JPS63102825A - Power source for electric discharge machining - Google Patents

Power source for electric discharge machining

Info

Publication number
JPS63102825A
JPS63102825A JP24758786A JP24758786A JPS63102825A JP S63102825 A JPS63102825 A JP S63102825A JP 24758786 A JP24758786 A JP 24758786A JP 24758786 A JP24758786 A JP 24758786A JP S63102825 A JPS63102825 A JP S63102825A
Authority
JP
Japan
Prior art keywords
voltage
output
workpiece
electrode
reverse voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24758786A
Other languages
Japanese (ja)
Inventor
Haruki Obara
小原 治樹
Shunzo Izumiya
和泉屋 俊三
Yuji Okuyama
奥山 祐二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP24758786A priority Critical patent/JPS63102825A/en
Publication of JPS63102825A publication Critical patent/JPS63102825A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To simplify a control means, by providing power sources for normal voltage and reverse voltage which are applied between a workpiece and an electrode by switching elements so that the averaged machining voltage is made to be zero. CONSTITUTION:Control is made such that a normal voltage E1 is applied between a workpiece W and an electrode P from an oscillator 2 for a predetermined period so as to allow a capacitor C1 to discharge several times for carrying out electric discharge machining, and thereafter, a reverse voltage E2 is applied between the workpiece W and the electrode P while the application time of the reverse voltage is controlled so that the application time of the normal voltage and the application time of the reverse voltage are made to be zero in average during one entire cycle. Accordingly, the control and the arrangement are simple in comparison with those of the conventional system in which a reverse voltage is applied for every discharge to make the averaged machining voltage zero, and therefore, it is possible to stabilize electrical discharge.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は放電加工において、放電加工時とは逆極性の電
圧を電極とワーク間に印加し平均加工電圧をゼロにする
ことにより電気分解作用を防止し、ワークの電食を防止
する放電加工電源に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention prevents electrolytic action in electric discharge machining by applying a voltage of opposite polarity to that during electric discharge machining between an electrode and a workpiece to reduce the average machining voltage to zero. The present invention relates to an electrical discharge machining power supply that prevents electrolytic corrosion of workpieces.

従来の技術 加工液として水を用いる放電加工においては電気分解作
用が生じ、特に超硬含金のような電食性のワークを荒加
工する場合等は電食が生じ、ワークをもろくする箸の欠
点があった。また、ワイヤカット放電加工のセカンドカ
ット時においては、電気分解作用、のために粒子の選択
電食によりワークの表面が荒れて仕上面のあらさが悪く
なる等の欠点があった。これを防止するために、非加工
時に電極とワーク間のギャップに加工時とは逆に逆電圧
を印加することによって平均加工電圧をゼOにして電気
分解作用を防止することはすでに公知である。例えば、
特開昭60−201826号公報、特開昭60−180
724号公報。
Conventional technology Electrolysis occurs in electric discharge machining using water as the machining fluid, and electrolytic corrosion occurs especially when rough machining workpieces that are electrolytically corroded, such as cemented carbide, which makes the workpiece brittle.This is a disadvantage of chopsticks. was there. In addition, during the second cut of wire-cut electric discharge machining, there is a drawback that the surface of the workpiece becomes rough due to selective electrolytic corrosion of particles due to the electrolytic action, resulting in poor finished surface roughness. In order to prevent this, it is already known that when not machining, a reverse voltage is applied to the gap between the electrode and the workpiece in the opposite direction to that during machining, thereby reducing the average machining voltage to zero and preventing electrolysis. . for example,
JP-A-60-201826, JP-A-60-180
Publication No. 724.

発明が解決しようとする問題点 上記特開昭60−201826号公報に記載されている
ような、ワークと電極間に正及び逆の電圧を印加する2
つの電源を有し、スイッチング素子によってワークと電
極間のギャップに上記各電源より正逆の電圧を印加せし
めて平均加工電圧をゼロにする方式において、ワークと
電極間に並列にコンデンサを接続し、コンデンサ放電タ
イプの放電加工電源においては、コンデンサの放電後に
ワークと電極間に逆電圧を印加させるために、逆電圧用
の電源よりワークと電極間のギャップに逆電圧を印加さ
せるスイッチング素子の動作を、コンデンサの放電終了
時と一致させる必要がある。
Problems to be Solved by the Invention As described in the above-mentioned Japanese Patent Laid-Open No. 60-201826, applying positive and reverse voltages between the workpiece and the electrode 2
In this method, a capacitor is connected in parallel between the workpiece and the electrode, and the average machining voltage is zero by applying forward and reverse voltages from each power supply to the gap between the workpiece and the electrode using a switching element. In a capacitor discharge type electrical discharge machining power supply, in order to apply a reverse voltage between the workpiece and the electrode after the capacitor is discharged, the switching element operates to apply a reverse voltage from the reverse voltage power supply to the gap between the workpiece and the electrode. , it is necessary to coincide with the end of discharge of the capacitor.

