JPS63103907A - Measuring instrument utilizing compressed air - Google Patents

Measuring instrument utilizing compressed air

Info

Publication number
JPS63103907A
JPS63103907A JP25035086A JP25035086A JPS63103907A JP S63103907 A JPS63103907 A JP S63103907A JP 25035086 A JP25035086 A JP 25035086A JP 25035086 A JP25035086 A JP 25035086A JP S63103907 A JPS63103907 A JP S63103907A
Authority
JP
Japan
Prior art keywords
compressed air
air
temperature
measuring instrument
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25035086A
Other languages
Japanese (ja)
Other versions
JPH04527B2 (en
Inventor
Sadayuki Matsumiya
貞行 松宮
Yukiharu Kawaguchi
川口 行治
Hisayoshi Sakai
久嘉 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP25035086A priority Critical patent/JPS63103907A/en
Publication of JPS63103907A publication Critical patent/JPS63103907A/en
Publication of JPH04527B2 publication Critical patent/JPH04527B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the heating value of a temperature control means and to take a measurement with high accuracy by arranging a heat exchanger for approximating the temperature of compressed air to the ambient temperature of a measuring instrument between a pressure source and a compressed air utilizing mechanism. CONSTITUTION:In the air supply system of a three-dimensional measuring instrument 8, the compressed air is supplied to respective air bearings incorporated in X--Z-axial sliders of the measuring instrument 8 from the pressure source 38 such as a compressor through the heat exchanger, e.g. a filter 42, a regulator 44, and a manometer 46. The heat exchanger 40 is covered with a cover and when a fan motor installed therein is rotated for measurement, outside air circulates in piping 52 and on the surfaces of heat radiation fins. The temperature of the compressed air in the piping 52, therefore, approximates to the outside temperature. Thus, the compressed air which is almost at the ambient temperature (room temperature) is supplied to the main body of the measuring instrument 8 and the strain of the structure body is reduced, so that a measurement is taken with high accuracy.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、圧縮空気利用測定機に係り、特に、相対移動
する部材の運動に関与する空気軸受や空気バランス機構
等の圧縮空気利用機構を有する圧縮空気利用測定機の改
良に関する。
The present invention relates to a measuring instrument that utilizes compressed air, and particularly relates to an improvement of a measuring instrument that utilizes compressed air that has a compressed air utilizing mechanism such as an air bearing or an air balance mechanism that is involved in the motion of relatively moving members.

