JPS63103060A - Production of substrate with transparent electrode - Google Patents

Production of substrate with transparent electrode

Info

Publication number
JPS63103060A
JPS63103060A JP24879686A JP24879686A JPS63103060A JP S63103060 A JPS63103060 A JP S63103060A JP 24879686 A JP24879686 A JP 24879686A JP 24879686 A JP24879686 A JP 24879686A JP S63103060 A JPS63103060 A JP S63103060A
Authority
JP
Japan
Prior art keywords
substrate
transparent
film
target
translucent film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24879686A
Other languages
Japanese (ja)
Inventor
Shozaburo Nishikawa
西河 正三郎
Isao Hara
原 庸
Yoshiaki Nakanishi
義明 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP24879686A priority Critical patent/JPS63103060A/en
Publication of JPS63103060A publication Critical patent/JPS63103060A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a substrate with transparent electrodes by sticking a translucent film to the surface of a transparent glass plate with a sintered In2O3 body contg. SnO2 as a target, then removing the unnecessary parts of the translucent film in the atm., and heat treating the substrate. CONSTITUTION:The transparent glass substrate 13 and the target 3 consisting of the sintered In2O3 body contg. 3-15wt% SnO2 are disposed in a vacuum vessel 1 of a magnetron sputtering device S. Gaseous Ar contg. 0.2-3.0vol% O2 is supplied from a supply pipe 5 into the vacuum vessel 1 in such a manner that 5X10<-4>-5X10<-3>Torr atmospheric pressure is maintained therein. The glass substrate 13 is heated to <=100 deg.C by a heater 12 and a negative voltage is impressed to the target 3 to sputter the target by the ionized gaseous Ar, by which the translucent film is formed on the substrate 13. The substrate is taken out into the atm. and is etched with a dilute acidic soln. by using a masking material to remove the unnecessary parts of the opaque film, by which the glass substrate with the translucent film of a desired pattern is obtd. The substrate is heated in an N2 atmosphere to clarify the translucent film. The glass substrate with the transparent electrodes is thus produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は透明電極付き基板の製造方法、特に液晶表示装
置の透明電極として好適な透明電極付き基板の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a substrate with a transparent electrode, and particularly to a method of manufacturing a substrate with a transparent electrode suitable as a transparent electrode of a liquid crystal display device.

〔従来の技術〕[Conventional technology]

近年、固体表示素子には液晶、エレクトロルミネッセン
ス、プラズマなどの固体デバイスが実用されている。な
かでも液晶表示素子は表示デバイスとして数多く使用さ
れ、表示の高性能化、すなわち高精細表示、大面積表示
への要求がますます増大している。高精細で、且つ大面
積の液晶表示素子を得るには電極を形成する導電膜は微
細加工ができ、且つ低抵抗の透明電極付き透明基板が必
要である。
In recent years, solid-state devices such as liquid crystal, electroluminescence, and plasma have been put into practical use as solid-state display elements. Among them, liquid crystal display elements are widely used as display devices, and the demand for higher display performance, ie, high-definition display and large-area display, is increasing. In order to obtain a high-definition, large-area liquid crystal display element, the conductive film forming the electrodes must be microfabricated and a transparent substrate with transparent electrodes having low resistance is required.

こρような透明電極付き基板としてはガラスまたはプラ
スチックスの基板に酸化錫をドープした酸化インジウム
膜(以下、ITO膜という)や酸化錫膜を付着したもの
が用いられ、特に微細表示を必要とする大型のものにつ
いては電気抵抗と電極パターンの加工性が優れたITO
膜が透明電極として用いられている。
As such a substrate with a transparent electrode, a glass or plastic substrate to which an indium oxide film doped with tin oxide (hereinafter referred to as an ITO film) or a tin oxide film is attached is used. For large items, ITO is used because of its excellent electrical resistance and workability of electrode patterns.
A membrane is used as a transparent electrode.

