルトフタロシアニンに着目して、蒸着法で適宜膜厚を制
御しながらコバルトフタロシアニン薄膜層を形成すると
、この薄膜層がEC機能を有することを見いだしたので
ある。
The present inventors focused on alcobalt phthalocyanine, which is a type of phthalocyanine compound, and found that when a thin film layer of cobalt phthalocyanine was formed by controlling the film thickness appropriately using a vapor deposition method, this thin film layer had an EC function. be.

〔発明の目的〕[Purpose of the invention]

本発明は、コバルトフタロシアニンを用いて大面積で安
価なEC素子を提供することにある。
An object of the present invention is to provide a large-area, inexpensive EC element using cobalt phthalocyanine.

〔発明の要点〕[Key points of the invention]

この目的は本発明によれば、透明電極上にコバルトフタ
ロシアニン蒸着層を設けてEC@極を形成し、この電極
と対極との間に電解質を配することにより達成される。
This object is achieved according to the invention by providing a cobalt phthalocyanine vapor-deposited layer on a transparent electrode to form an EC@ electrode and placing an electrolyte between this electrode and the counter electrode.

ここで電解質は例えば飽和塩化カリウムからなる液体電
解質であってもよ℃・。
The electrolyte here may be a liquid electrolyte consisting of saturated potassium chloride, for example.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on examples.

コバルトフタロシアニンの所定量を蒸着源ホードに仕込
み、抵抗加熱法により蒸着源ヒータ一温度480℃、!
L空変度1xlOtorrにてI TO(Indium
tin oxide )  ガラス基板1にコバルトフ
タロシアニン3を蒸着してEC電極を構成し、その上に
レジスト層4を形成した。その構成を第3図に示す。
A predetermined amount of cobalt phthalocyanine is charged into the evaporation source hoard, and the evaporation source heater is heated to a temperature of 480°C using the resistance heating method!
I TO (Indium
Cobalt phthalocyanine 3 was deposited on a glass substrate 1 to form an EC electrode, and a resist layer 4 was formed thereon. Its configuration is shown in FIG.

電極有効面積は1dである。The effective area of the electrode is 1 d.

鉄フタロシアニンの蒸着層3の膜厚は可視光の吸光スペ
クトルを求め、波長610 nmの吸光度のピーク値を
代用値として評価した。蒸着膜の可視吸光スペクトルの
様子を第4図に示す。同図から明らかなように吸光度は
、蒸着源ボートに仕込んだコバルトフタロシアニンのi
tこよって変わるが、いずれも吸光スペクトルのかたち
は変わらず、波長610 nmと波長680 nmに吸
収ピークを有する。
The thickness of the deposited layer 3 of iron phthalocyanine was evaluated by determining the absorption spectrum of visible light and using the peak value of absorbance at a wavelength of 610 nm as a substitute value. FIG. 4 shows the visible absorption spectrum of the deposited film. As is clear from the figure, the absorbance of cobalt phthalocyanine charged in the evaporation source boat is
Although the shape of the absorption spectrum remains the same, both have absorption peaks at a wavelength of 610 nm and a wavelength of 680 nm.

次に第1図に示すように、上記により得られたECK極
と白金対極6と電解質としての飽和塩化カリウム水溶液
5でEC素子を格成し、EC電極と白金対極の間に電圧
を印加して電圧電流特性を測定すると共に、各所定の電
圧での着消色現象を可視光分光スペクトルで観察した。
Next, as shown in FIG. 1, an EC element was formed using the ECK electrode obtained above, a platinum counter electrode 6, and a saturated potassium chloride aqueous solution 5 as an electrolyte, and a voltage was applied between the EC electrode and the platinum counter electrode. In addition to measuring the voltage-current characteristics, the coloring/decoloring phenomenon at each predetermined voltage was observed using visible light spectroscopy.

結果を箪2図に示す。同図において曲線d、e、fは、
それぞれ印加電圧が−2,5V 、 OV 、 + 2
.5 V O) 場合ヲ示t。
The results are shown in Figure 2. In the same figure, curves d, e, and f are
The applied voltages are -2, 5V, OV, +2, respectively.
.. 5 V O) Show the case.

第4図で波長f)lQnmの吸光度が1.64の膜厚の
いずれの蒸着層で、電極の印加′1圧が−2,5vから
+2.5Vで着消色現象が認められた。すなわち印加電
圧が−2,5Vでは赤色が、QVで青色が、 +2.5
 Vで黄色の多色変化を示した。
In FIG. 4, in all the deposited layers having a film thickness of 1.64 and an absorbance of 1.64 at the wavelength f)lQnm, a coloring/decoloring phenomenon was observed when the voltage '1 applied to the electrode was from -2.5V to +2.5V. That is, when the applied voltage is -2.5V, the red color is, and when the applied voltage is QV, the blue color is +2.5.
V showed a yellow polychromatic change.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、本発明によれば透明電極上に
適宜な膜厚のコバルトフタロシアニン蒸N層を設けるこ
とにより、この蒸着層と対極と電解質で構成されるEC
素子に多色変化型のEC機能が発現するという効果があ
る。
As explained above, according to the present invention, by providing a cobalt phthalocyanine evaporated N layer with an appropriate thickness on a transparent electrode, an EC composed of this evaporated layer, a counter electrode, and an electrolyte can be used.
This has the effect that the element exhibits a multicolor-changing EC function.

