JPS6310310A - Magneto-resistance effect type magnetic head - Google Patents

Magneto-resistance effect type magnetic head

Info

Publication number
JPS6310310A
JPS6310310A JP15562886A JP15562886A JPS6310310A JP S6310310 A JPS6310310 A JP S6310310A JP 15562886 A JP15562886 A JP 15562886A JP 15562886 A JP15562886 A JP 15562886A JP S6310310 A JPS6310310 A JP S6310310A
Authority
JP
Japan
Prior art keywords
magnetic
terminals
bias
pair
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15562886A
Other languages
Japanese (ja)
Inventor
Shigemi Imakoshi
今越 茂美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP15562886A priority Critical patent/JPS6310310A/en
Publication of JPS6310310A publication Critical patent/JPS6310310A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the level of an induced unnecessary AC component by connecting a bias conductor to one pair of terminals adjacent to each other and arranging the other pair of terminals adjacent to each other, which a magnetoresistance effect magnetosensitive element is connected to, on the outside of one pair of terminals. CONSTITUTION:A pair of terminals 3a and 3b of a bias conductor 3 are arranged adjacently to each other, and one lead part 3bb is bent to form an about U shape with the bias conductor 3 and is connected to the terminal 3b. Though an MR magnetosensitive element 5 is connected to terminal 5c and 5d in a U shape, these terminals 5c and 5d are arranged on the outside of terminals 3a and 3b for the bias conductor 3. Terminals 22a and 22 of a peripheral circuit part 20 are arranged adjacently to each other in accordance with the arrangement of respective terminals of a head part Hd, and terminals 14c and 14d are arranged on the outside of them and are connected to respective terminals of the head part Hd by a multistripe lead 26. Thus, electromagnetic coupling between a bias system and a signal system is reduced to reduce the level of the induced unnecessary AC component.

Description

【発明の詳細な説明】 以下の順序で本発明を説明する。[Detailed description of the invention] The present invention will be explained in the following order.

A 産業上の利用分野 B 発明の概要 C従来の技術 D 発明が解決しようとする問題点 E 問題点を解決するための手段(第1図)F 作用 G 実施例 G五−実施例(第1t511) G2他の実施例(第2図) H発明の効果 A 産業上の利用分野 本発明は、交流バイアス磁界を用いる、磁気抵抗効果型
磁気ヘッドに関する。
A Industrial application field B Summary of the invention C Prior art D Problem to be solved by the invention E Means for solving the problem (Fig. 1) F Effect G Example G5 - Example (1st t511) ) G2 Other Embodiments (FIG. 2) H Effects of the Invention A Field of Industrial Application The present invention relates to a magnetoresistive magnetic head that uses an alternating current bias magnetic field.

B 発明の概要 本発明は、交流バイアス磁界を用いる、磁気抵抗効果型
磁気ヘッドにおいて、感磁素子の信号導出線が接続され
た一方の隣接端子対を、バイアス導線が接続された他方
の隣接端子対の外側に配することにより、バイアス導線
と信号導出線との間の電磁結合を低減させて、信号導出
線に銹起される不要交流成分のレベルを低減させるよう
にしたものである。
B. Summary of the Invention The present invention provides a magnetoresistive magnetic head using an alternating current bias magnetic field, in which one pair of adjacent terminals to which a signal lead wire of a magnetosensitive element is connected is connected to the other adjacent terminal pair to which a bias lead wire is connected. By arranging it outside the pair, the electromagnetic coupling between the bias conducting wire and the signal leading wire is reduced, and the level of unnecessary AC components generated in the signal leading wire is reduced.

C従来の技術 先ず、第3図〜第5図を参照して、従来の磁気抵抗効果
型(以−トMRという)磁気ヘッドの構成例を説明する
C. Prior Art First, an example of the structure of a conventional magnetoresistive (hereinafter referred to as MR) magnetic head will be described with reference to FIGS. 3 to 5.

第3図において、(11は磁性基板であって、例えばN
i−Zn系フェライト、 Mn−Znフェライト等より
成り、この基板(11が導電性を有する場合には、これ
の上に被着された5i02等の絶縁層(2)を介して、
帯状の導電膜より成るバイアス導体(3)が被着され、
後述するMR感磁素子(5)に対してバイアス磁界を与
えるためのバイアス電流の通路となる。このバイアス導
体(3)上に、絶縁層(4)を介して、例えば、Ni−
Fe系合金、或いはN1−Go糸金合金のMR磁性薄膜
から成るMR感磁索子(5)が配される。そして、この
MR感磁素子(5)上に、薄い絶縁1m +61を介し
て、例えばMoパーマロイから成る1対の磁性N(7)
及び(8)が被着される。陶磁性r# (71及び(8
)は、各一端がバイアス導体(3)及びMR感磁素子(
5)に跨ると共に、両者を横切る方向に延在する磁気コ
アとして、夫々磁気回路の一部を構成する。基板(1)
上には、非磁性の絶縁性保護1td (91を介して、
保護基板(10)が接合される。
In FIG. 3, (11 is a magnetic substrate, for example, N
It is made of i-Zn ferrite, Mn-Zn ferrite, etc., and when the substrate (11) has conductivity, it is coated with an insulating layer (2) of 5i02 etc.
A bias conductor (3) consisting of a strip-shaped conductive film is deposited;
This serves as a path for a bias current to apply a bias magnetic field to an MR magnetic sensing element (5), which will be described later. For example, Ni-
An MR magnetically sensitive cord (5) made of an MR magnetic thin film of Fe-based alloy or N1-Go thread alloy is arranged. A pair of magnetic N (7) made of, for example, Mo permalloy is placed on this MR magnetic sensing element (5) via a thin insulation of 1 m +61.
and (8) are deposited. Ceramic r# (71 and (8
), each end of which has a bias conductor (3) and an MR magnetic sensing element (
5) and constitutes a part of the magnetic circuit as a magnetic core extending in a direction that traverses both. Board (1)
On top is a non-magnetic insulating protection 1td (via 91,
A protective substrate (10) is bonded.