このようなITO膜電極を付着した基板の製造方法はフ
ルオキサイドの透明化したITO膜を濃厚な酸溶液で電
極パターン加工する方法と、ハーフオキサイドの半透明
で非晶質のITO膜を酸により電極パターン加工後、熱
処理することにより、半透明から透明にする方法がある
There are two methods for producing a substrate with an ITO film electrode attached to it: one is to process a transparent fluoride ITO film into an electrode pattern using a concentrated acid solution, and the other is to process a semitransparent, amorphous half oxide ITO film using acid. There is a method of changing the electrode pattern from translucent to transparent by heat treatment after processing the electrode pattern.

前者の方法としては真空蒸着法により酸化錫を含む酸化
インジウム膜ム結ベレットを300°C以上に加熱され
た透明基板上に蒸着して、フルオキサイドの透明なIT
O導電膜を直接形成するものである。この方法で得られ
る工TO透明導電膜は結晶性が発連しているため、50
%程度の塩酸水溶液を≠0°C以上の温度に保ってパタ
ーニング処理をする必要がある。高温、高濃度の酸によ
る透明導電膜の不要部分のエツチングはマスキング材と
透明導電膜の密着力を弱めるため、微細な電極の加工を
寸法精度良く行うことは容易でない。また、高温、高濃
度の酸を使用するため、設備の保全、環境上の間爬から
設備に多額の費用を必要とし、コストアップになる欠点
があった。
The former method involves depositing an indium oxide film pellet containing tin oxide on a transparent substrate heated to 300°C or higher using a vacuum evaporation method to create a transparent fluoride IT film.
In this method, an O conductive film is directly formed. The TO transparent conductive film obtained by this method has continuous crystallinity, so
% hydrochloric acid aqueous solution at a temperature of ≠0° C. or higher during patterning. Etching unnecessary portions of the transparent conductive film using high temperature, high concentration acid weakens the adhesion between the masking material and the transparent conductive film, making it difficult to process minute electrodes with good dimensional accuracy. In addition, since high temperature and highly concentrated acid are used, a large amount of equipment is required due to equipment maintenance and environmental problems, resulting in an increase in costs.

後者の方法としては減圧されたアルゴンと酸素の混合ガ
ス中でインジウムと錫の合金を加熱しない透明基板上に
スパッタリングして、ハーフオキサイドの半透明のIT
O導電膜を一旦形成し、その後加熱処理により透明化と
電気抵抗の安定化を行い、フルオキサイドの透明なIT
O導電膜を形成するものである。この方法で得られるI
TO透明導電膜も前者の方法と同様な理由により、微細
な重電加工を寸法精度良く行うことは容易でない。
In the latter method, an alloy of indium and tin is sputtered onto a transparent substrate without heating in a mixed gas of argon and oxygen under reduced pressure to form a semitransparent half-oxide IT.
Once an O conductive film is formed, it is made transparent and the electrical resistance is stabilized by heat treatment.
This is to form an O conductive film. I obtained by this method
For the same reason as the former method, it is not easy to perform fine heavy electrical processing on the TO transparent conductive film with good dimensional accuracy.

また、この方法で、ハーフオキサイドの半透明ITO導
電膜の熱処理前に、電極パターニング処理を行うことに
より、極めて希薄な水溶液で電極パターニングができ、
電極の微細加工が容易になる。
In addition, with this method, electrode patterning can be performed using an extremely dilute aqueous solution by performing electrode patterning treatment before heat treatment of the half oxide translucent ITO conductive film.
Microfabrication of electrodes becomes easier.