また本発明によれば、コバルトフタロシアニンを用いる
ことにより、入手困難もしくは材料合成困難でかつ高価
格となりやすい希土類系フタロシアニン化合物よりも、
低価格でかつ容易に多色変化するECX子が作製できる
という効果がある。
Furthermore, according to the present invention, by using cobalt phthalocyanine, it is possible to use cobalt phthalocyanine rather than rare earth phthalocyanine compounds, which are difficult to obtain or synthesize, and tend to be expensive.
This method has the advantage that an ECX element that changes in multiple colors can be easily produced at a low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるEC素子の構成を示す
側断面図、第2図は本発明の一実施例によるEC素子の
蒸着−の可視吸光スペクトルを示すグラフ、第3図(a
l 、 fblはそれぞれ本発明の実施例によるEC素
子に用いる電極構成を示す側面図および平面図、第4図
は第3図の蒸着膜の可視吸光スペクトルを示すグラフで
ある。 l・・・ガラス基板、2・・・I’l”0,3・・・コ
バルトフタロシアニン蒸着膜、4・・・レジスト、5・
・・飽和塩化カリウム水溶液。 窩1区 栗2 区
FIG. 1 is a side sectional view showing the structure of an EC device according to an embodiment of the present invention, FIG. 2 is a graph showing the visible absorption spectrum of the EC device according to an embodiment of the present invention, and FIG.
1 and fbl are a side view and a plan view, respectively, showing the electrode configuration used in the EC device according to the example of the present invention, and FIG. 4 is a graph showing the visible absorption spectrum of the deposited film of FIG. 3. l...Glass substrate, 2...I'l''0,3...Cobalt phthalocyanine vapor deposited film, 4...Resist, 5...
...Saturated potassium chloride aqueous solution. Lao 1 ward Chestnut 2 ward

Claims (1)

【特許請求の範囲】 1)透明電極基板上にコバルトフタロシアニン蒸着層を
形成して得られたエレクトロクロミズム電極と、この電
極の対極と、前記電極および対極間に配された電解質と
を有することを特徴とするエレクトロクロミズム素子。 2)特許請求の範囲第1項記載のものにおいて、飽和塩
化カリウム水溶液からなる液体電解質と、この液体電解
質に挿入された白金対極とから構成されることを特徴と
するエレクトロクロミズム素子。
[Claims] 1) An electrochromic electrode obtained by forming a cobalt phthalocyanine vapor-deposited layer on a transparent electrode substrate, a counter electrode of this electrode, and an electrolyte disposed between the electrode and the counter electrode. Characteristic electrochromism element. 2) An electrochromism device according to claim 1, characterized in that it is composed of a liquid electrolyte made of a saturated potassium chloride aqueous solution and a platinum counter electrode inserted into the liquid electrolyte.
JP61251213A 1986-10-22 1986-10-22 Electrochromic device Pending JPS63104029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61251213A JPS63104029A (en) 1986-10-22 1986-10-22 Electrochromic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61251213A JPS63104029A (en) 1986-10-22 1986-10-22 Electrochromic device

Publications (1)

Publication Number Publication Date
JPS63104029A true JPS63104029A (en) 1988-05-09

Family

ID=17219381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61251213A Pending JPS63104029A (en) 1986-10-22 1986-10-22 Electrochromic device

Country Status (1)

Country Link
JP (1) JPS63104029A (en)

Similar Documents

Publication Publication Date Title
Bonhôte et al. Novel electrochromic devices based on complementary nanocrystalline TiO2 and WO3 thin films
Bonhote et al. Nanocrystalline electrochromic displays
CA1111537A (en) Electrochromic devices
JPS61219030A (en) Electrochromic element
JPS6327692B2 (en)
US20210255518A1 (en) Multi-layer optical materials systems and methods of making the same
JPS63104029A (en) Electrochromic device
JPS59113422A (en) Total solid-state electrochromic display
JPS5880625A (en) Entirely solid electrochromic display device
JPS5827484B2 (en) display cell
JPS62169130A (en) Electrochromic element
JPS6153706B2 (en)
JPH11183944A (en) Recording sheet and manufacture thereof
JPS62145223A (en) Electrochromism element
JPS6186733A (en) Electrochromic element
US20230367167A1 (en) Multicolor electrochromic structure, fabrication method and application thereof
JPS63153524A (en) Electrochromic display element
JPS5961820A (en) Fully solid-state type electrochromic element
JP2625531B2 (en) Electrochromic device and method of manufacturing the same
JPS63224189A (en) Electrochromic display device
JPS63148241A (en) Electrochromic display element
JPS63148240A (en) Electrochromic display element
JPH11242246A (en) Electrochromic element and its production
JPS5872130A (en) Electrochromic display element
JPS59121318A (en) All solid-state electrochromic element