一方の磁性)日(7)と基板fl)の1111万端との
間には、例えば絶縁層(6)より成り所要の厚さを有す
る非磁性スペーサ層(11)が介71されで、前方の磁
気ギヤツブ「が形成される。そしC1この磁気ギャップ
gが臨むように、M、根(I)、スペーサ層(11)。
A non-magnetic spacer layer (11) made of, for example, an insulating layer (6) and having a required thickness is interposed between the one magnetic layer (7) and the 11,110,000 ends of the substrate fl). A magnetic gear "is formed. Then, C1 faces M, a root (I), and a spacer layer (11).

磁性層(7)、保護層(9)及び保護基板(’10)の
前方面が研磨されて磁気テープの如き磁気記録媒体との
対接面(12)が形成される。
The front surfaces of the magnetic layer (7), the protective layer (9) and the protective substrate ('10) are polished to form a surface (12) that faces a magnetic recording medium such as a magnetic tape.

又、磁気ギヤツブgを構成する磁性層(7)の後方端と
他方の磁性層(8)のniJ方端とがh−いに離間して
、両端間に不連続部(13)が形成される。両磁性層(
7)及び(8)の夫々後方端及び前方端は、絶縁層(6
)の介在によって電気的に絶縁され、MR感硼素子(5
)によって不連続部(13)において磁気的に結合され
るようになされる。かくし”C,)J、4Mto −磁
気ギヤツブg−磁性層+71− M R感磁素子(5)
−磁性層(8)〜基板(11の磁気回路が形成される。
Further, the rear end of the magnetic layer (7) constituting the magnetic gear g and the niJ end of the other magnetic layer (8) are separated by a distance of h, and a discontinuous portion (13) is formed between both ends. Ru. Both magnetic layers (
The rear and front ends of 7) and (8) are covered with an insulating layer (6
), the MR sensing element (5
) at the discontinuity (13). Hidden "C,) J, 4Mto - Magnetic gear g - Magnetic layer + 71 - MR magnetic sensing element (5)
- A magnetic circuit from the magnetic layer (8) to the substrate (11) is formed.

ごのようなM I’<型磁気ヘソ]′部Hdにおいては
、磁気記録媒体と対接する、その前方ギャップgかりの
信号磁束が上述の磁気回路を流れることによって、この
磁気回路中のMR感磁素子(5)の抵抗値が、この信号
磁束による外部磁界に応じて変化する。そこで、MR感
磁素子(5)に検出電流を流し、この抵抗値変化をMR
感磁素子(5)の両端の電圧変化とし−で検出して、磁
気媒体上の記録信号の再生を行う。
In the M I'<type magnetic heel]' portion Hd, the signal magnetic flux in the front gap g, which is in contact with the magnetic recording medium, flows through the above-mentioned magnetic circuit, thereby increasing the MR sensitivity in this magnetic circuit. The resistance value of the magnetic element (5) changes depending on the external magnetic field caused by this signal magnetic flux. Therefore, a detection current is applied to the MR magnetic sensing element (5), and this change in resistance value is detected by the MR magnetic sensing element (5).
The recorded signal on the magnetic medium is reproduced by detecting the voltage change across the magnetically sensitive element (5).

この場合、MR感磁素子(5)が磁気センサーとして線
形に動作し、且つ高感度となるためには、このMR感硼
素子(5)を磁気的にバイアスする必要がある。このバ
イアス磁界は、バイアス導体(3)への通電によって発
生ずる磁界と、MR感磁素子(5)に通ずる検出電流に
よってそれ自体が発生ずる磁界とによっ゛(与えられる
直流磁界である。
In this case, in order for the MR magnetic sensing element (5) to operate linearly as a magnetic sensor and to have high sensitivity, it is necessary to magnetically bias the MR magnetic sensing element (5). This bias magnetic field is a DC magnetic field given by a magnetic field generated by energizing the bias conductor (3) and a magnetic field itself generated by the detection current flowing to the MR magnetic sensing element (5).

即ち、この棟のMR型磁気ヘットには、第4図にその概
略的構成をンバずように、MR感4B、素子(5)に、
バイアス導体(3)への直流電流1Bの通電によって発
生した磁界と、定電流源(16)からMR感磁素子(5
)への検出電流IMRの通電によって発生した磁界とに
よっ°ζバイアス磁界HRが与えられた状態で、前述し
た磁気媒体からの信号磁界Hsが与えられる。そして、
この信号磁界Hsによる抵抗変化に基づ<MR感磁素子
(5)と定電流源(16)との接続中点、すなわちA点
の電位の変化を、低域阻止用コンデンサCを介して増幅
器(14)に供給し、増幅して出力端子(15)より出
力するものである。
That is, the MR type magnetic head in this building has an MR sensor 4B and an element (5), as shown in FIG.
The magnetic field generated by applying 1B of direct current to the bias conductor (3) and the MR magnetic sensing element (5) from the constant current source (16)
) The signal magnetic field Hs from the magnetic medium is applied while the bias magnetic field HR is applied by the magnetic field generated by applying the detection current IMR to the magnetic medium. and,
Based on the resistance change caused by this signal magnetic field Hs, the potential change at the midpoint of connection between the MR magnetic sensing element (5) and the constant current source (16), that is, point A, is detected by an amplifier via a low-frequency blocking capacitor C. (14), amplified and outputted from the output terminal (15).

このMR感磁素子(5)に与える磁界Hと、その抵抗値
Rとの関係を示す動作特性を第5図に示す。
FIG. 5 shows the operating characteristics showing the relationship between the magnetic field H applied to this MR magnetic sensing element (5) and its resistance value R.