即ち、コンデンサを正電圧電源によって充電し、コンデ
ンサの放電を持って逆電圧電源よりワークと電極間に逆
電圧を印加する必要があるが、この逆電圧を印加するタ
イミングが回路素子の遅れで難しく、例えば、コンデン
サが放電を行わない内に逆電圧印加用のスイッチング素
子を作動させワークと電l1間に逆電圧を印加すると、
コンデンサのエネルギーを逆転させるため、各電源の負
担が異常に大きくなって実用的でないという欠点がある
In other words, it is necessary to charge the capacitor with a positive voltage power supply, and then apply a reverse voltage between the workpiece and the electrode from a reverse voltage power supply as the capacitor discharges, but the timing of applying this reverse voltage is difficult due to the delay of the circuit elements. For example, if the switching element for applying a reverse voltage is activated and a reverse voltage is applied between the workpiece and the electric current l1 before the capacitor is discharged,
Since the energy of the capacitor is reversed, the load on each power supply becomes abnormally large, making it impractical.

そこで、本発明の目的はコンデンサ放電タイプの放電加
工電源において、正電圧用、逆電圧用の各々の電源を有
し、各々スイッチング素子によってワークと電極間に正
、逆の電圧を印加し、平均加工電圧を簡単な制御手段に
よってピロにすることができる放電加工電源を提供する
ことにある。
Therefore, an object of the present invention is to provide a capacitor discharge type electrical discharge machining power supply, which has a power supply for positive voltage and a power supply for reverse voltage, and applies positive and reverse voltages between the workpiece and the electrode using switching elements, respectively, and averages the voltage. It is an object of the present invention to provide an electric discharge machining power source that can control the machining voltage by a simple control means.

問題点を解決するための手段 本発明は、ワークと電極間にコンデンサが並列に接続さ
れ、上記ワークと電極間に電源より正電圧を印加する第
1のスイッチング素子と、上記ワークと電極内に電源よ
り逆電圧を印加する第2のスイッチング素子を有する放
電加工電源において、上記ワークと電極間の電圧を平滑
し平均加工電圧を検出する平滑手段と、該平滑手段の出
力と基準電圧を比較し、一致すると出力する比較器と、
該比較器の出力によりトリガされ所定時間幅の出力を出
すパルス出力手段と、該パルス出力手段から出力中上記
第1のスイッチング素子を所定周期でオンオフさせる正
電圧印加制御手段と、上記パルス出力手段からの出力停
止中上記第2のスイッチング素子をオンさせる逆電圧印
加制御手段とを設けることによって上記問題点を解決し
た。
Means for Solving the Problems The present invention provides a first switching element in which a capacitor is connected in parallel between a workpiece and an electrode, a positive voltage is applied from a power supply between the workpiece and the electrode, and a first switching element that applies a positive voltage between the workpiece and the electrode, and In an electrical discharge machining power supply having a second switching element that applies a reverse voltage from the power supply, a smoothing means for smoothing the voltage between the workpiece and the electrode and detecting an average machining voltage is used, and the output of the smoothing means is compared with a reference voltage. , a comparator that outputs when there is a match,
pulse output means that is triggered by the output of the comparator and outputs an output of a predetermined time width; positive voltage application control means that turns on and off the first switching element at a predetermined period during output from the pulse output means; and the pulse output means. The above problem has been solved by providing a reverse voltage application control means for turning on the second switching element while the output from the second switching element is stopped.

作  用 所定時間幅の出力を出すパルス出ツノ手段から出力パル
スが出力されている間は、上記正電圧印加tIl制御手
段によって所定周期で上記第1のスイッチング素子をオ
ン、オフさせて、上記ワークと電極間に並列に接続され
たコンデンサを充放電させ、ワークと電極間に放電を生
じせしめ放電加工を行わせしめる。その結果、上記平滑
手段の出力はプラス方向に増大する。そして、上記パル
ス出力手段からの出力パルスがオフになると、上記逆電
圧印加制御手段によって第2のスイッチング素子をオン
としてワークと電極間に逆電圧を印加する。
Operation: While an output pulse is being output from the pulse output horn means for outputting an output with a predetermined time width, the first switching element is turned on and off at a predetermined period by the positive voltage application tIl control means, and the workpiece is turned on and off at a predetermined period. A capacitor connected in parallel between the workpiece and the electrode is charged and discharged, and an electric discharge is generated between the workpiece and the electrode to perform electrical discharge machining. As a result, the output of the smoothing means increases in the positive direction. When the output pulse from the pulse output means is turned off, the reverse voltage application control means turns on the second switching element to apply a reverse voltage between the workpiece and the electrode.