【従来の技術] 被測定物に対して三次元的に相対移動可能なプローブを
用いて形状測定を行う三次元測定機は、多種多様な形状
が容易にしかも高能率に測定可能であるため、あらゆる
産業分野で活用されている。 最近は、更に測定結反の改善や高別能化の要求に応える
ため、機構部の中に圧縮空気を利用する空気軸受や空気
バランス機構部が組込まれるようになっている。 TA5図は、圧縮空気利用機構の一例としての空気hl
l受を用いた従来の移動ブリッジ型の三次元測定機の一
例を示したものである。この三次元測定機8においては
、被測定物が載置される載物台10に対して、プローブ
12がX軸スライダ14、Y軸スライダ16、Z軸スラ
イダ18の摺動によって三次元的に移動可能とされてお
り、各軸に備えられた図示しないスケールを用いてプロ
ーブ12の移動量を読取ることによって、被測定物の形
状が測定できるようにされている。 各スライダ14.16.18は空気軸受で支持されてい
るが、そのうちのY軸スライダ16の空気軸受の構造を
第6図に示す。第6図は、第5図の矢印■方向から見た
矢祝図である。この空気軸受20においては、案内レー
ル22に対して、3個のエアバッド24を介してY軸ス
ライダ16の胛部16Bの下端支持部16Aが支承され
ている。 各エアバッド24には、コンプレッサや工場配管等の、
外部の図示しなシ)圧力源からエアチューブ26を介し
て圧縮空気が供給され、この圧縮空気が各エアバッド2
4の底面の■孔から案内レール22に対して定常的に吹
き出ずようにされている。 従って、機械式の軸受と異なり、非接触であり、周動が
滑らかで摩耗がないため、より高′vi度なより定が可
能とな少。 又、第7図は、圧縮空気利用v14Mの他の例として、
出願人が特開昭57−73601で提案した空気バラン
ス機構を用いた従来の三次元測定機の他の例を示したも
のである。この空気バランスは横30においては、連結
稈32と接続された図示しないピストンが、エアチュー
ブ34から供給される圧縮空気のダンパ作用を受けるよ
うにされている。従って、連結稈32に係合された7帖
スライダ18及びプローブ12は、操作者が手を離して
も落下せず、操作する際には負荷が少ない等、高機能と
なっている。 これらの圧縮空気利用85!程4を有する三次元測定機
は、一般に室温が例えば20℃で一定に制御された恒温
室等に設置され、測定機もその状態で精度保証が行われ
ている。 [′fl明が解決しようとする問題点]しかしながら、
外部の圧力源から供給される圧縮空気の温度は、例えば
コンプレッサの場合は断熱圧縮のため空温より高くなり
、又、工場配管の場合は、配管途中で熱交換が行われる
ため、夏では高い温度、冬では室温よりかなり低い温度
になることがある。 従って、測定機が20℃の部屋に設置されていても、前
記のような圧縮空気が供給されると、測定機内部で圧縮
空気の流通する部分と室温に慣らされている部分とに温
度差が生じて構造体が変形し、精度が劣化するという問
題点を有していた。 このような問題点を解決するべく、電気的なり−ラヤヒ
ータを用いて圧縮空気の温度をit、II御することも
考えられるが、クーラやヒータは価格的に高く大型であ
り、何よりも制t11装置自体の発熱琵が大きいため、
恒WW等には導入が困難であるという問題点を有してい
た。 【発明の目的] 本発明は、前記従来の問題点を解消するべくなされたも
ので、温度制御手段の発熱口が少なく、高精度の測定が
可能な圧縮空気利用測定機を提供することを目的とする
。 【問題点を解決するための手段】 本発明は、被測定物の測定点を指示する手段を保持する
第1の部材と、被測定物に対して静止している第2の部
材と、外部の圧力源に接続され、前記第1及び第2の部
材の相対移動に関与する圧縮空気利用機構とを含み、前
記第1及び第2の部材の相対移動量から被測定物の形状
測定を行う圧縮空気利用測定機において、前記圧力源と
圧縮空気利用機構の間に、圧縮空気の温度を測定はの雰
囲気温度に近づけるための熱交換器を配設することによ
り、前記目的を達成したものである。 又、本発明の実施態様は、前記熱交換器を、圧縮空気の
流通する配管と、該配管の表面に外気を循環させる手段
とを含んで構成したものである。 又、本発明の実施悪球は、前記圧縮空気利用機構を、空
気軸受としたものである。 又、本発明の実施態様は、111J記圧縮空気利用機構
を、空気バランス機構としたものである。
[Prior Art] A three-dimensional measuring machine that measures the shape of an object using a probe that can move relative to the object in three dimensions can easily and efficiently measure a wide variety of shapes. It is used in all industrial fields. Recently, in order to meet the demands for further improvement in measurement results and higher performance, air bearings and air balance mechanisms that utilize compressed air have been incorporated into the mechanism. TA5 diagram shows air hl as an example of a compressed air utilization mechanism.
This figure shows an example of a conventional moving bridge type three-dimensional measuring machine using a receiver. In this three-dimensional measuring machine 8, a probe 12 is moved three-dimensionally by sliding of an X-axis slider 14, a Y-axis slider 16, and a Z-axis slider 18 with respect to a stage 10 on which an object to be measured is placed. The probe 12 is movable, and the shape of the object to be measured can be measured by reading the amount of movement of the probe 12 using scales (not shown) provided on each axis. Each slider 14, 16, 18 is supported by an air bearing, and the structure of the air bearing of the Y-axis slider 16 is shown in FIG. FIG. 6 is an arrow diagram viewed from the direction of the arrow ■ in FIG. In this air bearing 20, the lower end support portion 16A of the flange portion 16B of the Y-axis slider 16 is supported by the guide rail 22 via three air pads 24. Each air bud 24 has a compressor, factory piping, etc.
Compressed air is supplied from an external pressure source (not shown) through the air tube 26, and this compressed air is supplied to each air bud 2.
4 from the hole 4 on the bottom surface to prevent it from constantly blowing out against the guide rail 22. Therefore, unlike mechanical bearings, there is no contact, smooth circumferential motion, and no wear, making it possible to maintain a higher degree of vibration. In addition, FIG. 7 shows another example of compressed air usage v14M.
This figure shows another example of the conventional three-dimensional measuring machine using the air balance mechanism proposed by the applicant in Japanese Patent Laid-Open No. 57-73601. This air balance is such that in the lateral direction 30, a piston (not shown) connected to the connecting culm 32 receives the damping effect of compressed air supplied from the air tube 34. Therefore, the seven-layer slider 18 and the probe 12 engaged with the connecting culm 32 do not fall even if the operator removes his/her hand, and the load is small when operating them, resulting in high functionality. These compressed air uses 85! A three-dimensional measuring machine having a temperature range of 4 is generally installed in a constant temperature room or the like where the room temperature is controlled to be constant at, for example, 20° C., and the accuracy of the measuring machine is guaranteed in that state. [The problem that 'fl Ming tries to solve] However,
For example, in the case of a compressor, the temperature of compressed air supplied from an external pressure source is higher than the air temperature due to adiabatic compression, and in the case of factory piping, heat exchange occurs in the middle of the piping, so it can be high in summer. Temperatures can be considerably lower than room temperature in winter. Therefore, even if the measuring device is installed in a room at 20°C, when compressed air is supplied as described above, there will be a temperature difference between the part of the measuring machine where the compressed air flows and the part that is used to room temperature. This has caused problems such as deformation of the structure and deterioration of accuracy. In order to solve these problems, it is possible to control the temperature of compressed air using an electric heater, but coolers and heaters are expensive and large, and above all, they are difficult to control. Because the heat generation of the device itself is large,
The problem was that it was difficult to introduce into the World Wide Web. [Object of the Invention] The present invention was made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a measuring device using compressed air that has fewer heating ports in the temperature control means and is capable of highly accurate measurement. shall be. [Means for Solving the Problems] The present invention includes a first member holding a means for indicating a measurement point of an object to be measured, a second member that is stationary with respect to the object to be measured, and an external a compressed air utilization mechanism connected to a pressure source and involved in relative movement of the first and second members, and measuring the shape of the object from the amount of relative movement of the first and second members. In the compressed air measuring device, the above objective is achieved by disposing a heat exchanger between the pressure source and the compressed air utilization mechanism to bring the temperature of the compressed air close to the ambient temperature of the measuring device. be. Further, in an embodiment of the present invention, the heat exchanger is configured to include piping through which compressed air flows and means for circulating outside air on the surface of the piping. Further, in an embodiment of the present invention, the compressed air utilization mechanism is an air bearing. Further, in an embodiment of the present invention, the compressed air utilization mechanism described in 111J is an air balance mechanism.