この特性曲線は、磁界Hの絶対値が小さい範囲(HBR
〜+HRR)において上に凸の2次曲線を示すが、磁界
Hの絶対値が大となって、この範囲から外れると、MR
感磁素子(5)を構成するMR磁性V#膜の中央部分の
磁化が磁気回路方向に飽和しはじめ、その抵抗値Rは2
次曲線から離れて最小値RIIlinに漸近する。因み
に、この抵抗値Rの最大値Rwaxは、MR磁性薄膜の
磁化がすべて電流方向に向いた状態に於ける値である。
This characteristic curve is in the range where the absolute value of the magnetic field H is small (HBR
〜+HRR) shows an upwardly convex quadratic curve, but when the absolute value of the magnetic field H becomes large and deviates from this range, the MR
The magnetization of the central portion of the MR magnetic V# film constituting the magnetosensitive element (5) begins to saturate in the direction of the magnetic circuit, and its resistance value R becomes 2.
It moves away from the next curve and asymptotically approaches the minimum value RIIlin. Incidentally, the maximum value Rwax of this resistance value R is a value in a state where all the magnetization of the MR magnetic thin film is oriented in the current direction.

そして、この動作特性曲線における2次曲線の部分で、
前述したバイアス磁界I(Rが与えられた状態で、第5
図において符号(17)を付して示す磁気媒体からの信
号磁界が与えられるようにして、これに応じて同図中符
号(18)で示す抵抗値変化に基づいて出力を得るよう
にしている。この場合は、信号磁界の大きさが大となる
ほど2次高調波歪が大となる。
Then, in the quadratic curve part of this operating characteristic curve,
With the aforementioned bias magnetic field I (R) applied, the fifth
A signal magnetic field from a magnetic medium, which is indicated by the symbol (17) in the figure, is applied, and an output is obtained based on the change in resistance value, which is indicated by the symbol (18) in the figure. . In this case, the larger the signal magnetic field, the larger the second harmonic distortion.

又、このMR感磁素子(5)の抵抗値Rは、R=Ro 
 (1+αcos’ θ)・・・・(1)(但し、Ro
は抵抗値の固定分、αは最大抵抗変化率、θはMR感磁
素子(5)における電流方向と磁化方向とのなす角度で
ある)で表される。例えばMR感磁素子(5)が81N
+−19Fe  (パー70イ)合金による厚さ250
人のMR磁性薄膜から成る場合、αの実測値はα−0,
017程度である。このαの値は、MR感磁素子(5)
のMR磁性WIJ、股の膜厚や材料によって多少の相違
はあるものの高々α−0,05程度である。即ち、MR
感硼素子(5)の抵抗値の変化分は高々5%程度の小さ
いものである。
Moreover, the resistance value R of this MR magnetic sensing element (5) is R=Ro
(1+αcos' θ)...(1) (However, Ro
is the fixed resistance value, α is the maximum resistance change rate, and θ is the angle between the current direction and the magnetization direction in the MR magnetic sensing element (5). For example, the MR magnetic sensing element (5) is 81N
+-19Fe (par 70) thickness 250
In the case of a human MR magnetic thin film, the actual value of α is α−0,
It is about 017. The value of this α is the MR magnetic sensing element (5)
The MR magnetic WIJ is approximately α-0.05 at most, although there are some differences depending on the film thickness and material of the crotch. That is, M.R.
The change in resistance value of the borosilicate element (5) is small, about 5% at most.

一方、この抵抗の固定分Roは Ro  =Ri  (1+aΔt)         
・・・・(2+(但し、R4は抵抗の初期値で、aは温
度係数、Δtは温度変化分である)で与えられ、上述の
MR感磁素子(5)の例における温度係数aの実測値は
、a = 0.0027/ dat:程度であり、」−
述の最大抵抗変化率αに対して、かなり大きい。
On the other hand, the fixed portion Ro of this resistance is Ro = Ri (1+aΔt)
...(2+ (where R4 is the initial value of resistance, a is the temperature coefficient, and Δt is the temperature change), and the temperature coefficient a in the example of the MR magnetic sensing element (5) described above is The actual measured value is approximately a = 0.0027/dat:
This is considerably larger than the maximum resistance change rate α mentioned above.

このため、MR感磁素子(5)への検出電流の通電、或
いはバイアス導体(3)へのバイアス電流等によって発
生ずる熱等により、ヘッドの温度が変動し、A点の電位
が大きく変動する。
Therefore, the temperature of the head fluctuates due to heat generated by the application of a detection current to the MR magnetic sensing element (5) or the bias current to the bias conductor (3), and the potential at point A fluctuates greatly. .

更に、動作時には、磁気記録媒体との摺接により不安定
に放熱されて、ヘッドの温度が不規則に変化し、所謂、
摺動ノイズが先住する。
Furthermore, during operation, heat is radiated unstablely due to the sliding contact with the magnetic recording medium, causing the temperature of the head to change irregularly.
Sliding noise is present.

従来の直流バイアス磁界を用いるMRヘッドの、前述の
ような問題点を解消するために、本出願人は、特開昭6
1−54005号(特願昭59−176476号)にお
いて、交流バイアス磁界を用いる1”磁気抵抗効果型磁
気ヘッド装置」を既に提案している。
In order to solve the above-mentioned problems of the conventional MR head using a DC bias magnetic field, the present applicant has proposed
No. 1-54005 (Japanese Patent Application No. 59-176476) has already proposed a 1" magnetoresistive magnetic head device using an alternating current bias magnetic field.

次に、第6図及び第7図を参照しながら、本出願人によ
る上述の交流型MRヘット装置について説明する。
Next, with reference to FIGS. 6 and 7, the above-mentioned AC type MR head apparatus by the present applicant will be explained.