しかしながら、インジウムと錫の合金をターゲットとし
た反応性スパッタリングにより、ハーフオキサイドのI
TO膜を形成するのは、その酸化度を再現性良くするこ
とが困難であった。また低抵抗の透明mWは膜厚を厚く
する必要があるため、その場合には前記方法では熱処理
による酸素の膜の内部への拡散が難しく、高透過率の電
極が得られないという欠点があった。
However, by reactive sputtering targeting an alloy of indium and tin, half-oxide I
When forming a TO film, it has been difficult to improve the degree of oxidation with good reproducibility. Furthermore, since it is necessary to increase the film thickness of low-resistance transparent mW, in that case, the method described above has the drawback that it is difficult to diffuse oxygen into the interior of the film by heat treatment, making it impossible to obtain an electrode with high transmittance. Ta.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は前記した従来の透明電極付き基板の製造方法に
おける欠点を解消するためになされたものであって、特
に、透明電極となる導電膜の抵抗と透過率が再現性良く
得られ、且つ希薄な酸の水溶液によって、電極の微細加
工が容易にできる透明電極付き基板の製造法に関する。
The present invention has been made in order to eliminate the drawbacks of the conventional method for manufacturing a substrate with transparent electrodes as described above. The present invention relates to a method for manufacturing a substrate with transparent electrodes, which allows fine processing of electrodes using an aqueous acid solution.

〔問題を解決するための手段〕[Means to solve the problem]

すなわち、本発明は3重電%乃至75重量%の酸化錫を
含む酸化インジウムの焼結体からなるターゲットを、!
;X/ 0−4’l’orr乃至jX / 0−3To
rrの、0.2容全%乃至3.0容Stt%の酸素を含
むアルゴンのガス中でスパッタリングをし、700℃以
下に保った透明基板上に半透明膜な付着せしめ、その後
大気中に取出した該透明基板をマスキング材を用いて酸
性溶液で該透明基板上の半透明膜の不要部分をエツチン
グ除去した後、所望パターンの半透明膜付着の透明基板
を熱処理することにより、透明電極付き基板を製造する
方法である。
That is, the present invention uses a target made of a sintered body of indium oxide containing 3% to 75% by weight of tin oxide!
;X/ 0-4'l'orr~jX/0-3To
A translucent film was deposited on a transparent substrate kept below 700°C by sputtering in an argon gas containing 0.2 volume Stt% to 3.0 volume Stt% of oxygen, and then exposed to the atmosphere. After removing the removed transparent substrate by etching unnecessary parts of the translucent film on the transparent substrate with an acidic solution using a masking material, the transparent substrate with the translucent film attached in the desired pattern is heat-treated to form a transparent electrode. This is a method of manufacturing a substrate.

本発明において、スパッタリングターゲットは半透明膜
の酸化度が容易に調整でき、再現性良く半透明膜の性質
を制御できる酸化錫と酸化インジウムの混合物からなる
焼結体ターゲットが用いられる。焼結ターゲットは酸化
錫の含有量が3重皿%乃至75重量%、望ましくは3重
量%乃至10重量%とされる。酸化錫の含有量が3重量
%未満あるいはlj重重量を超える場合には低温の基板
に付着される半透明膜は熱処理後においても低い抵抗値
のものを得ることができない。
In the present invention, the sputtering target used is a sintered target made of a mixture of tin oxide and indium oxide, which allows the degree of oxidation of the semitransparent film to be easily adjusted and the properties of the semitransparent film to be controlled with good reproducibility. The sintering target has a tin oxide content of 3% to 75% by weight, preferably 3% to 10% by weight. If the content of tin oxide is less than 3% by weight or more than lj weight, a translucent film attached to a low-temperature substrate cannot have a low resistance value even after heat treatment.

また半透明のハーフオキサイドの膜を形成するとき、透
明基板の温度は/ 00′C以下にする。この温度が1
00°Cを越えると放膜の結晶化が進行し、希薄)酸、
たとえば33℃の5%塩酸水溶液で放膜のエツチング除
去が困難になる。
Further, when forming a semitransparent half oxide film, the temperature of the transparent substrate is set to 0.000'C or less. This temperature is 1
When the temperature exceeds 00°C, crystallization of the membrane progresses, and dilute) acid,
For example, it becomes difficult to remove the film by etching with a 5% hydrochloric acid aqueous solution at 33°C.

更にまた、スパッタリングガス中に含まれる酸素ガスの
含有量は、0.2容量%乃至3.0容量%である。酸素
ガス量が0.2%より少ないと、酸素不足の穆度が大き
くなりすぎ、250°C〜350℃の熱処理温度では完
全に透明化することができなくなってしまう。一方、酸
素ガス量が3%を越えると、膜の酸化が進みすぎ、上記
の温度範囲での膜の透明化は行えるが、熱処理後の膜の
抵抗を低くすることは出来ない。すなわち、上記したス
パッタリングガス組成および基板温度の範囲で、上記し
た範囲の酸化錫を含む酸化インジュウムターゲットをス
パッタリングすることにより、非晶質を主体とする半透
明の膜で、コSO℃〜3SO℃の熱処理で、6明で低抵
抗の膜が得られる。
Furthermore, the content of oxygen gas contained in the sputtering gas is 0.2% by volume to 3.0% by volume. When the amount of oxygen gas is less than 0.2%, the degree of opacity due to oxygen deficiency becomes too large, and complete transparency cannot be achieved at a heat treatment temperature of 250°C to 350°C. On the other hand, if the amount of oxygen gas exceeds 3%, the oxidation of the film progresses too much, and although the film can be made transparent in the above temperature range, it is not possible to lower the resistance of the film after heat treatment. That is, by sputtering an indium oxide target containing tin oxide in the range described above within the sputtering gas composition and substrate temperature range described above, a semitransparent film mainly composed of amorphous material is formed at COSO°C to 3SO°C. By heat treatment at ℃, a film with 6 brightness and low resistance can be obtained.

本発明において、熱処理は窒素雰囲気中で行うことが好
ましく、また本発明に係る透明電極付き基板を液晶表示
装置の透明電極として用いる場合には液晶配向剤を電極
に塗付後、該配向剤の加熱硬化処理と同時に前記熱処理
を、300℃乃至330°Cで行うことができる。
In the present invention, the heat treatment is preferably carried out in a nitrogen atmosphere, and when the substrate with transparent electrodes according to the present invention is used as a transparent electrode of a liquid crystal display device, after applying a liquid crystal aligning agent to the electrode, the aligning agent is The heat treatment can be performed at 300°C to 330°C simultaneously with the heat curing process.

〔作 用〕[For production]

本発明は酸化錫を含む酸化インジウムの焼結体のターゲ
ットをスパッタリングし、100℃以下に保った透明基
板上に半透明膜を付着し、該透明基板上に付着した半透
明膜の不要部分を酸性溶液で除去した後、熱処理するも
のであるから、透明基板上に安定して非晶質の半透明膜
を形成することができ、この非晶質の半透明膜は希薄な
酸性溶液で短時間に不要部分が除去でき、その後熱処理
により放膜の透明化と電気抵抗の安定化ができる。
The present invention involves sputtering a target of a sintered body of indium oxide containing tin oxide, depositing a semi-transparent film on a transparent substrate kept at 100°C or less, and removing unnecessary parts of the semi-transparent film deposited on the transparent substrate. Since it is removed with an acidic solution and then heat-treated, it is possible to stably form an amorphous semitransparent film on a transparent substrate. Unnecessary parts can be removed in a short time, and then heat treatment can make the membrane transparent and stabilize the electrical resistance.

実施例 マグネトロンスパッタ装置Sの真空チャンバー/内に、
ガラス基板/3とターゲット3の距離が90−になるよ
うにガラス基板/3をホルダ/lでターゲット3に対向
するようにセットした。ターゲット3は真空チャンバー
7に絶縁真空シール9を介して取付けられたマグネトロ
ンカソードコのバッキングプレートに上に取付けられ、
バッキングプレートtの下側に永久磁石7が設けられて
おり、バッキングプレートtを冷却するため、マグネト
ロンカソードコにはスパッタリング電源ダが接続され真
空チャンバー/との間に負電圧が印加される。パイプ1
0a、10bを通して冷却水が循環される。
Example In the vacuum chamber of the magnetron sputtering apparatus S,
The glass substrate /3 was set to face the target 3 using a holder /l so that the distance between the glass substrate /3 and the target 3 was 90 -. The target 3 is mounted on the backing plate of a magnetron cathodeco, which is mounted to the vacuum chamber 7 via an insulating vacuum seal 9.
A permanent magnet 7 is provided below the backing plate t, and in order to cool the backing plate t, a sputtering power source is connected to the magnetron cathode and a negative voltage is applied between the magnetron cathode and the vacuum chamber. pipe 1
Cooling water is circulated through 0a and 10b.

一方、ガラス基板13の上側に加熱ヒータ12が設けら
れガラス基板13の温度を調節できる。
On the other hand, a heater 12 is provided above the glass substrate 13 to adjust the temperature of the glass substrate 13.

ガラス基板13は大きさが200朋×2sO闘×八/y
mのソーダ石灰ガラスで中性洗剤で洗浄したものを用い
た。ターゲット3は酸化錫r、!重量%、酸化インジュ
ウム9/、j%からなる焼結体を用いた。
The size of the glass substrate 13 is 200mm x 2sOx 8/y.
A glass made of soda-lime glass of 500 ml was used and was washed with a neutral detergent. Target 3 is tin oxide! A sintered body containing 9/j% of indium oxide by weight was used.

スパッタ装置Sの内部を5×10″″5Torrまで排
気口6から排気し、その後2.0×/ 0−3TOrr
になるように、アルゴンと酸素の混合ガスをマスフロー
コントローラ(図外)によりガス導入パイプ5より導入
しつつ、内圧を安定させてスパッタリングTa源11か
らへ5アンペアをターゲット3に供給した。ガラス基板
/3に付着する半透明膜はスパッタ時間により調節した
。またガラス基板/3の温度は加熱ヒータ12により9
11節した。柚々のスパッタ時間、ガラス湿度導入酸素
ガス?を変えてサンプル/〜/2を得た。その後、大気
中で250°C1300”C、J !; 0℃及び≠o
o′cの温度で20分間熱処理をして、透明導電膜の抵
抗、透過率を測定した。
The inside of the sputtering apparatus S was evacuated from the exhaust port 6 to 5×10″″5 Torr, and then 2.0×/0-3 Torr.
While introducing a mixed gas of argon and oxygen from the gas introduction pipe 5 using a mass flow controller (not shown), the internal pressure was stabilized and 5 amperes was supplied to the target 3 from the sputtering Ta source 11 so that The translucent film attached to glass substrate/3 was controlled by sputtering time. In addition, the temperature of the glass substrate /3 is adjusted to 9 by the heater 12.
I played 11 verses. Yuzu's sputtering time, glass humidity introduction oxygen gas? Samples /~/2 were obtained by changing. Then 250°C 1300”C, J!; 0°C and ≠o in air
A heat treatment was performed at a temperature of o'c for 20 minutes, and the resistance and transmittance of the transparent conductive film were measured.

その結果を第1表に示す。The results are shown in Table 1.

サンプルl〜9までは膜厚が/390A〜/3;2OA
の厚膜の例でサンプル10−/2は薄い膜の実施例テア
ル。サンプル11乙はガラスを加熱しない場合で、サン
プル2〜5が本発明にかかる実施例、サンプル11乙が
比較例である。アズデボ状態では、サンプル/−jの透
過率は低く、ハーフオキサイドの膜になっている。これ
はIn2O3か分解を伴ってスパッタされ、低級酸化物
になっていることを示している。これらの膜はコjO°
C〜3SO℃の熱処理により低抵抗化および透明化する
ことが明示されている。サンプル/はアルゴンガスのみ
でスパッタしたサンプルで、この熱処理温度範囲では、
膜がメタルリンチであるため透明化が困難である。一方
、サンプル乙は02ガス旦が3.5%含む酸化雰囲気で
スパッタされたもので、液晶の配向膜の硬化処理温度で
は、低抵抗にならないことが分かる。
For samples 1 to 9, the film thickness is /390A to /3;2OA
Sample 10-/2 is an example of a thick film, and sample 10-/2 is an example of a thin film. Sample 11B is a case where the glass is not heated, Samples 2 to 5 are examples according to the present invention, and Sample 11B is a comparative example. In the as-devo state, the transmittance of sample/-j is low and it is a half oxide film. This indicates that In2O3 is sputtered with decomposition and becomes a lower oxide. These films are
It has been clearly shown that heat treatment at C to 3SO° C. lowers the resistance and makes the material transparent. Sample / is a sample sputtered with argon gas only, and in this heat treatment temperature range,
Since the film is made of metal lynch, it is difficult to make it transparent. On the other hand, Sample B was sputtered in an oxidizing atmosphere containing 3.5% of 02 gas, and it can be seen that the resistance does not become low at the curing temperature of the liquid crystal alignment film.

基板温度は膜のエツチング性に影響を与えることが第−
表に示されている。基板温度が100℃までは熱処理後
の抵抗が低下しかつ、弘0°Cの1%の塩酸水溶液で1
分でエツチング除去できる。基板湿度が100℃を越え
ると、急速に膜のエツチング除去に要する時間が増加す
る。
It is important to note that the substrate temperature affects the etching properties of the film.
shown in the table. The resistance after heat treatment decreases when the substrate temperature reaches 100°C, and
Etching can be removed in minutes. When the substrate humidity exceeds 100° C., the time required to remove the film by etching increases rapidly.

基板温度が130℃のサンプル9では、膜の結晶化が進
行し工業的プロセスで要求されるエツチングスピード(
約5分で膜が除去できること)を確保することが出来な
かった。IIO℃の5%以下の塩酸水溶液で短時間に膜
がエツチング除去できる特性は、幅が15〜20μmの
細いit極を形成するうえで、感光性レジストと膜の密
着性を全く損なわずに、電極の断面のいわゆる肩が丸く
だれることなく、不要部分の膜を除去することが可能で
あった。
In sample 9, where the substrate temperature was 130°C, the crystallization of the film progressed and the etching speed (
It was not possible to ensure that the film could be removed in about 5 minutes. The property that the film can be etched and removed in a short time with a 5% or less hydrochloric acid aqueous solution at IIO°C is useful for forming thin IT electrodes with a width of 15 to 20 μm without impairing the adhesion between the photosensitive resist and the film. It was possible to remove unnecessary portions of the film without causing the so-called shoulder of the cross section of the electrode to become rounded.

以上は本発明の実施例においては直流スパッタリングに
ついて述べたが、熱論高周波スパッタリングでも実施で
きることは述べるまでもない。
Although direct current sputtering has been described in the embodiments of the present invention, it goes without saying that thermal high frequency sputtering can also be used.

〔発明の効果〕〔Effect of the invention〕

第   2   表 ×;膜はエツチング除去できず 以上の如く、本発明はパターン加工するとき、加工のし
得い酸素不足の非晶質の半透明膜であるからエツチング
がし易い特徴を有する。塩酸の1%〜3%程度の水溶液
で、約3分〜5分で膜厚/!;OOAの厚い膜がマスキ
ング材との密着性を劣化させずに、パターンの齋せ細り
を全く生じずにエツチング除去できる。本発明にかかる
製造プロセスに使泪される対酸性のマスキング材として
は、スクリーン印刷法や、凹版印刷法、フォトリングラ
フィ法のいずれの方法でも用いることできる。
Table 2 ×: The film cannot be removed by etching As described above, the present invention has the characteristic that it can be easily etched when patterned because it is an amorphous semi-transparent film that is easy to process and is deficient in oxygen. With a 1% to 3% aqueous solution of hydrochloric acid, the film thickness can be increased in about 3 to 5 minutes! ; The thick film of OOA can be removed by etching without deteriorating the adhesion with the masking material and without causing any thinning of the pattern. As the acid-resistant masking material used in the manufacturing process according to the present invention, any of the screen printing method, intaglio printing method, and photolithography method can be used.

電極加工された半透明膜は、液晶表示セルの製作工程の
1つである配向膜の硬化処理の典型的な温度である、3
00℃〜330°Cで透明かつ低抵抗化することができ
る。したがって、配向膜の硬化と同時に、膜の透明化と
低抵抗化を同時に行いつるという製造プロセスが本発明
により初めて可能となる。
The electrode-processed semi-transparent film is heated to a temperature of 3, which is a typical temperature for hardening the alignment film, which is one of the manufacturing steps of a liquid crystal display cell.
It can become transparent and have low resistance at temperatures of 00°C to 330°C. Therefore, the present invention makes possible for the first time a manufacturing process in which the alignment film is cured and at the same time the film is made transparent and low in resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いるマグネトロンスパッタ装置の概
略縦断面図である。 /’)IC空チャンバー、2:マグ不トロンカソード、
3:ターゲット t;スパッタリング電源。 j:ガス導入パイプ、6:排気口。 7:永久磁石、lr:パッキングプレート。 り:絶縁真空シー) 、/(7a、b:水冷バイブ。 //:ホルダ、/2;加熱ヒータ 13ニガラス基板
FIG. 1 is a schematic vertical sectional view of a magnetron sputtering apparatus used in the present invention. /') IC empty chamber, 2: Mag Atron cathode,
3: Target t: Sputtering power supply. j: gas introduction pipe, 6: exhaust port. 7: permanent magnet, lr: packing plate. ri: Insulated vacuum seam), / (7a, b: Water-cooled vibrator. //: Holder, /2; Heater 13 glass substrate

Claims (3)

【特許請求の範囲】[Claims] (1)3重量%乃至15重量%の酸化錫を含む酸化イン
ジウムの焼結体からなるターゲットを、 5×10^−^4Torr乃至5×10^−^3Tor
rの、0.2容量%乃至3.0容量%の酸素を含むアル
ゴンのガス中でスパッタリングをし、100℃以下に保
った透明基板上に半透明膜を付着せしめ、その後大気中
に取出した該透明基板をマスキング材を用いて希薄な酸
性溶液で該透明基板上の半透明膜の不要部分をエッチン
グ除去した後、所望パターンの半透明膜付着の透明基板
を熱処理することにより透明電極付き基板を製造する方
法。
(1) A target made of a sintered body of indium oxide containing 3% by weight to 15% by weight of tin oxide was heated to 5×10^-^4 Torr to 5×10^-^3 Torr.
A semitransparent film was deposited on a transparent substrate kept at 100°C or less by sputtering in an argon gas containing 0.2% to 3.0% by volume of oxygen, and then taken out into the atmosphere. After removing unnecessary parts of the semi-transparent film on the transparent substrate by etching with a dilute acidic solution using a masking material, the transparent substrate with the semi-transparent film attached in the desired pattern is heat-treated to form a substrate with transparent electrodes. How to manufacture.
(2)前記熱処理を窒素雰囲気中で行う特許請求の範囲
第1項記載の透明電極付き基板を製造する方法。
(2) The method for manufacturing a transparent electrode-equipped substrate according to claim 1, wherein the heat treatment is performed in a nitrogen atmosphere.
(3)前記所望パターンの半透明膜付着の透明基板に液
晶配向剤を塗布後、該配向剤の加熱硬化処理と同時に該
熱処理を行う特許請求の範囲第1項、または第2項に記
載の透明電極付き基板を製造する方法。
(3) The method according to claim 1 or 2, wherein after applying a liquid crystal aligning agent to the transparent substrate on which a semi-transparent film of the desired pattern is attached, the heat treatment is performed at the same time as the heat curing treatment of the aligning agent. A method of manufacturing a substrate with transparent electrodes.
JP24879686A 1986-10-20 1986-10-20 Production of substrate with transparent electrode Pending JPS63103060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24879686A JPS63103060A (en) 1986-10-20 1986-10-20 Production of substrate with transparent electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24879686A JPS63103060A (en) 1986-10-20 1986-10-20 Production of substrate with transparent electrode

Publications (1)

Publication Number Publication Date
JPS63103060A true JPS63103060A (en) 1988-05-07

Family

ID=17183523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24879686A Pending JPS63103060A (en) 1986-10-20 1986-10-20 Production of substrate with transparent electrode

Country Status (1)

Country Link
JP (1) JPS63103060A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364450A (en) * 1989-07-31 1991-03-19 Kyocera Corp Formation of transparent conductive film
WO2008143232A1 (en) * 2007-05-22 2008-11-27 Nippon Electric Glass Co., Ltd. Transparent electrode
WO2008149891A1 (en) * 2007-06-04 2008-12-11 Canon Anelva Corporation Film forming apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125921A (en) * 1981-01-29 1982-08-05 Nippon Sheet Glass Co Ltd Production of substrate stuck with transparent conductive film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125921A (en) * 1981-01-29 1982-08-05 Nippon Sheet Glass Co Ltd Production of substrate stuck with transparent conductive film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364450A (en) * 1989-07-31 1991-03-19 Kyocera Corp Formation of transparent conductive film
WO2008143232A1 (en) * 2007-05-22 2008-11-27 Nippon Electric Glass Co., Ltd. Transparent electrode
WO2008149891A1 (en) * 2007-06-04 2008-12-11 Canon Anelva Corporation Film forming apparatus
US7744731B2 (en) 2007-06-04 2010-06-29 Canon Anelva Corporation Sputtering apparatus of forming thin film

Similar Documents

Publication Publication Date Title
KR20000071541A (en) Method of forming transparent conductive film and transparent conductive film formed by the method
KR100723112B1 (en) Process for producing transparent conductive laminate
JP3766453B2 (en) Transparent conductive film and method for producing the same
KR20010083477A (en) Method of depositing an io or ito thin film on polymer substrate
EP0403936B1 (en) Method for producing a conductive oxide pattern
JPH0364450A (en) Formation of transparent conductive film
JPS63103060A (en) Production of substrate with transparent electrode
KR20080054318A (en) Transparent conductive membrane of high resistance touch pannel of capacitance and manufacture method thereof
JPS62211378A (en) Sputtering device
JPH0723532B2 (en) Method for forming transparent conductive film
JPS6215961B2 (en)
JPH02189816A (en) Method for forming transparent conductive film
JP4079457B2 (en) Method for increasing resistance of indium-tin oxide film
JPS647445B2 (en)
JPS592004B2 (en) Manufacturing method of electrode substrate for display
JPH04219301A (en) Production of oxide superconductor thin film
JPH05171437A (en) Formation of transparent electrically conductive film
JP2005181670A (en) Manufacturing method of ultra-thin ito film
Mihara et al. P‐210: Ta‐Doped SnO2 Thin Films for PDP
JPS63202890A (en) Transparent conductive thin film
JPH0336703A (en) Film resistor and its manufacture
JPS63105962A (en) Manufacture of thin film of solid electrolyte
JPH03183760A (en) Production of oxide transparent conductive film
JPH01137520A (en) Manufacture of crystalline transparent conductive laminate
JPS62185316A (en) Formation of electrode