【作用】[Effect]

本発明においては、外部の圧力源と圧縮空気利用機構の
間に、圧縮空気の温度を測定別の雰囲気温度に近づける
ための熱交換器を配設するようにしている。従って、タ
ープやヒータを用いることなく、圧縮空気の温度を測定
機の雰囲気湿度に近づけることができ、発熱faが少な
いので、高精度の測定を行うことが可能となる。 又、前記熱交l!2i器を、圧縮空気の流通する配管と
、該配管の表面に外気を循環させる手段とを含んで構成
した場合には、熱交換器を安価に打4成でき、発熱量も
少ない。 更に、11な記圧縮空気利用は構を、空気軸受とした場
合には、空気軸受の熱変形による精度低下を防止できる
。 又、+iQ記前記圧縮空気利用機構を、空気バランス機
転1とした場合には、空気バランス機構の熱変形による
精度低下を防止できる。
In the present invention, a heat exchanger is disposed between the external pressure source and the compressed air utilization mechanism to bring the temperature of the compressed air close to the ambient temperature for each measurement. Therefore, the temperature of the compressed air can be brought close to the atmospheric humidity of the measuring device without using a tarp or a heater, and since the heat generation fa is small, highly accurate measurement can be performed. Also, the heat exchange l! When the 2i device is configured to include piping through which compressed air flows and means for circulating outside air on the surface of the piping, the heat exchanger can be constructed at low cost and generates less heat. Furthermore, if the compressed air utilization mechanism mentioned above is an air bearing, it is possible to prevent a decrease in accuracy due to thermal deformation of the air bearing. Further, when the compressed air utilization mechanism described in +iQ is set to air balance mechanism 1, it is possible to prevent a decrease in accuracy due to thermal deformation of the air balance mechanism.