本出願人による、従来の交流型MRヘッド装置の構成例
を第6図に示す。この第6図において、第4図に対応す
る部分には、同一の符号を付して重複説明を省略する。
FIG. 6 shows an example of the configuration of a conventional AC type MR head device made by the present applicant. In FIG. 6, parts corresponding to those in FIG. 4 are given the same reference numerals, and redundant explanation will be omitted.

第6図において、周辺回路部(20)の矩形波発生器(
21)の出力がバッファ(22)に供給されると共に、
切換スイッチ(23)に制御信号として供給される。こ
の矩形波の周波数は信号磁界Hsの最高周波数の3倍以
上に選定される。バッファ(22)から、第7図りに示
すような両極性の矩形波のバイアス電流iBがバイアス
導体(3)に供給される。
In FIG. 6, the square wave generator (
21) is supplied to the buffer (22), and
It is supplied to the changeover switch (23) as a control signal. The frequency of this rectangular wave is selected to be three times or more the highest frequency of the signal magnetic field Hs. A bipolar rectangular wave bias current iB as shown in the seventh diagram is supplied from the buffer (22) to the bias conductor (3).

カ<シて、MR感磁素子(5)に、バイアス導体(3)
への矩形波電流iBの通電によって発生した矩形波磁界
と、MR感磁素子(5)への検出電流1l−IRの通電
によって発生した磁界とによってバイアス磁界H8が与
えられた状態で、前述した磁気媒体からの信号磁界Hs
がり、えられる。そしζ、この信号磁界Hsによる抵抗
変化に基づ<MR感磁素子(5)と定電流#(16)と
の接続中点、即ちA点の電化の変化分が、コンデンサC
を介し°ζ、増幅器(14)に供給される。この増幅器
(14)の出力が、スイッチ(23)の一方の固定接点
(23a)に直接に供給されると共に、インバータ(2
4)を介して、他方の固定接点(23b)に供給され、
スイッチ(23)の−動接点(23c)が低域フィルタ
(25)を介して出力端子(15)に接続される。
Then, connect the bias conductor (3) to the MR magnetic sensing element (5).
The bias magnetic field H8 is applied by the rectangular wave magnetic field generated by the rectangular wave current iB being applied to the MR magnetosensitive element (5) and the magnetic field generated by the detection current 1l-IR being applied to the MR magnetosensitive element (5). Signal magnetic field Hs from magnetic medium
I can get it. Then, ζ, based on the resistance change due to this signal magnetic field Hs, the change in electrification at the connection midpoint between the MR magnetic sensing element (5) and constant current # (16), that is, at point A, is
°ζ is supplied to the amplifier (14). The output of this amplifier (14) is directly supplied to one fixed contact (23a) of the switch (23), and the inverter (2
4) to the other fixed contact (23b),
A negative contact (23c) of the switch (23) is connected to the output terminal (15) via a low-pass filter (25).

第6図のMRヘッド装置の動作は次のとおりである。The operation of the MR head device shown in FIG. 6 is as follows.

MRヘッド部Hdのバイアス導体(3)に第’10にボ
すような両極性の矩形波のバイアス電流i。
A bias current i of a bipolar rectangular wave such as the '10th wave is applied to the bias conductor (3) of the MR head Hd.

が流されると、MR感磁素子(5)に+HIl+   
HRのバイアス磁界が交互に付与されて、その動作点は
、同図Aに示す特性線上のP点及びQ点に交互に切り換
えられる。磁気媒体からの信号磁界Hs (t)がこれ
に重畳されると、MR感磁素子(5)に加わる磁界は、
同図Bにポずように、IE側及び負側の各包絡線がそれ
ぞれ+Hs及び−Haを中心に信号磁界Hs (tlの
周期で同相に波動してから、矩形波バイアス電流iBの
周期で両包絡線間で切り換わる。
When flowing, +HIl+ appears on the MR magnetic sensing element (5).
The HR bias magnetic field is applied alternately, and the operating point is alternately switched to point P and point Q on the characteristic line shown in FIG. When the signal magnetic field Hs (t) from the magnetic medium is superimposed on this, the magnetic field applied to the MR magnetosensitive element (5) is
As shown in Figure B, the envelopes on the IE side and the negative side wave in the same phase with the period of the signal magnetic field Hs (tl) centering on +Hs and -Ha, respectively, and then with the period of the rectangular wave bias current iB. Switches between both envelopes.

これにより、矩形バイアス電流iBの極性が交互に正及
び負に切り換えられる度に、MR感磁素子(5)からは
、第7図Aに示す特性曲線の一方の動作点P側の出力信
号成分と、他方の動作点Q側の出力信号成分とが、同図
Cに示すように、交互に出力される。この出力信号◎ば
、特性曲線の非直線性により、ベースラインに関して非
対称である。
As a result, each time the polarity of the rectangular bias current iB is alternately switched between positive and negative, the output signal component from the MR magnetic sensing element (5) is on the one operating point P side of the characteristic curve shown in FIG. 7A. and the output signal component on the other operating point Q side are alternately output as shown in FIG. This output signal ◎ is asymmetric with respect to the baseline due to the nonlinearity of the characteristic curve.

スイッチ(23)が矩形波バイアス電流iHに同期して
交互に切り換えられるため、その可動接点(23c )
においては、第7図Cに示したようなMR感磁素子(5
)の出力信号◎のうち、第7図りの負極性のバイアス電
流に対応して、同図Aの一方の動作点、例えばP点側の
出力信号成分が極性反転されて、他方の動作点、例えば
Q点側の出力信号成分と、相互に補填し合うように加算
され、同図Eに示すような同期化出力信号■が得られる
Since the switch (23) is alternately switched in synchronization with the square wave bias current iH, its movable contact (23c)
In this case, an MR magnetic sensing element (5
) of the output signal ◎, in response to the negative polarity bias current shown in Figure 7, the output signal component at one operating point, e.g., point P, in Figure 7 is reversed in polarity, and the output signal component at the other operating point, For example, it is added to the output signal component on the Q point side in a mutually complementary manner to obtain a synchronized output signal (2) as shown in FIG.