そのため、上記平滑手段の出力は減少し、該出力電圧と
上記基準電圧が一致すると、上記比較器から出力が出て
、上記パルス出力手段をトリガし所定幅の出力パルスを
出力させるから、前述したようにワークと電極間には正
電圧が印加され放電が開始されることとなり、この動作
を繰り返すこととなる。そして、上記基準電圧を、ワー
クと電極に印加される平均加工電圧がゼロになるような
値に設定しておけば、上記パルス出力手段で決定される
正電圧印加時間に対し逆電圧印加時間が制御されて、全
体的に平均加工電圧がゼロになるようにワークと電極間
には正、逆電圧が印加されることとなる。
Therefore, the output of the smoothing means decreases, and when the output voltage and the reference voltage match, an output is output from the comparator, which triggers the pulse output means to output an output pulse of a predetermined width. In this way, a positive voltage is applied between the workpiece and the electrode, starting a discharge, and this operation is repeated. If the reference voltage is set to a value such that the average machining voltage applied to the workpiece and electrode is zero, the reverse voltage application time will be equal to the positive voltage application time determined by the pulse output means. Controlled, positive and reverse voltages are applied between the workpiece and the electrodes so that the overall average machining voltage is zero.

実施例 第1図は、本発明の一実施例の回路図で、Pは電極、W
はワーク、Elはスイッチング素子としてのトランジス
タT1がオンになったとき電流イ1す限抵抗R1を介し
てコンデンサC1を充電し、該コンデンサC1の充電電
圧をワークWと電極間に印加するための正電圧用の直流
′電源である。
Embodiment FIG. 1 is a circuit diagram of an embodiment of the present invention, where P is an electrode and W
is a workpiece, and El is a voltage for charging a capacitor C1 through a limiting resistor R1 when the transistor T1 as a switching element is turned on, and applying the charging voltage of the capacitor C1 between the workpiece W and the electrode. It is a direct current power supply for positive voltage.

E2はワークWと電極1間へ逆電圧を印加するための電
源で、スイッチング素子としてのトランジスタT2及び
電流制限抵抗R2を介して逆電圧が印加されるものであ
る。そして、電極PとワークW間のギャップ電圧VQは
抵抗R3,R4で分圧され、その分圧電圧に可変抵抗R
Vで設定された一定電圧を加算し平滑回路3で平滑され
、該平滑回路3の出力VLは比較器4に入力される。比
較器4には、抵抗R10とコンデンサC3で構成される
積分器のコンデンサC3の充電電圧が入力されており、
上記コンデンサC3と並列にアナログスイッチとしての
トランジスタT3が接続され、該トランジスタT3のベ
ースには後述するパルス出力手段としての、ワンショッ
トマルチバイブレータ等の第1の発振器1の出力が接続
されている。
E2 is a power source for applying a reverse voltage between the workpiece W and the electrode 1, and the reverse voltage is applied via the transistor T2 as a switching element and the current limiting resistor R2. Then, the gap voltage VQ between the electrode P and the workpiece W is divided by resistors R3 and R4, and the variable resistor R
A constant voltage set by V is added and smoothed by a smoothing circuit 3, and the output VL of the smoothing circuit 3 is input to a comparator 4. The charging voltage of the capacitor C3 of the integrator composed of the resistor R10 and the capacitor C3 is input to the comparator 4.
A transistor T3 as an analog switch is connected in parallel with the capacitor C3, and the output of a first oscillator 1 such as a one-shot multivibrator as a pulse output means to be described later is connected to the base of the transistor T3.

又、上記比較器4の出力はナンド回路N1に入力され、
該ナンド回路N1の他方の入力端子には上記発振B1の
出力がインバータ11を介して入力されている。該ナン
ド回路N1の出力はインバータI2を介して上記発振器
1のセット入力端子に入力されると共にドライバ回路6
を駆動し、上記トランジスタT2をオンさせるようにな
っている。
Further, the output of the comparator 4 is input to a NAND circuit N1,
The output of the oscillation B1 is inputted via the inverter 11 to the other input terminal of the NAND circuit N1. The output of the NAND circuit N1 is input to the set input terminal of the oscillator 1 via the inverter I2, and is also input to the driver circuit 6.
is driven to turn on the transistor T2.