【実施例] 以下、図面を参照して、本発明に係るコラム移動型のジ
グポーラ型三次元測定機8の実施例を詳細に説明する。 本実施例は、第1図に示づ如く構成されており、X軸ス
ライダの代わりに載物台10が空気1抛受でX方向に摺
動され、コラム34を支持してY方向に摺動するY軸ス
ライダ16、プローブ12を支持して2方向に摺動する
2軸スライダ18にも、それぞれ空気軸受が組込まれて
いる。図において、36は被測定物である。なJ3、測
定点を指示する手段としてプローブ12が備えられてい
るが、これはビデオカメラ等でも可能である。 第2図は、前記三次元測定機8の空気供給系統を示した
もので、コンプレッサや工場配管等の圧力源38から、
熱交換器40及び例えばフィルタ42、レギュレータ4
4及び圧力計46を経由して圧縮空気が供給されている
。なお、フィルタ42ヤ」レギュレータ44は、熱交換
器4oと圧力源38の間に設置することも可能である。 前記熱交換器40は、第3図及び第4図に示す如く構成
されており、圧力源から供給される圧縮空気が一方の接
続ノズル5oから配管52に入り、他方の接続ノズル5
4から測定機本体に流出するようにされている。 1〕う記配管52はカバー56で被覆されており、内部
に空気を循環させるための手段としてのファンモータ5
8が設置されている。前記カバー56には、カバーの外
の空気(外気)を取入れるための外気取入孔56A及び
排出用の外気排出孔56Bが多数穿設されている。 更に、前記配管52の前後には、配管外の空気(外気)
との接触面積を増加させるための放熱フィン60が複数
設けられている。 前記配管52や放熱フィン60の材質は、熱の良尋体で
ある鋼、アルミ等の全屈が好ましいが、合成樹脂やゴム
系の累材であってもよい。 以下、実施例の作用を説明する。 測定に際して熱交換器40のファンモータ58が回転す
ると、外気が配管52及び放熱フィン60の表面を循環
する。従って、配管内部の圧縮空気の温度は外気の温度
により近づくことになる。 よって、三次元測定118の本体には、雰囲気の温rr
i<室温)に近い圧縮空気が供給され、構造体の歪が減
少してより高vi度な測定が可能となる。 なお、本実施例においては、熱交換器40の(1°4成
が前略であるため、熱交換器を安価で且つ小型に構成で
きる。なお、熱交換器の構成はこれに限定されない。 又、本実施例においては、熱交換器40にカバー56が
設けられでいたため、熱交換効率が高い。 なお、カバー56を省略することも可能である。 更に、本実施例においては、配管52の前後に放熱フィ
ン60を設けていたため、熱交換効率が高い。なお、放
熱フィン60を省略することも可能である。 又、本実施例においては、外気を循環させる手段として
ファンモータ58を用いていたので、外気を循環させる
手段を安価に1閃成することができる。なお、外気を循
環ざゼる手段はこれに限定されず、他にヒートバイブで
配管52と外気との間で熱交換させる機構等も考えられ
る。 更に、本実施例においては、熱交換器40の配管52が
曲線状のパイプとされているので、外気との接触面積を
大きくとることができる。なお配管52の形状はこれに
限定されず、外気との接触面積を大きくできる構造であ
れば、例えば薄い層状の空気至を何層も川ねた構造等に
することも可能である。 なお、前記実施例においては、本発明が三次元測定機の
空気軸受に適用されていたが、本発明の適用範囲はこれ
に限定されず、−次元の測長61にも同様に適用できる
。又、第7図に示したような空気バランス機構を有する
測定機等で、圧縮空気利用機構を有する測定改一般にも
同様に適用することができる。 【発明の効果】 以上説明した通り、本発明によれば、クーラヤヒータを
使用ずろことなく圧縮空気を空温に近づけることができ
、発熱扮が少ない。従って、a8!fa度の測定を行う
ことが可能となるという優れた効果を有する。
[Embodiment] Hereinafter, an embodiment of the column-moving jig polar type coordinate measuring machine 8 according to the present invention will be described in detail with reference to the drawings. The present embodiment is constructed as shown in FIG. 1, and instead of the X-axis slider, the stage 10 is slid in the X direction by receiving one air, and supports the column 34 to slide in the Y direction. The Y-axis slider 16 that moves and the two-axis slider 18 that supports the probe 12 and slides in two directions are each equipped with air bearings. In the figure, 36 is an object to be measured. Although a probe 12 is provided as a means for indicating a measurement point, a video camera or the like may also be used. FIG. 2 shows the air supply system of the coordinate measuring machine 8, in which air is supplied from a pressure source 38 such as a compressor or factory piping.
Heat exchanger 40 and e.g. filter 42, regulator 4
Compressed air is supplied via 4 and a pressure gauge 46. Note that the filter 42 and the regulator 44 can also be installed between the heat exchanger 4o and the pressure source 38. The heat exchanger 40 is constructed as shown in FIGS. 3 and 4, and compressed air supplied from a pressure source enters the pipe 52 from one connection nozzle 5o and passes through the other connection nozzle 5o.
4 into the measuring machine body. 1] The pipe 52 is covered with a cover 56, and a fan motor 5 is installed as a means for circulating air inside.
8 is installed. The cover 56 is provided with a large number of outside air intake holes 56A for taking in air outside the cover (outside air) and many outside air exhaust holes 56B for discharging air. Furthermore, air outside the pipe (outside air) is provided before and after the pipe 52.
A plurality of heat dissipation fins 60 are provided to increase the contact area with the heat dissipation fins 60. The material of the piping 52 and the radiation fins 60 is preferably fully bent, such as steel or aluminum, which is a good thermal conductor, but may also be made of synthetic resin or rubber-based composite material. The effects of the embodiment will be explained below. When the fan motor 58 of the heat exchanger 40 rotates during measurement, outside air circulates on the surfaces of the piping 52 and the heat radiation fins 60. Therefore, the temperature of the compressed air inside the pipe becomes closer to the temperature of the outside air. Therefore, the main body of the three-dimensional measurement 118 has the temperature rr of the atmosphere.
Compressed air close to i<room temperature) is supplied, which reduces strain on the structure and enables higher-vi measurements. In addition, in this embodiment, since the heat exchanger 40 has a 1° four-component configuration, the heat exchanger can be configured to be inexpensive and compact. Note that the configuration of the heat exchanger is not limited to this. In this embodiment, since the heat exchanger 40 was not provided with the cover 56, the heat exchange efficiency was high. Note that the cover 56 could also be omitted.Furthermore, in this embodiment, the piping 52 Heat exchange efficiency is high because the heat radiation fins 60 are provided before and after the heat radiation fins 60.It is also possible to omit the radiation fins 60.Furthermore, in this embodiment, the fan motor 58 is used as a means for circulating outside air. Therefore, a means for circulating the outside air can be created at a low cost.Means for circulating the outside air are not limited to this. A mechanism for exchanging the heat exchanger may also be considered.Furthermore, in this embodiment, since the piping 52 of the heat exchanger 40 is a curved pipe, the contact area with the outside air can be increased. The shape is not limited to this, and as long as the structure can increase the contact area with the outside air, it is also possible to have a structure in which several thin layers of air flow, for example. Although the present invention was applied to an air bearing of a coordinate measuring machine, the scope of application of the present invention is not limited thereto, and can be similarly applied to the -dimensional length measurement 61. The present invention can be similarly applied to a measuring device having an air balance mechanism as shown, and also to a general measuring device having a compressed air utilization mechanism. [Effects of the Invention] As explained above, according to the present invention, a cooler heater can be Compressed air can be brought close to the air temperature without any need for use, and there is little heat generation.Therefore, it has the excellent effect of making it possible to measure a8!fa degrees.