低域フィルタ(25)により、この同期化出力信号■か
ら低域の矩形波成分が除去されて、出力端子(15)に
は、P点側及びQ点側の両信号成分が平均化されて、特
性曲線の非直線性に起因する歪が除去された再生信号が
出力される。
The low-pass filter (25) removes the low-frequency rectangular wave component from this synchronized output signal ■, and the output terminal (15) receives an average of both the signal components on the P point side and the Q point side. , a reproduced signal from which distortion due to non-linearity of the characteristic curve has been removed is output.

上述の同期化出力信号■の形成過程において、一方の動
作点側の信号成分を極性反転し°ζ他方の信号成分に加
算するということば、取りも直さず、両信号成分の差動
出力を得ることである。即ら、本出願人による上述の交
流型MRヘッド装置は、比較的大振幅の両極性矩形波バ
イアス磁界と、この矩形波に同期させた極性反転出力と
を用いることにより、単一のMR感硼素子を有しながら
、等測的に差動型MRヘットを構成する。
In the process of forming the synchronized output signal described above, the polarity of the signal component on one operating point side is inverted and added to the other signal component. This simply means that a differential output of both signal components is obtained. That's true. That is, the above-mentioned AC type MR head device by the applicant uses a relatively large amplitude bipolar rectangular wave bias magnetic field and a polarity inverted output synchronized with this rectangular wave to produce a single MR sensation. A differential MR head is constructed isometrically while having a boron element.

これにより、第7図Aの動作点P側及びQ側の各特性曲
線の非直線性が改善されて、歪のない再生信号が得られ
る。
As a result, the nonlinearity of each characteristic curve on the operating point P side and Q side in FIG. 7A is improved, and a reproduced signal without distortion can be obtained.

また、前述の温度ドリフトや摺動ノイズはこの等測的差
動MRヘッドに対して同相となるため、その影響は充分
に抑圧される。
Further, since the aforementioned temperature drift and sliding noise are in phase with this isometric differential MR head, their effects are sufficiently suppressed.

更に矩形波による変調増幅となるため、直流を含む超低
周波磁界の検出が1+J能であると共に、矩形波の周波
数が高く選定されるため、増幅器(14)の入力インピ
ーダンスが低い場合でも、結合コンデンサCの容量を小
さく選定することができる。
Furthermore, since the modulation amplification is performed using a square wave, detection of very low frequency magnetic fields including direct current is possible with 1+J capability, and since the frequency of the square wave is selected to be high, coupling is possible even when the input impedance of the amplifier (14) is low. The capacitance of capacitor C can be selected to be small.

D 発明が解決しようとする問題点 ところで、従来のMRヘッド装置では、第8図に示すよ
うに、ヘッドHdに設けた1対の端子(3a)及び(3
b)にバイアス導体(3)が「コ」字状に接続され、他
の1対の端子(5c)及び(5d)に、それぞれ信号導
出線(リード>(5cc)及び(5dd )を介して、
MR感磁素子(5)が同じく1−コ」字状に接続されて
いた。MR感硼素子(5)からのリード(5cc ) 
、  (5dd )の抵抗を小さくするために、通常、
端子(5c)及び(5d)はバイアス導体(3)のため
の端子(3a)及び(3b)の内側に配される。
D Problems to be Solved by the Invention Incidentally, in the conventional MR head device, as shown in FIG.
A bias conductor (3) is connected to b) in a U-shape, and is connected to the other pair of terminals (5c) and (5d) via signal lead wires (leads > (5cc) and (5dd), respectively). ,
The MR magnetic sensing elements (5) were similarly connected in a U-shape. Lead from MR sensing element (5) (5cc)
, (5dd), usually,
The terminals (5c) and (5d) are arranged inside the terminals (3a) and (3b) for the bias conductor (3).

そして、周辺回路部(20)には、バイアス電流源(2
2)のための1対の端子(22a )及び(22b )
並びに増幅器(14)のための1対の端子(14c)及
び(14d)が設けられており、ヘッド部Hdのそれぞ
れ対応する端子との間が、例えばフレキシプル印刷配線
板のような多条平行リード(26)の各素線(26a)
〜(26d)により接続されている。
The peripheral circuit section (20) includes a bias current source (2).
2) a pair of terminals (22a) and (22b) for
A pair of terminals (14c) and (14d) for the amplifier (14) are provided, and a multi-parallel lead such as a flexible printed wiring board is connected between the corresponding terminals of the head portion Hd. Each strand (26a) of (26)
~(26d).

なお、第8図では、MR1!!、磁素子(5)に検出電
流を流すための定電流源や結合コンデンサの図示は省略
されている。
In addition, in FIG. 8, MR1! ! , illustration of a constant current source and a coupling capacitor for passing a detection current through the magnetic element (5) is omitted.

ところが、MRヘッド部Hdの端子(3a)〜(5d)
が第8図のように配設されている場合、MR感磁素子(
5)から、端子(5c)及び(5d)を経て、周辺回路
部(20)の増幅器(14)に至る出力信号経路は、バ
イアス電流源(22)からヘッド部Hdのバイアス導体
(3)への電流供給経路と電磁結合している。
However, the terminals (3a) to (5d) of the MR head Hd
is arranged as shown in Fig. 8, the MR magnetic sensing element (
The output signal path from 5) to the amplifier (14) of the peripheral circuit section (20) via the terminals (5c) and (5d) is from the bias current source (22) to the bias conductor (3) of the head section Hd. It is electromagnetically coupled to the current supply path.

即ち、バイアス導体(3)を経て電流源(22)に還流
するバイアス電流ioによって発生ずる磁束がヘッド部
HdOMR感硼素子(5)、肉リード(5cc )及び
(5dd)、端子(5c)及び(5d) 、多条平行リ
ード(26)の内側素線(26c)及び(26d ) 
That is, the magnetic flux generated by the bias current io flowing back to the current source (22) via the bias conductor (3) is transmitted to the head HdOMR sensing element (5), the flesh leads (5cc) and (5dd), the terminal (5c) and (5d), inner strands (26c) and (26d) of multi-filament parallel lead (26)
.

端子(14c)及び(14d )並びに周辺回路部(2
0)のリード(14cc) 、  (14dd)及び(
22bb)の端子(14c ) 、  (14d )側
により、形成される信号出カループに鎖交する。これに
より、信号出力ループにバイアス電流の周波数の不要交
流成分が誘起される。
Terminals (14c) and (14d) and peripheral circuit section (2)
0) lead (14cc), (14dd) and (
22bb) is interlinked with the signal output loop formed by the terminals (14c) and (14d). This induces an unnecessary alternating current component of the frequency of the bias current in the signal output loop.

前述のように、バイアス電流iBの周波数はかなり高く
選定されるため、信号出力ループに誘起される不要交流
成分のレベルはかなり大きくなり、増幅器(14)を飽
和させる虞があった。
As mentioned above, since the frequency of the bias current iB is selected to be quite high, the level of the unnecessary AC component induced in the signal output loop becomes quite large, and there is a risk of saturating the amplifier (14).

また、この不要交流成分は、前述の同期化出力信号に著
しいオフセット電圧を発生させてダイナミックレンジを
縮小させるという問題があった。
Furthermore, this unnecessary AC component causes a significant offset voltage to be generated in the synchronized output signal described above, resulting in a reduction in the dynamic range.

か\る点に鑑み、本発明の目的は、信号出力経路とバイ
アス電流供給経路との間の不要な電磁結合を低減した磁
気抵抗効果型磁気ヘッドを提供するところにある。
In view of the above, an object of the present invention is to provide a magnetoresistive magnetic head in which unnecessary electromagnetic coupling between a signal output path and a bias current supply path is reduced.

E 問題点を解決するための手段 本発明は、磁気抵抗効果型の感磁素子の信号導出線が互
いに隣接して配された一方の端子対に接続されると共に
、感磁素子にバイアス磁界を与えるための交流バイアス
電流が流れるバイアス導線が互いに隣接して配された他
方の端子対に接続され、感磁素子の信号導出線が接続さ
れた一方の端子対はバイアス導線が接続された他方の端
子対の外側に配された磁気抵抗効果型磁気ヘッドである
E. Means for Solving the Problems The present invention provides a method in which the signal lead-out lines of magnetoresistive magnetic sensing elements are connected to one pair of terminals arranged adjacent to each other, and a bias magnetic field is applied to the magnetic sensing elements. Bias conductors through which alternating current bias current flows are connected to the other pair of terminals arranged adjacent to each other, and one pair of terminals to which the signal lead-out wire of the magnetosensitive element is connected are connected to the other pair of terminals to which the bias conductor is connected. This is a magnetoresistive magnetic head placed outside the terminal pair.

F 作用 か−る構成によれば、感磁素子からの出力信号経路のう
ち、バイアス電流による磁束が鎖交する部分の面積が低
減されて、誘起される不要交流成分のレベルが低減され
る。
F Effect According to this configuration, the area of the portion of the output signal path from the magneto-sensitive element where the magnetic flux due to the bias current interlinks is reduced, and the level of the induced unnecessary alternating current component is reduced.

G 実施例 G1−実施例 以ド、第1図を参照しながら、本発明による磁気抵抗効
果型磁気ヘッドの一実施例について説明する。
G Embodiment G1-Embodiment Hereinafter, an embodiment of the magnetoresistive magnetic head according to the present invention will be described with reference to FIG.

本発明の一実施例の構成を第1図に示す。この第1図に
おいて、第3図及び第8図に対応する部分には同一の符
号を付し°ζ一部説明を省略する。
FIG. 1 shows the configuration of an embodiment of the present invention. In FIG. 1, parts corresponding to those in FIGS. 3 and 8 are given the same reference numerals, and some explanations will be omitted.

第1図において、バイアス導体(3)の1対の端子(3
8)及び(3b)が互いに隣接して配設され、一方のリ
ード部(3bb)が、バイアス導体(3)と略rUJ字
状をなすように折曲げられて、端子(3b)に接続され
る。MR感磁素子(5)は、第8図と同様に、「コ」字
状に端子(5C)及び(5d)に接続されているが、こ
の端子(5C)及び(5d)はバイアス導体(3)のた
めの端子(3a)及び(3b)の外側に配設される。上
述のようなヘッド部Hdの各端子の配列に対応して、周
辺回路部(20)の端子(22a)及び(22b )が
互いに隣接して配設されると共に、その外側に端子(1
4c)及び(14d)が配設され、多条リード(26)
によりそれぞれヘッド部Hdの各端子と接続される。
In Figure 1, a pair of terminals (3) of a bias conductor (3) are shown.
8) and (3b) are arranged adjacent to each other, one lead part (3bb) is bent to form a substantially rUJ shape with the bias conductor (3), and connected to the terminal (3b). Ru. The MR magnetic sensing element (5) is connected to the terminals (5C) and (5d) in a U-shape as in FIG. 8, but the terminals (5C) and (5d) are connected to the bias conductor ( 3) are arranged outside the terminals (3a) and (3b). Corresponding to the arrangement of the terminals of the head section Hd as described above, the terminals (22a) and (22b) of the peripheral circuit section (20) are arranged adjacent to each other, and the terminals (1) are arranged on the outside thereof.
4c) and (14d) are arranged, and the multi-lead lead (26)
are respectively connected to the respective terminals of the head portion Hd.

上述の構成により、第1図の実施例におい°ζは、MR
感磁素子(5)からの出力信号経路のうち、MR感磁素
子(5)1両信号導出1jt(5cc)及び(5dd 
)並びにバイアス導体(3)のリード部(3bb)によ
り形成される信号出力ループだけにバイアス電流iBに
よる磁束が鎖交する。
With the above configuration, in the embodiment of FIG. 1, °ζ is MR
Among the output signal paths from the magnetic sensing element (5), the MR magnetic sensing element (5) 1 signal derivation 1jt (5cc) and (5dd
) and the signal output loop formed by the lead portion (3bb) of the bias conductor (3), the magnetic flux due to the bias current iB is interlinked.

第8図と比べて明らかなように、第1図の実施例におい
ては、バイアス電流iBによる磁束が鎖交する信号出力
ループの面積が著しく低減されている。このため、バイ
アス系と信号系との間の電磁結合が低減され、誘起され
る不要交流成分のレベルが低減されて、増幅器の飽和、
オフセットによるダイナミックレンジの縮小等の問題が
解消される。
As is clear from the comparison with FIG. 8, in the embodiment of FIG. 1, the area of the signal output loop interlinked with the magnetic flux due to the bias current iB is significantly reduced. Therefore, electromagnetic coupling between the bias system and the signal system is reduced, and the level of induced unnecessary AC components is reduced, resulting in amplifier saturation and
Problems such as reduction in dynamic range due to offset are resolved.

G2他の実施例 次に、第2図を参照しながら、本発明を複数トラック用
の磁気抵抗効果型磁気ヘッドに適用した他の実施例につ
いて説明する。
G2 Other Embodiments Next, with reference to FIG. 2, another embodiment in which the present invention is applied to a multi-track magnetoresistive magnetic head will be described.

本発明の他の実施例の構成を第2図に示す。この第2図
において、第1図、第3図及び第8図に対応する部分に
は同一の符号を付して一部説明を省略する。
The structure of another embodiment of the present invention is shown in FIG. In FIG. 2, parts corresponding to those in FIGS. 1, 3, and 8 are given the same reference numerals, and some explanations will be omitted.

第2図において、バイアス導体(3)の1対の端子(3
a)及び(3b)が互いに隣接して配設され、両リード
部(3aa)及び(3bb ”)が、バイアス導体(3
)とそれぞれ略f’ U J字状をなずように折曲げら
れて、端子(3a)及び(3b)に接続される。4 (
tailのMR感磁素子(51((51)〜(54))
は、第8図と同様に、それぞれ「コ」字状に端子(5C
)及び(5d)乃至(5j)及び(5k)に接続されて
いるが、この端子(5C)及び(5d)乃至(5j)及
び(5k)はそれぞれバイアス導体(3)のための端子
(3a)及び(3b)の外側に配設される。上述のよう
なヘッド部Hdの各端子の配列に対応して、周辺回路部
(20)の端子(22a)及び(22b)が互いに隣接
して配設されると共に、その外側に端子(14c)及び
(14d)乃至(143)及び(14k)が配設され、
多条リード(26)によりそれぞれヘッド部Hdの各端
子と接続される。
In Figure 2, a pair of terminals (3) of a bias conductor (3) are shown.
a) and (3b) are arranged adjacent to each other, and both lead portions (3aa) and (3bb'') are connected to the bias conductor (3a) and (3b).
) and are respectively bent to form a substantially J-shape and connected to terminals (3a) and (3b). 4 (
tail MR magnetic sensing element (51 ((51) to (54))
As shown in Figure 8, the terminals are connected in a U-shape (5C
) and (5d) to (5j) and (5k), but this terminal (5C) and (5d) to (5j) and (5k) are respectively connected to the terminal (3a) for the bias conductor (3). ) and (3b). Corresponding to the arrangement of the terminals of the head portion Hd as described above, the terminals (22a) and (22b) of the peripheral circuit portion (20) are arranged adjacent to each other, and the terminal (14c) is provided on the outside thereof. and (14d) to (143) and (14k) are arranged,
The multi-lead leads (26) are connected to each terminal of the head portion Hd, respectively.

上述の構成により、第2図の実施例においては、MR感
磁素子(51)〜(54)からの出力信号経路のうち、
例えばMR感磁素子(5)1両信号導出線(5cc)及
び(5dd)並びにバイアス導体(3)のリード部(3
aa )等により形成される小面積の信号出力ループだ
けにバイアス電流lF1による磁束が鎮交する。
With the above configuration, in the embodiment shown in FIG. 2, among the output signal paths from the MR magnetosensitive elements (51) to (54),
For example, the lead part (3
The magnetic flux due to the bias current IF1 is intersected only in the small-area signal output loop formed by the aa) and the like.

第1図の実施例におけると同様に、第2図の実施例にお
いても、バイアス電流1Bによる磁束が鎖交する信号出
力ループの面積が、杵しく低減されている。このため、
バイアス系と各信号系との間の電磁結合が低減され、誘
起される不要交流成分のレベルが低減されζ、増幅器の
飽和、オフセットによるダイナミックレンジの縮小等の
問題が解消される。
As in the embodiment of FIG. 1, in the embodiment of FIG. 2 as well, the area of the signal output loop interlinked with the magnetic flux due to the bias current 1B is significantly reduced. For this reason,
Electromagnetic coupling between the bias system and each signal system is reduced, the level of induced unnecessary AC components is reduced, and problems such as amplifier saturation and dynamic range reduction due to offset are solved.

H発明の効果 以上詳述のように、本発明によれば、バイアス導体を互
いに隣接する一方の端子対に接続すると共に、磁気効果
型感磁素子が接続された互いに隣接する他方の端子文・
lを一方の端子対の外側に配設したので、バイアス系と
(g号系との間の電磁結合が低減されて、誘起される不
要交流成分のレベルが低減された磁気抵抗効果型磁気ヘ
ッドが得られる。
H Effects of the Invention As detailed above, according to the present invention, the bias conductor is connected to one pair of adjacent terminals, and the other pair of terminals adjacent to each other are connected to the magnetic effect type magnetosensitive element.
Since l is placed outside of one pair of terminals, the electromagnetic coupling between the bias system and g system is reduced, and the level of induced unnecessary AC components is reduced. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による磁気l(抗効果型磁気ヘソドの一
実施例の構成を不す路線平向図、第2図は本発明の他の
実施例の構成を示す路線平面図、第3し1は従来の磁気
抵抗効果型磁気ヘッドの要部の構成例を示す断面図、第
4図及び第5図は従来の磁気抵抗効果型磁気ヘッドの動
作状態を説明するだめの結線図及び特性曲線図、第6図
及び第7図は従来の磁気抵抗効果型磁気ヘッドの他の動
作状態を説明するための結線図及び特性曲線・波形図、
第8図は従来の磁気抵抗効果型磁気ヘッドの構成例を示
す路線平面図である。 (3)はバイアス導線、(5)は磁気抵抗効果型感磁素
子、(3a) 、  (3b)  ;  (5a) 、
  (5b)  ; ”・・(5j)(5k)は端子対
、(3aa ) 、  (3bb )は信号導出線であ
る。
FIG. 1 is a line plan view showing the structure of one embodiment of the magnetic hesode according to the present invention, FIG. 2 is a line plan view showing the structure of another embodiment of the present invention, and FIG. 1 is a sectional view showing an example of the configuration of the main parts of a conventional magnetoresistive magnetic head, and FIGS. 4 and 5 are connection diagrams and characteristics for explaining the operating state of the conventional magnetoresistive magnetic head. 6 and 7 are connection diagrams and characteristic curve/waveform diagrams for explaining other operating states of the conventional magnetoresistive magnetic head,
FIG. 8 is a plan view showing a configuration example of a conventional magnetoresistive magnetic head. (3) is a bias conductor, (5) is a magnetoresistive effect type magnetic sensing element, (3a), (3b); (5a),
(5b); ”...(5j) (5k) is a terminal pair, (3aa) and (3bb) are signal lead lines.

Claims (1)

【特許請求の範囲】 磁気抵抗効果型の感磁素子の信号導出線が互いに隣接し
て配された一方の端子対に接続されると共に、 上記感磁素子にバイアス磁界を与えるための交流バイア
ス電流が流れるバイアス導線が互いに隣接して配された
他方の端子対に接続され、 上記感磁素子の信号導出線が接続された上記一方の端子
対は上記バイアス導線が接続された上記他方の端子対の
外側に配されたことを特徴とする磁気抵抗効果型磁気ヘ
ッド。
[Claims] Signal lead-out lines of magnetoresistive magnetic sensing elements are connected to one pair of terminals arranged adjacent to each other, and an alternating current bias current is provided to apply a bias magnetic field to the magnetic sensing elements. The bias conductors through which the bias conductors flow are connected to the other pair of terminals arranged adjacent to each other, and the one pair of terminals to which the signal lead-out wire of the magnetosensitive element is connected are connected to the other pair of terminals to which the bias conductor is connected. A magnetoresistive magnetic head characterized by being disposed outside of the magnetoresistive head.
JP15562886A 1986-07-02 1986-07-02 Magneto-resistance effect type magnetic head Pending JPS6310310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15562886A JPS6310310A (en) 1986-07-02 1986-07-02 Magneto-resistance effect type magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15562886A JPS6310310A (en) 1986-07-02 1986-07-02 Magneto-resistance effect type magnetic head

Publications (1)

Publication Number Publication Date
JPS6310310A true JPS6310310A (en) 1988-01-16

Family

ID=15610150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15562886A Pending JPS6310310A (en) 1986-07-02 1986-07-02 Magneto-resistance effect type magnetic head

Country Status (1)

Country Link
JP (1) JPS6310310A (en)

Similar Documents

Publication Publication Date Title
US3979775A (en) Magnetoresistive multitransducer assembly with compensation elements for thermal drift and bias balancing
US4686472A (en) Magnetic sensor having closely spaced and electrically parallel magnetoresistive layers of different widths
US4413296A (en) Thin film magnetoresistive head
US4280158A (en) Magnetoresistive reading head
US3814863A (en) Internally biased magnetoresistive magnetic transducer
EP0484474B1 (en) Shorted dual element magnetoresistive reproduce head exhibiting high density signal amplification
US4523243A (en) Magnetoresistive transducer using an independent recessed electromagnetic bias
GB1457189A (en) Magneto-resistive pick-ups
JPS60182503A (en) Magneto-resistance effect type magnetic head
US4306215A (en) Thin magnetoresistive head
KR100378554B1 (en) Magnetic head
JPS6310310A (en) Magneto-resistance effect type magnetic head
EP0650156A1 (en) Contact scheme for minimizing inductive pickup in magnetoresistive read heads
KR920001129B1 (en) Magnetic resistance effect magnetic head
JPS6314315A (en) Magneto-resistance effect type magnetic head
JPS6116009A (en) Magneto-resistance effect type magnetic head device
JPS6047222A (en) Magneto-resistance effect type magnetic head
JPS6154005A (en) Magneto-resistance effect type magnetic head device
JPH0542730B2 (en)
JPH0532805B2 (en)
JPS594646B2 (en) Split type magnetoelectric conversion element
JPS6325819A (en) Magneto-resistance effect type magnetic head
JPS6157011A (en) Magnetoresistance effect type magnetic head device
JPH07161018A (en) Disk-driving head
SU862204A1 (en) Magnetoresistive head