さらに、L2第1の発振器1の出力はアンド回路A1に
入力され、かつ、アンド回路A1の他方の入力端子には
、所定周波数で発振する第2の発振器2の出力が接続さ
れ、該アンド回路へ1の出力はドライバ回路5を介して
上記スイッチング素子T1をオンオフさせるようになっ
ている。即ち、本実施例においては、第2の発振器2.
アンド回路A1.ドライバ回路5等によって正電圧印加
制御手段を構成し、インバータ11.12.プ゛ノド回
路N1.ドライバ回路6等により逆電圧印加制御手段を
構成している。
Furthermore, the output of the L2 first oscillator 1 is input to the AND circuit A1, and the output of the second oscillator 2 that oscillates at a predetermined frequency is connected to the other input terminal of the AND circuit A1. The output of T1 is configured to turn on and off the switching element T1 via the driver circuit 5. That is, in this embodiment, the second oscillator 2.
AND circuit A1. The driver circuit 5 and the like constitute a positive voltage application control means, and the inverters 11, 12 . Pendant circuit N1. The driver circuit 6 and the like constitute a reverse voltage application control means.

第2図は本実施例における信号波形とタイミングを示す
説明図であるが、この第2図が示すように、第1の発振
器1の出力パルス周期と第2の発振器2の発振周期は大
きく相違し、第2の発振器2の発振周期は小さく、第1
の発振器1の周期は大ぎくとっである。そして、第2の
発振周期は所定周期で、この周期、即ち、発振周波数は
所定値に設定できるようにされている。しかし、一方、
第1の発振器1の出力パルス幅(第2図におけるT)は
一定幅であるが、出力停止中の幅は後述するように一定
しない。即ち、該第1の発振器1はワンショットマルチ
バイブレータで構成されており、トリガ入力がされる毎
に一定幅のパルスを出力し、かつ、該トリガ入力が一定
間隔で入力されないことを意味している。
FIG. 2 is an explanatory diagram showing the signal waveform and timing in this embodiment. As shown in FIG. 2, the output pulse period of the first oscillator 1 and the oscillation period of the second oscillator 2 are significantly different. However, the oscillation period of the second oscillator 2 is small, and the oscillation period of the second oscillator 2 is small.
The period of the oscillator 1 is very sharp. The second oscillation period is a predetermined period, and this period, that is, the oscillation frequency, can be set to a predetermined value. However, on the other hand,
The output pulse width (T in FIG. 2) of the first oscillator 1 is constant, but the width when the output is stopped is not constant as will be described later. That is, the first oscillator 1 is composed of a one-shot multivibrator, which outputs a pulse of a constant width each time a trigger input is received, and the trigger input is not input at regular intervals. There is.

そこで、本実施例の動作を第2図を参照しながら説明す
る。
Therefore, the operation of this embodiment will be explained with reference to FIG.

第2の発振Z2は第2図(イ)に示すように設定された
発振周波数で発信しており、今、第1の発振器1から出
力が出ているとすると、該第1の発振器1の出ツノによ
りアンド回路A1はゲートを間き、第2の発振器2の出
力パルスをドライバ回路5に供給しトランジスタT1を
オン、オフさせる。その結果、正電圧用の電源E1より
1〜ランジスタT1.電流制限抵抗R1を介して、コン
デンサC1を充電し、この充電電圧によりワークWと電
極1間に放電を生ぜしめ、放電加工を行うこととなる。
The second oscillation Z2 is emitted at the oscillation frequency set as shown in FIG. Due to the output, the AND circuit A1 closes its gate, supplies the output pulse of the second oscillator 2 to the driver circuit 5, and turns the transistor T1 on and off. As a result, from the power supply E1 for positive voltage, 1 to transistor T1. The capacitor C1 is charged via the current limiting resistor R1, and this charging voltage causes an electric discharge between the workpiece W and the electrode 1, thereby performing electric discharge machining.

このときのワークWと電極1間のギャップ電圧は第2図
(ト)に示すように、プラス方向にコンデンサの充放電
毎に増減する波形となる。
The gap voltage between the workpiece W and the electrode 1 at this time has a waveform that increases and decreases in the positive direction each time the capacitor is charged and discharged, as shown in FIG. 2 (g).