【図面の簡単な説明】 第1図は、本発明に係る、空気軸受を有するコラム移動
型のジグポーラ型三次元測定機の実施例の全体4i4戒
を示す斜視図、第2図は、前記実施例の空気供給系統を
示す系統図、第3図は、前記実施例で用いられている熱
交換器の構成を示す正面断面図、第4図は、第3図のI
V −IV 82に沿う横断面図、第5図は、空気軸受
を用いた従来の移動ブリッジ型三次元測定機の一例の構
成を示す斜視図、第6図は、前記三次元測定はで用いら
れている空気軸受の構成を示す、第5図の矢視■方向か
ら見た正面図、第7図は、空気バランス機構を用いた従
来の三次元測定層の他の例の要部構成を示す断面図であ
る。 8・・・三次元測定機、 12・・・プローブ、 16・・・Y軸スライダ、 18・・・Z軸スライダ、 20・・・空気軸受、 30・・・空気バランス機構、 36・・・被測定物、 38・・・圧力源、 40・・・熱交換器、 52・・・配管、 58・・・ファンモータ。
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a perspective view showing the entire 4i4 precepts of an embodiment of a column-moving jig-polar coordinate measuring machine with an air bearing according to the present invention, and Fig. FIG. 3 is a front sectional view showing the configuration of the heat exchanger used in the example, and FIG. 4 is a system diagram showing the air supply system of the example.
FIG. 5 is a perspective view showing the configuration of an example of a conventional moving bridge type coordinate measuring machine using an air bearing, and FIG. 6 is a cross-sectional view along V-IV 82. Fig. 5 shows the configuration of the air bearing as seen from the direction of the arrow (■), and Fig. 7 shows the main part configuration of another example of the conventional three-dimensional measurement layer using the air balance mechanism. FIG. 8... Coordinate measuring machine, 12... Probe, 16... Y-axis slider, 18... Z-axis slider, 20... Air bearing, 30... Air balance mechanism, 36... Object to be measured, 38... Pressure source, 40... Heat exchanger, 52... Piping, 58... Fan motor.

Claims (4)

【特許請求の範囲】[Claims] (1)被測定物の測定点を指示する手段を保持する第1
の部材と、 被測定物に対して静止している第2の部材と、外部の圧
力源に接続され、前記第1及び第2の部材の相対移動に
関与する圧縮空気利用機構とを含み、 前記第1及び第2の部材の相対移動量から被測定物の形
状測定を行う圧縮空気利用測定機において、 前記圧力源と圧縮空気利用機構の間に、圧縮空気の温度
を測定機の雰囲気温度に近づけるための熱交換器を配設
したことを特徴とする圧縮空気利用測定機。
(1) A first holding means for indicating the measurement point of the object to be measured.
a second member that is stationary with respect to the object to be measured; and a compressed air utilization mechanism that is connected to an external pressure source and is involved in relative movement of the first and second members, In a compressed air measuring device that measures the shape of an object to be measured based on the amount of relative movement of the first and second members, the temperature of the compressed air is connected between the pressure source and the compressed air utilizing mechanism to adjust the temperature of the compressed air to the ambient temperature of the measuring device. A measuring device that uses compressed air, characterized by being equipped with a heat exchanger to bring it closer to the air.
(2)前記熱交換器が、圧縮空気の流通する配管と、該
配管の表面に外気を循環させる手段とを含んで構成され
ている特許請求の範囲第1項記載の圧縮空気利用測定機
(2) The compressed air measuring instrument according to claim 1, wherein the heat exchanger includes a pipe through which compressed air flows and a means for circulating outside air on the surface of the pipe.
(3)前記圧縮空気利用機構が、空気軸受である特許請
求の範囲第1項記載の圧縮空気利用測定機。
(3) The compressed air utilization measuring instrument according to claim 1, wherein the compressed air utilization mechanism is an air bearing.
(4)前記圧縮空気利用機構が、空気バランス機構であ
る特許請求の範囲第1項記載の圧縮空気利用測定機。
(4) The compressed air utilization measuring instrument according to claim 1, wherein the compressed air utilization mechanism is an air balance mechanism.
JP25035086A 1986-10-21 1986-10-21 Measuring instrument utilizing compressed air Granted JPS63103907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25035086A JPS63103907A (en) 1986-10-21 1986-10-21 Measuring instrument utilizing compressed air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25035086A JPS63103907A (en) 1986-10-21 1986-10-21 Measuring instrument utilizing compressed air