このワークWと電極1間のギャップに印加されるギャッ
プ電圧Vgは抵抗R3,R4で分圧され、該分圧電圧に
抵抗R6,可変抵抗RVで設定された所定電圧が加算さ
れて、平滑回路3で平滑される。一方、第1の発振器1
の出力はアナログスイッチとしてのトランジスタT3を
オンさせており、そのためコンデンサC3は充電を開始
しておらず、比較器4の入力は平滑回路3からの入力V
Lの方が他方の入力端子の入力電圧VCより高く、比較
器からは出力S1は第2図(ニ)に示すようにト」レベ
ルの出力が出ている。又、第1の発振器1の出力はイン
バータ■1を介してナントゲートN1に入力されている
から、第2図(ホ)で示すようにナントゲートN1の出
力$2はHレベルであり、インバータI2の出力S3は
Lレベルとなり(第2図(へ)参照)、ドライバ回路6
は駆動されずトランジスタT2はオフの状態である。
The gap voltage Vg applied to the gap between the workpiece W and the electrode 1 is divided by resistors R3 and R4, and a predetermined voltage set by resistor R6 and variable resistor RV is added to the divided voltage, and a smoothing circuit Smoothed by 3. On the other hand, the first oscillator 1
The output of the comparator 4 turns on the transistor T3 as an analog switch, so the capacitor C3 has not started charging, and the input of the comparator 4 is the input V from the smoothing circuit 3.
The voltage L is higher than the input voltage VC at the other input terminal, and the output S1 from the comparator is at the T level as shown in FIG. 2(D). Also, since the output of the first oscillator 1 is input to the Nandts gate N1 via the inverter 1, the output $2 of the Nandts gate N1 is at H level as shown in FIG. The output S3 of I2 becomes L level (see Fig. 2 (v)), and the driver circuit 6
is not driven and the transistor T2 is in an off state.

そこで、所定期間パルスを出力する第1の発振器1の出
力が無くなると、アンド回路A1は閉じ、第2の発振器
2の出力はドライバ回路5へ供給されず、トランジスタ
T1はオフの状態となる。一方、第1の発振器1の出力
が無くなりトルベルとなると、インバータ11を介して
ナンド回路N1にトルベルの出力が入力され、比較器4
の出力S1は現在トルベルであるから、ナンド回路N1
の出力S2はトルベルとなり、インバータ■2の出力S
3はトルベルとなり、ドライバ回路6を介してトランジ
スタT2をオンさせてワークWと電極2間に逆電圧用の
電源E2より逆電圧を印加することとなる。そのため、
平滑回路3の出力VLは減少し、又、第1の発振器1の
出力がトルベルとなることによりアナログスイッチとし
てのトランジスタT3をオフにし、抵抗R10を介して
電圧V2よりコンデンサC3を充電させる。そして、第
2図(ハ)に示すように、該コンデンサの充電電圧VC
と平滑回路3の出力VLが一致したとき、比較器4はト
ルベルの出力信号S1を出す。その結果、ナンド回路N
1の出力S2はl」レベルとなり、インパーク■2の出
力S3はトルベルとなる。
Therefore, when the output of the first oscillator 1 that outputs a pulse for a predetermined period disappears, the AND circuit A1 is closed, the output of the second oscillator 2 is not supplied to the driver circuit 5, and the transistor T1 is turned off. On the other hand, when the output of the first oscillator 1 disappears and becomes a truvel, the truvel output is inputted to the NAND circuit N1 via the inverter 11, and the comparator 4
Since the output S1 of is currently a trubel, the NAND circuit N1
The output S2 of inverter ■2 becomes the trubel, and the output S2 of inverter ■2
3 is a trubel, which turns on the transistor T2 via the driver circuit 6 to apply a reverse voltage between the workpiece W and the electrode 2 from the power source E2 for reverse voltage. Therefore,
The output VL of the smoothing circuit 3 decreases, and since the output of the first oscillator 1 becomes a torque level, the transistor T3 serving as an analog switch is turned off, and the capacitor C3 is charged with the voltage V2 via the resistor R10. Then, as shown in FIG. 2 (c), the charging voltage VC of the capacitor
When the output VL of the smoothing circuit 3 matches, the comparator 4 outputs a torque output signal S1. As a result, NAND circuit N
The output S2 of Impark 1 becomes the l'' level, and the output S3 of Impark 2 becomes the torque level.

そして、インバータ■2の出力S3がトルベルとなるこ
とにより、第1の発振器1がトリガされて、一定幅のト
ルベルのパルスを出力し、該出力により、アナログスイ
ッチのトランジスタT3がオンとなりコンデンサC3は
放電され、かつ、インバータ■1を介してナンド回路N
1にトルベルの出力が入力されるからナンド回路N1の
出力$2はトルベルを接続し、インバータI2の出力S
3はトルベルを接続して、ドライバ回路6を介してトラ
ンジスタT2をオフとしてワークWと電ff1P間への
逆電圧印加を停止する。一方、第1の発振器1のトルベ
ルの出力によりアンド回路A1が開き、第2の発振器2
の出力をドライバ回路5に供給し、トランジスタT1を
オン、オフさせ、前述したように放電加工を開始するこ
ととなる。そして、この正電圧印加による放電加工は第
1の発振器1から出力されるパルス幅間行われ、この出
力が無くなると、前述したようにトランジスタT2がオ
ンとなりワークWと電極2間に逆電圧が印加されること
となるが、この逆電圧を印加させる時間は、可変抵抗R
Vの値及び抵抗R10,コンデンサC3の積分回路の時
定数を設定し、ワークWと電極2間に加わる正、逆電圧
の平均加工電圧がゼロになるとき比較器4より出力を出
すようにして、逆電圧印加時間を制御する。
Then, when the output S3 of the inverter 2 becomes a torque level, the first oscillator 1 is triggered and outputs a torque pulse with a constant width, and this output turns on the transistor T3 of the analog switch, and the capacitor C3 is turned on. Discharged and connected to NAND circuit N via inverter ■1
Since the output of the trubel is input to the output of the NAND circuit N1, the output $2 of the NAND circuit N1 connects the trubel, and the output S of the inverter I2
3 connects the torque bell, turns off the transistor T2 via the driver circuit 6, and stops applying a reverse voltage between the workpiece W and the electric current ff1P. On the other hand, the output of the first oscillator 1 opens the AND circuit A1, and the second oscillator 2
The output is supplied to the driver circuit 5, the transistor T1 is turned on and off, and electrical discharge machining is started as described above. Then, electrical discharge machining by applying this positive voltage is performed during the pulse width output from the first oscillator 1, and when this output disappears, the transistor T2 is turned on as described above, and a reverse voltage is generated between the workpiece W and the electrode 2. However, the time to apply this reverse voltage is determined by the variable resistor R.
By setting the value of V and the time constant of the integrating circuit of resistor R10 and capacitor C3, the comparator 4 outputs an output when the average machining voltage of the positive and reverse voltages applied between the workpiece W and the electrode 2 becomes zero. , to control the reverse voltage application time.

このように本発明は、上記実施例が示すように、第2の
発振器2によって正電圧印加による複数回の放電を行っ
た後、平均加工電圧がゼロになるまでの時間、逆電圧を
印加して逆電圧印加時間を調整することによって平均加
工電圧をゼロにするようにしている。
In this way, the present invention, as shown in the above embodiment, applies a reverse voltage for a period of time until the average machining voltage becomes zero after performing multiple discharges by applying a positive voltage using the second oscillator 2. By adjusting the reverse voltage application time, the average machining voltage is made zero.

なお、上記実施例においては、比較器4で、平滑回路の
出力VLとコンデンサC3の充電電圧VCを比較するよ
うにしたが、これは、平滑回路のアンプの遅れを考慮し
て、このような手段がとられたもので単に設定された基
準電圧と比較するようにしてもよい。
In the above embodiment, the comparator 4 compares the output VL of the smoothing circuit with the charging voltage VC of the capacitor C3. It may be possible to simply compare it with a set reference voltage by taking some measures.

発明の効果 以上述べたように、本発明は、所定期間ワークと電極間
への正電圧印加により複数回コンアンサ放電を行わせて
放電加工を行い、その後、ワークと電極間へ逆電圧印加
を行い、その逆電圧印加時間を制御し、正電圧印加時間
、逆電圧印加時間の一すイクル中全体で平均加工電圧が
ゼロになるようにしたので、−回の放電毎に逆電圧を印
加して平均加工電圧をゼロにする従来の方式と比べ制御
が簡単で、かつ、構成も簡単となり、放電も安定する。
Effects of the Invention As described above, the present invention performs electrical discharge machining by applying a positive voltage between the workpiece and the electrode for a predetermined period of time to cause converse discharge multiple times, and then applying a reverse voltage between the workpiece and the electrode. The reverse voltage application time was controlled so that the average machining voltage was zero during the whole cycle of the positive voltage application time and the reverse voltage application time, so the reverse voltage was applied every - discharge. Compared to conventional methods that reduce the average machining voltage to zero, this method is easier to control, has a simpler configuration, and has a more stable discharge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の回路図、第2図は同突fi
例における各信号波形とタイミングを示す説明図である
。 1・・・第1の発振器、2・・・第2の発振器、3・・
・平滑回路、4・・・比較器、5.6・・・ドライバ回
路、El、R2・・・直流電源、T1.T2・・・トラ
ンジスタ、C1〜C3・・・コンデンサ、R1・・・R
11・・・抵抗、T3・・・アナログスイッチ、P・・
・電極、W・・・ワ−り。 持前出願人 ファナック 株式会社 第1図
Fig. 1 is a circuit diagram of an embodiment of the present invention, and Fig. 2 is a circuit diagram of an embodiment of the present invention.
It is an explanatory diagram showing each signal waveform and timing in an example. 1... first oscillator, 2... second oscillator, 3...
- Smoothing circuit, 4... Comparator, 5.6... Driver circuit, El, R2... DC power supply, T1. T2...Transistor, C1-C3...Capacitor, R1...R
11...Resistor, T3...Analog switch, P...
・Electrode, W...Warri. Patented applicant FANUC Co., Ltd. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)ワークと電極間にコンデンサが並列に接続され、
上記ワークと電極間に電源より正電圧を印加する第1の
スイッチング素子と、上記ワークと電極内に電源より逆
電圧を印加する第2のスイッチング素子を有する放電加
工電源において、上記ワークと電極間の電圧を平滑し平
均加工電圧を検出する平滑手段と、該平滑手段の出力と
基準電圧を比較し、一致すると出力する比較器と、該比
較器の出力によりトリガされ所定時間幅の出力を出すパ
ルス出力手段と、該パルス出力手段から出力中上記第1
のスイッチング素子を所定周期でオンオフさせる正電圧
印加制御手段と、上記パルス出力手段からの出力停止中
上記第2のスイッチング素子をオンさせる逆電圧印加制
御手段とを有することを特徴とする放電加工電源。
(1) A capacitor is connected in parallel between the workpiece and the electrode,
An electrical discharge machining power supply having a first switching element that applies a positive voltage from the power supply between the workpiece and the electrode, and a second switching element that applies a reverse voltage from the power supply to the workpiece and the electrode. a smoothing means for smoothing the voltage of and detecting an average machining voltage; a comparator for comparing the output of the smoothing means with a reference voltage and outputting an output when they match; and an output for a predetermined time period triggered by the output of the comparator. a pulse output means, and the above-mentioned first pulse being output from the pulse output means.
An electric discharge machining power supply characterized by having a positive voltage application control means for turning on and off the switching element at a predetermined period, and a reverse voltage application control means for turning on the second switching element while the output from the pulse output means is stopped. .
(2)上記基準電圧は上記パルス出力手段の出力停止か
ら充電を開始する積分回路のコンデンサの充電電圧によ
つて構成されている特許請求の範囲第1項記載の放電加
工電源。
(2) The electric discharge machining power source according to claim 1, wherein the reference voltage is constituted by a charging voltage of a capacitor of an integrating circuit that starts charging when the output of the pulse output means stops.
JP24758786A 1986-10-20 1986-10-20 Power source for electric discharge machining Pending JPS63102825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24758786A JPS63102825A (en) 1986-10-20 1986-10-20 Power source for electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24758786A JPS63102825A (en) 1986-10-20 1986-10-20 Power source for electric discharge machining

Publications (1)

Publication Number Publication Date
JPS63102825A true JPS63102825A (en) 1988-05-07

Family

ID=17165724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24758786A Pending JPS63102825A (en) 1986-10-20 1986-10-20 Power source for electric discharge machining

Country Status (1)

Country Link
JP (1) JPS63102825A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126525A (en) * 1988-11-01 1992-06-30 Sodick Co., Ltd. Power supply system for electric discharge machines
JPH05329710A (en) * 1992-05-26 1993-12-14 Mitsubishi Electric Corp Electric discharge machining device
JPH0899222A (en) * 1994-09-15 1996-04-16 Ind Elektronik Agie Losone Locarno:Ag Method and pulse generator for electric erosion of workpiece
US5603852A (en) * 1993-06-30 1997-02-18 Mitsubishi Denki Kabushiki Kaisha Electrical discharge machine with an opposite polarity voltage applied during an electrode jump operation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511730A (en) * 1978-07-05 1980-01-26 Mitsubishi Electric Corp Power supply device for spark machining
JPS5656341A (en) * 1979-10-05 1981-05-18 Fanuc Ltd Power source for wire cut electric discharge machining
JPS60201826A (en) * 1984-03-26 1985-10-12 Fanuc Ltd Power source for wire electric discharge machining
JPS61192415A (en) * 1985-02-22 1986-08-27 Inoue Japax Res Inc Power source apparatus for wire-cut electric discharge machining

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511730A (en) * 1978-07-05 1980-01-26 Mitsubishi Electric Corp Power supply device for spark machining
JPS5656341A (en) * 1979-10-05 1981-05-18 Fanuc Ltd Power source for wire cut electric discharge machining
JPS60201826A (en) * 1984-03-26 1985-10-12 Fanuc Ltd Power source for wire electric discharge machining
JPS61192415A (en) * 1985-02-22 1986-08-27 Inoue Japax Res Inc Power source apparatus for wire-cut electric discharge machining

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534675A (en) * 1988-11-01 1996-07-09 Sodick Co., Ltd. Power supply system for electric discharge machines
US5298709A (en) * 1988-11-01 1994-03-29 Sodick Co., Ltd. Power supply system for electric discharge machines
US5386095A (en) * 1988-11-01 1995-01-31 Sodick Co., Ltd. Electric discharge machine power supply with current control at variable levels
US5126525A (en) * 1988-11-01 1992-06-30 Sodick Co., Ltd. Power supply system for electric discharge machines
JPH05329710A (en) * 1992-05-26 1993-12-14 Mitsubishi Electric Corp Electric discharge machining device
US5603852A (en) * 1993-06-30 1997-02-18 Mitsubishi Denki Kabushiki Kaisha Electrical discharge machine with an opposite polarity voltage applied during an electrode jump operation
US5681488A (en) * 1993-06-30 1997-10-28 Mitsubishi Denki Kabushiki Kaisha Electrical discharge machine which uses voltages of opposite polarity
US5698115A (en) * 1993-06-30 1997-12-16 Mitsubishi Denki Kabushiki Kaisha Electrical discharge machine
US5753882A (en) * 1993-06-30 1998-05-19 Mitsubishi Denki Kabushiki Kaisha Electrical discharge machine with pulses of both polarities
US5828027A (en) * 1993-06-30 1998-10-27 Mitsubishi Denki Kabushiki Kaisha Electrical discharge machine with tar build-up detector
US5869797A (en) * 1993-06-30 1999-02-09 Mitsubishi Denki Kabushiki Kaisha Bipolar electrical discharge machine which adjusts voltage polarity based on short circuit detection
US5919381A (en) * 1993-06-30 1999-07-06 Mitsubishi Denki Kabushiki Kaisha Bipolar electrical discharge machine which detects misfire
JPH0899222A (en) * 1994-09-15 1996-04-16 Ind Elektronik Agie Losone Locarno:Ag Method and pulse generator for electric erosion of workpiece
US5874703A (en) * 1994-09-15 1999-02-23 Agie Sa Method and apparatus for impulse generator for electroerosive machining of workpieces

Similar Documents

Publication Publication Date Title
EP0178330B1 (en) Power source for wire cut electrospark machining
JPS614620A (en) Electric discharge machining power supply device
JPS63102825A (en) Power source for electric discharge machining
WO2003106088A1 (en) Machining power source of wire electrodischarge machineing apparatus
US4395612A (en) Power source circuit for electric discharge machine
JPH059209B2 (en)
EP0679467A2 (en) Electric discharge method and its apparatus
JP2547365B2 (en) EDM power supply
JP2718616B2 (en) Method and apparatus for supplying electric discharge machining pulse
JPS61274812A (en) Rust preventive machining method of machined surface in electric discharge machining under water
JPH0360611B2 (en)
JPS60118423A (en) Electric discharge machining power source
JPS61214919A (en) Electric discharge machine
JPH0450124B2 (en)
JPH03228521A (en) Electric discharge machining method
JPS6260211B2 (en)
JPH081438A (en) Electric discharge machining method and device therefor
JP3706622B2 (en) Solar clock
JP3119105B2 (en) Capacitor discharge type ignition system for internal combustion engine
JPS63295121A (en) Electric discharge machining power supply
JP2003045691A (en) Charging circuit for stroboscope
JP3019670B2 (en) Electric discharge machine
JPH0122273Y2 (en)
JPH08300222A (en) Electric discharge machining method and device thereof
SU1636145A1 (en) Pulse generator for edm and doping