Publications (2)

Publication Number Publication Date
JPS63103907A true JPS63103907A (en) 1988-05-09
JPH04527B2 JPH04527B2 (en) 1992-01-07

Family

ID=17206607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25035086A Granted JPS63103907A (en) 1986-10-21 1986-10-21 Measuring instrument utilizing compressed air

Country Status (1)

Country Link
JP (1) JPS63103907A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289510A (en) * 1990-04-05 1991-12-19 Showa Alum Corp Device for detecting shape of rolled foil having air-bearing type shape detecting roll
JP2008296303A (en) * 2007-05-30 2008-12-11 Tokyo Seimitsu Co Ltd Method of controlling pressure and temperature of compressed air for measuring machine
US7966743B2 (en) * 2007-07-31 2011-06-28 Eastman Kodak Company Micro-structured drying for inkjet printers
JP2012068039A (en) * 2010-09-21 2012-04-05 Mitsutoyo Corp Industrial machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289510A (en) * 1990-04-05 1991-12-19 Showa Alum Corp Device for detecting shape of rolled foil having air-bearing type shape detecting roll
JP2008296303A (en) * 2007-05-30 2008-12-11 Tokyo Seimitsu Co Ltd Method of controlling pressure and temperature of compressed air for measuring machine
US7966743B2 (en) * 2007-07-31 2011-06-28 Eastman Kodak Company Micro-structured drying for inkjet printers
JP2012068039A (en) * 2010-09-21 2012-04-05 Mitsutoyo Corp Industrial machine

Also Published As

Publication number Publication date
JPH04527B2 (en) 1992-01-07

Similar Documents

Publication Publication Date Title
EP0647788B1 (en) Tare supporting apparatus
US5212873A (en) Position-sensing probe
JPS63103907A (en) Measuring instrument utilizing compressed air
JP2003032993A (en) Linear motor
JP5436706B2 (en) Measuring device
JP3438131B2 (en) XY stage device
CN1979147A (en) Heat-pipe performance detecting apparatus
JP4795717B2 (en) Precision surface plate
US6629471B2 (en) X-Y stage apparatus capable of reducing the number of drive sources
JP2015043260A (en) Stage device and charged particle beam apparatus using the same
JPS63103906A (en) Simple type heat exchanger
Orlowska et al. Measurement of losses in a Stirling cycle cooler
US6837114B2 (en) Three-dimensional measure device with air bearings
CN110595021A (en) Method for controlling laboratory humidity by adopting temperature sensor
JP4770045B2 (en) Mobile system
CN113364241B (en) Precision linear motor platform
JP2903958B2 (en) Positioning device and method of manufacturing semiconductor device using the same
CN212406972U (en) Piston mechanism of refrigerating machine
Johnson et al. Performance characterization of the TRW 3503 and 6020 pulse tube coolers
Onufrena et al. Characterization of woven copper mesh as a heat transfer matrix at low temperatures
KR20140061476A (en) Passive position compensation of a spindle, stage, or component exposed to a heat load
Price et al. Two stage hybrid cryocooler development
JP3619438B2 (en) Unit type linear scale
JP2003142059A (en) Battery type power unit
CN218888876U (en) Image acquisition system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees