JPS6310217B2 - - Google Patents

Info

Publication number
JPS6310217B2
JPS6310217B2 JP60186477A JP18647785A JPS6310217B2 JP S6310217 B2 JPS6310217 B2 JP S6310217B2 JP 60186477 A JP60186477 A JP 60186477A JP 18647785 A JP18647785 A JP 18647785A JP S6310217 B2 JPS6310217 B2 JP S6310217B2
Authority
JP
Japan
Prior art keywords
pitting corrosion
potential
pitting
content
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60186477A
Other languages
Japanese (ja)
Other versions
JPS6247444A (en
Inventor
Kazutoshi Shimogoori
Hiroshi Sato
Fumio Kamikubo
Yoshikatsu Tsumori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP18647785A priority Critical patent/JPS6247444A/en
Publication of JPS6247444A publication Critical patent/JPS6247444A/en
Publication of JPS6310217B2 publication Critical patent/JPS6310217B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、臭素イオンの存在環境、特に高温高
圧環境においてすぐれた耐孔食性を発揮し、かつ
化学装置・機器の構成材料として不可欠な特性で
ある成型加工性の良好なTi−Mo系合金に関する
ものである。 [従来の技術] Tiは耐食性の良い金属であり、特にハロゲン
イオンが存在する環境下における耐食性が良好で
あるというところから、上記の様な環境に曝され
るプロセス機器材料として広く使用される様にな
りつつある。例えば腐食環境用素材としては一般
にステンレス鋼が賞用されているが、ステンレス
鋼でさえ防食効果が発揮し得ない様な過酷な環境
の下では、Ti或はTi合金に頼る他なく、今やTi
は産業プロセス全体を支える重要な素材になつて
いる。 しかしTiの耐食性能は、何時如何なる場合に
おいても常に万全であるとは言えず、腐食条件の
苛酷な環境を選んで使用されるという背景もある
為、Tiの耐食性については色々な問題がある旨
指摘されている。 Tiの腐食は全面的に進むというより局部的に
発生及び進行するもの(即ち局部腐食)が問題と
なつており、中でも塩素イオンの存在する環境下
特に高温環境下における隙間腐食がもつとも大き
な注意を集めている。又これに次ぐ問題となつて
いるのは臭素イオンの存在する環境下における孔
食であり、一例としては、臭化物を触媒とする高
温高圧反応用容器における孔食による事故を挙げ
ることができる。 前者の隙間腐食は、金属材料表面に非常に狭い
隙間構造が形成されたときに発生するものである
が、後者の孔食は、その発生に当たつて必ずしも
隙間構造の存在を必要とするものではなく、又材
料表面のほとんど全部(例えば99%以上)が健全
な無腐食状態を呈しておりながら非常に局部的な
箇所のみが腐食されて穿孔に至るという現象であ
る。従つて孔食の発生は気付かないままで見過さ
れ、何らの対策を講じる間もなくいきなり事故の
発生を見るに至るという特色があり、孔食防止手
段確立の重要性は十分に認識されている。しかし
孔食の発生は隙間腐食発生のメカニズムとは全く
異なる機構によるものであると考えられており、
隙間腐食の防止に卓効を示した手段をそのまま転
用できる訳ではなく、独自の有効な手段を開発す
る必要があるとされている。 孔食防止手段としては、装置の運転制御面から
見たアプローチと材料自身の改良というアプロー
チに大別することができる。前者のアプローチに
よる成果としては、運転環境の苛酷性を緩和する
ものが有力であるが、この緩和方向はどちらかと
言えば化学プロセス自体の効率を犠牲にする傾向
と一致する為自ずから限界がある。しかも近年の
化学プロセスは腐食条件が苛酷化される方向を指
向して進展中であり、Tiの適用を阻む場面に遭
遇することも多い。そこで孔食抑制剤(所謂イン
ヒビター)の添加ということが検討され、硫酸イ
オン、硝酸イオン、燐酸イオン等のアニオンが有
効であることが分かつている。しかしインヒビタ
ーの添加はプロセス自体の汚染による反応収率の
低下等という弊害を招くもととなつており、やは
り広範な利用には不向きである。 一方材料面からのアプローチとしては、本発明
者等の提案に係る「Ti表面の硝酸処理法」(特開
昭58−39785号)がある。この方法は装置の運転
前における防食処理を骨子とするものである為、
プロセス液の汚染による悪影響がないばかりか、
耐孔食性自体もハロゲンイオンの種類と関係なく
安定して発揮されるという特色がある。しかし素
材段階或は装置加工後の段階で大量の硝酸(特に
熱硝酸)を使用するという工程が入る為、実際の
操業面においてはある程度の制約を受けざるを得
ない。 ところでハロゲンイオンによるTiの孔食発生
機構は、後に詳述する如く不働態被膜の局部的な
アノード破壊に端を発するものであると考えられ
ている。従つてTi材料の耐孔食性は不働態被膜
の破壊電圧の高低によつて評価し得るはずであ
り、破壊電圧が高い程耐孔食性が大きいと判断で
きる。従つてこの破壊電圧は孔食発生電位と言い
かえることもできる。 ハロゲンイオンのうち塩素イオンの影響に対し
ては、Ni含有Ti合金とすることによつて孔食発
生電位を上昇させ得ることが知られている
[Desalination 269−279(1967)]しかし本
発明者等の研究によると、臭素イオンが存在する
環境下ではNi含有Ti合金の孔食発生電位は予想
に反して高くならないことが分かつた。 [発明が解決しようとする問題点] 塩素イオンと臭素イオンは同じくハロゲンイオ
ンでありながら、孔食発生の防止におけるNiの
役割りという面で全く異なる様相を示すものであ
ることが分かつた。そこで本発明者等は塩素イオ
ン環境下における孔食発生機構と、臭素イオン環
境下における孔食発生機構の違いを解明すると共
に、合金元素の添加による孔食防止機能について
塩素イオン環境下と臭素イオン環境下における該
合金元素の挙動上の差異を究明し、更に種々の合
金元素を選んで実験することにより、臭素イオン
環境下において孔食をもつとも効果的に防止し得
る合金元素を探索した。 また化学装置や機器の構成材料として工業的に
使用する際に不可欠な特性である成型加工性につ
いても検討を加え、不純物元素としてのFe及び
O2の適正含有量を明らかにした。 すなわち、本発明の目的は、臭素イオンの存在
下における孔食を効果的に防止することができ、
かつ成型加工性も良好なTi合金を提供する点に
ある。 [問題点を解決するための手段] 上記目的に適う合金は、Moを0.2〜3.0%含み、
且つ不純物元素うち、Feは0.1%を上限とし、O2
はMo含有量(%)に対し次の関係式を満たし、 O2(%)≦9/35−1/28・Mo(%) 残部が実質的にTiよりなる点に要旨を有するも
のである。 [作用] ハロゲンイオンが存在する環境下でのTiの孔
食発生・進行機構は、前述した様に、Tiの耐食
性を保障すべき不働態被膜が局部的な破壊を受け
裸のTiが露出することに端を発するものである。
この不働態被膜の破壊は環境の酸化力によつてア
ノード分極されたときに発生するものであり、以
後は当該アノード的破壊部のみが急速に腐食され
ていくものと思われる。 そこでこの様な孔食発生の模様をより正しく把
握する目的で、電気化学的腐食理論に従つたアノ
ード分極曲線(模式図:第6図)を用いてモデル
的に把握してみると、次の様に解析することがで
きる。即ち自然電位(浸漬腐食電位)からスター
トして電位をプラス側へ徐々に高めていくと、ほ
ぼ横ばいであつた電流がある電位を境にして急激
に上昇する点があり、この臨界的電位を、当該材
料と環境因子との組合わせによつて決まる孔食発
生電位と定義することができる。そして孔食発生
電位より低電位側ではアノード分極が起こらない
為不働態被膜が健全なままで保存されて孔食の発
生が防止されているが、孔食発生電位を超えると
(アノード分極が起こると)不働態被膜の破壊が
起こり孔食が発生することになる。つまり与えら
れた一定の環境条件において示される孔食発生電
位の高低が、耐孔食性を評価する最大のパラメー
タとなり、孔食発生電位が高くなるにつれて耐孔
食性を向上させていくことを意味する。 そこで各種合金元素を加えて供試Ti合金を作
成し、高温高圧の臭素イオン含有水溶液中に浸し
て各合金の孔食発生電位を測定していつたとこ
ろ、Mo含有Ti合金の孔食発生電位が特に高いこ
とを見出した。しかしMo含有率が0.2重量%未満
では孔食防止効果が弱いので0.2重量%を下限と
定めた。そしてMo含有率の上昇につれて孔食防
止効果も上昇するが、3.0重量%になるとその効
果も飽和に達する。これは不働態被膜中における
Moの濃縮、或は微量溶出したMoイオンの表面
近傍における濃縮の為にその時点で孔食防止効果
が最高度に発揮されるからであろうかと思われ
る。そして3.0重量%を超えるMoの添加は工業材
料としての加工性や経済性に対してマイナス要因
となるので3.0重量%をもつて上限と定めた。 上記の様な効果はMoにおいて特有であり、塩
素イオン環境下における孔食防止効果が認められ
ているNiについては、臭素イオン環境下におい
て全く無効であつた。塩素イオンと臭素イオンの
差並びにNiとMoの差については次の様に考える
ことができる。 臭素イオン中の孔食発生電位は塩素イオン中の
それに比べてかなり低く、その分不働態被膜の破
壊も起こり易い。従つて臭素イオン中での孔食を
考えるに際しては、不働態被膜の性状(構造や組
成)だけでなく、臭素イオンが濃縮されて放電す
ることによる孔食の核生成サイトが重要な要因と
なるが、塩素イオン中では不働態被膜が厚く成長
した段階での被膜破壊になるため被膜性状自体が
支配的因子となり、核生成サイトの影響は少な
い。一方孔食の核生成サイトとしてはTiの金属
間化合物が優先的に作用する為、共析型の合金元
素であるNiやCoは核生成サイトを提供し易いも
のとなり、それ自身が不働態被膜の性状改善効果
を有していてもそれらが相殺し合うことになり、
結果的に耐孔食性の向上効果が見られなくなつて
しまう。これに対してMoは固溶体形成元素であ
り核生成サイトを提供しないから、不働態被膜の
性状改善効果がそのまゝ実効的に発揮されるに至
つたものと思われる。尚同じく固溶体形成元素で
あつても、VやWについての実験結果によれば耐
孔食効果は余り顕著なものではなかつた。この理
由は臭素イオンの吸着或は放電抑制等の機能にお
いて各元素個有の特質が発揮されるからであろう
と思われ、臭素イオン環境中における耐孔食効果
の発揮が固溶体元素の中でもMoに個有の能力で
あるということを見出し得たのは驚くべきことで
あつた。 ところでTiにMoを添加すると、前記0.2〜3.0
%程度の比較的少量の添加量であつても、Mo特
有の作用により付随的に材料強度が上昇し、それ
に対応して延性がいくらか低下する傾向は避けら
れない。そこで本発明では工業用装置材料として
の成型加工性を確保するために種々検討を加え不
純物元素としてのFe及びO2量に着目し実験を行
なつた。 まずFe量を変えたTi−Mo合金(Mo:0.2〜3.0
%)の板について曲げ試験を行なつたところMo
量に依るのではなく、Feが0.1%を超えると曲げ
性が劣化することを見出し、このことからFe量
の上限値として0.1%を超えなければ実用上十分
な延性が得られることを知つた。こうしたFe量
の制約は、金属間化合物(TiFe)の析出と関連
しているものと推定される。次にO2量を変えた
Ti−Mo合金についても同様の検討を行なつてい
つたところ、O2量の上限値にはMo量との相関が
あることを見い出した。すなわち、Mo量が増加
するにつれて、O2量の上限値は、次の関係式に
よつて低くする必要のあることを知見した。 O2(%)≦9/35−1/28・Mo(%) このようなO2量についての成型加工性からの
制約がMo量との関係で現われる理由については
詳細には明らかでないが、O2がα相(稠密六方
晶)安定化元素であり、Moがβ相(体心立方
晶)安定化元素であることを勘案すると、各々の
作用が互いに相関して作用することによるもので
はないかと推測される。 本発明の基本構成は上記の通りであるが、上記
要求特性のうち展伸材としての良好な成型加工性
をより確実に得る為には最終焼鈍熱処理条件を適
正に設定することが望まれる。 すなわち、該適正条件とは加熱保持温度を700
℃以上β変態点未満とする(第1条件)と共に冷
却速度を500℃/minより遅くする(第2条件)
ものである。その理由は温度に関しては、700℃
未満では十分な焼鈍効果が得られず、一方β変態
点(α+β二相組織からβ単相組織へ変態する温
度:主たる合金元素であるMoの含有量により多
少変動する)を超えると、その温度から冷却した
場合均一なα+β組織とならず、針状α相や不安
定β相などを含む組織となるからであり、その結
果成型加工性に乏しくなるものと考えられる。一
方、冷却速度に関しては、500℃/min以上の速
い冷却を行なうと、Moを含有した合金であるた
め、一種の焼入れ効果によつて成型加工性が劣化
するものと考えられる。 [実施例] 実施例 1 スポンジTi、Tiパウダー、Moパウダーを原料
とし、真空アーク溶解炉を用いてMo含有Ti合金
(Mo含有量:0〜8重量%)を溶製した。得ら
れた鋳塊を熱間鍛造後熱延し、更に冷延及び焼鈍
熱処理して2mmtの合金板を得た。これを切つて
20mm×20mmの角板を得、Tiリード線をスポツト
溶接することにより孔食発生電位測定用(アノー
ド分極曲線測定用)電極を製作した。 臭素イオン濃度1%(NaBr換算)の水溶液を
電気化学試験用のオートクレーブに入れ、140℃
及び200℃の2条件下に前記電極を浸漬し、孔食
発生電位を求めた。尚対極としてはPt板、照合
電極としては外部Ag/AgCl電極を用い自動定電
位電解装置による電位走査法に準じて測定を行な
つた。結果は第1表に示す。
[Industrial Application Field] The present invention exhibits excellent pitting corrosion resistance in an environment where bromide ions exist, particularly in a high temperature and high pressure environment, and has good moldability, which is an essential property as a constituent material for chemical equipment and equipment. This relates to Ti-Mo alloys. [Prior Art] Ti is a metal with good corrosion resistance, especially in environments where halogen ions are present, so it is widely used as a material for process equipment exposed to the above environments. It is becoming. For example, stainless steel is generally used as a material for corrosive environments, but in harsh environments where even stainless steel cannot provide anti-corrosion effects, we have no choice but to rely on Ti or Ti alloys, and now Ti
has become an important material that supports entire industrial processes. However, the corrosion resistance of Ti cannot be said to be perfect at any time and under any circumstances, and because it is used in environments with harsh corrosive conditions, there are various problems with Ti's corrosion resistance. It has been pointed out. The problem with Ti corrosion is that it occurs and progresses locally (i.e. localized corrosion) rather than all over the place, and in particular, crevice corrosion occurs in environments where chlorine ions are present, particularly in high-temperature environments, so special attention must be paid to this. are collecting. The next problem is pitting corrosion in environments where bromide ions are present, and one example is an accident caused by pitting corrosion in a high-temperature, high-pressure reaction vessel using bromide as a catalyst. The former type of crevice corrosion occurs when a very narrow gap structure is formed on the surface of a metal material, whereas the latter type of pitting corrosion does not necessarily require the existence of a gap structure for its occurrence. Rather, it is a phenomenon in which almost the entire surface of the material (for example, 99% or more) is in a healthy, non-corroded state, but only very localized areas are corroded, resulting in perforation. Therefore, the occurrence of pitting corrosion is overlooked without being noticed, and an accident suddenly occurs before any countermeasures can be taken.The importance of establishing means to prevent pitting corrosion is therefore fully recognized. However, the occurrence of pitting corrosion is thought to be due to a completely different mechanism from that of crevice corrosion.
It is said that the methods that have been shown to be highly effective in preventing crevice corrosion cannot be used as is, and that it is necessary to develop unique and effective methods. Measures to prevent pitting corrosion can be broadly divided into approaches from the perspective of controlling the operation of the equipment and approaches that involve improving the material itself. The former approach has a promising result of alleviating the harshness of the operating environment, but this direction of relaxation has its own limitations as it tends to sacrifice the efficiency of the chemical process itself. Moreover, recent chemical processes are progressing toward harsher corrosion conditions, and many situations are encountered that prevent the application of Ti. Therefore, the addition of pitting corrosion inhibitors (so-called inhibitors) has been considered, and anions such as sulfate ions, nitrate ions, and phosphate ions have been found to be effective. However, the addition of an inhibitor causes disadvantages such as a reduction in reaction yield due to contamination of the process itself, and is therefore unsuitable for widespread use. On the other hand, as an approach from the material standpoint, there is a ``nitric acid treatment method for Ti surfaces'' proposed by the present inventors (Japanese Patent Application Laid-open No. 39785/1985). This method is based on anti-corrosion treatment before operation of the equipment, so
Not only is there no negative impact due to contamination of process fluids, but
The pitting corrosion resistance itself is also unique in that it is stably exhibited regardless of the type of halogen ion. However, since the process involves the use of a large amount of nitric acid (particularly hot nitric acid) at the material stage or at the stage after equipment processing, there are some restrictions in actual operation. Incidentally, the mechanism of pitting corrosion of Ti caused by halogen ions is thought to originate from local anode destruction of the passive film, as will be explained in detail later. Therefore, the pitting corrosion resistance of a Ti material should be able to be evaluated based on the breakdown voltage of the passive film, and it can be judged that the higher the breakdown voltage is, the greater the pitting corrosion resistance is. Therefore, this breakdown voltage can also be referred to as the pitting corrosion potential. Regarding the influence of chlorine ions among halogen ions, it is known that the potential for pitting corrosion can be increased by using a Ni-containing Ti alloy [Desalination 3 269-279 (1967)] However, the present invention According to their research, it was found that the pitting corrosion potential of Ni-containing Ti alloys did not increase as expected in an environment where bromine ions were present. [Problems to be Solved by the Invention] It has been found that although chlorine ions and bromide ions are both halogen ions, they exhibit completely different aspects in terms of the role of Ni in preventing pitting corrosion. Therefore, the present inventors elucidated the difference between the pitting corrosion generation mechanism in a chloride ion environment and the bromine ion environment, and also investigated the pitting corrosion prevention function by adding alloying elements. By investigating the differences in the behavior of these alloying elements in the environment and conducting experiments with various alloying elements, we searched for an alloying element that can effectively prevent pitting corrosion in a bromide ion environment. We also investigated moldability, which is an essential characteristic when used industrially as a component material for chemical devices and equipment, and
The appropriate content of O 2 was clarified. That is, the object of the present invention is to effectively prevent pitting corrosion in the presence of bromide ions,
The present invention also provides a Ti alloy with good moldability. [Means for solving the problem] The alloy suitable for the above purpose contains 0.2 to 3.0% Mo,
Among the impurity elements, the upper limit for Fe is 0.1%, and the O 2
satisfies the following relational expression for the Mo content (%), O 2 (%) ≦9/35-1/28・Mo (%) The gist is that the remainder essentially consists of Ti. . [Operation] As mentioned above, the pitting corrosion occurrence and progression mechanism of Ti in an environment where halogen ions are present is that the passive film that should ensure the corrosion resistance of Ti is locally destroyed and bare Ti is exposed. It all stems from this.
This destruction of the passive film occurs when the anodic polarization occurs due to the oxidizing power of the environment, and it is thought that from then on, only the anodic destruction portion will be rapidly corroded. Therefore, in order to understand the pattern of pitting corrosion occurrence more accurately, we tried to understand it in a model using the anode polarization curve (schematic diagram: Figure 6) according to the electrochemical corrosion theory, and found that the following It can be analyzed in various ways. In other words, if you start from a natural potential (immersion corrosion potential) and gradually increase the potential to the positive side, there will be a point where the current, which remains almost flat, will suddenly increase after reaching a certain potential. can be defined as the potential for pitting corrosion to occur, which is determined by the combination of the material and environmental factors. Since anodic polarization does not occur at a potential lower than the pitting potential, the passive film remains healthy and prevents pitting from occurring. ) Destruction of the passive film occurs and pitting corrosion occurs. In other words, the magnitude of the pitting corrosion potential under given environmental conditions is the most important parameter for evaluating pitting corrosion resistance, and this means that as the pitting corrosion potential increases, the pitting corrosion resistance improves. . Therefore, we created test Ti alloys by adding various alloying elements and immersed them in a high-temperature, high-pressure aqueous solution containing bromide ions to measure the pitting corrosion potential of each alloy.We found that the pitting corrosion potential of the Mo-containing Ti alloy was I found that it was particularly high. However, if the Mo content is less than 0.2% by weight, the effect of preventing pitting corrosion is weak, so 0.2% by weight was set as the lower limit. As the Mo content increases, the pitting prevention effect also increases, but the effect reaches saturation when it reaches 3.0% by weight. This is in the passive film.
This is probably because the effect of preventing pitting corrosion is maximized at that point due to the concentration of Mo or the concentration of Mo ions eluted in small amounts near the surface. Since adding more than 3.0% by weight of Mo will have a negative effect on processability and economic efficiency as an industrial material, 3.0% by weight was set as the upper limit. The above-mentioned effect is unique to Mo, and Ni, which has been recognized to have a pitting corrosion prevention effect in a chloride ion environment, was completely ineffective in a bromide ion environment. The difference between chlorine ions and bromide ions and the difference between Ni and Mo can be considered as follows. The pitting potential in bromide ions is considerably lower than that in chlorine ions, and the passive film is more likely to be destroyed. Therefore, when considering pitting corrosion in bromide ions, important factors are not only the properties (structure and composition) of the passive film, but also the nucleation site of pitting corrosion caused by condensation and discharge of bromide ions. However, in chlorine ions, the passive film is destroyed when it grows thick, so the film properties themselves become the dominant factor, and the nucleation site has little effect. On the other hand, since the Ti intermetallic compound acts preferentially as a nucleation site for pitting corrosion, Ni and Co, which are eutectoid alloying elements, easily provide nucleation sites, and themselves form a passive film. Even if it has properties improvement effects, they cancel each other out,
As a result, the effect of improving pitting corrosion resistance is no longer observed. On the other hand, since Mo is a solid solution-forming element and does not provide nucleation sites, it seems that the effect of improving the properties of the passive film is effectively exerted as it is. According to the experimental results of V and W, which are also solid solution forming elements, the pitting corrosion resistance effect was not so remarkable. The reason for this is thought to be that each element exhibits its unique characteristics in functions such as adsorption of bromide ions or discharge suppression, and among solid solution elements, Mo exhibits pitting corrosion resistance in a bromide ion environment. It was surprising to discover that this was a unique ability. By the way, when Mo is added to Ti, the above 0.2 to 3.0
Even if it is added in a relatively small amount on the order of %, there is an unavoidable tendency for the material strength to increase concomitantly and the ductility to decrease to some extent due to the specific effects of Mo. Therefore, in the present invention, in order to ensure moldability as an industrial device material, various studies were conducted and experiments were conducted focusing on the amounts of Fe and O 2 as impurity elements. First, Ti-Mo alloy with different Fe content (Mo: 0.2 to 3.0
When a bending test was performed on a plate of %), Mo
They found that bendability deteriorates when Fe exceeds 0.1%, rather than depending on the amount of Fe. From this, they learned that sufficient ductility can be obtained for practical use as long as the upper limit of Fe content does not exceed 0.1%. . It is presumed that this restriction on the amount of Fe is related to the precipitation of intermetallic compounds (TiFe). Next, I changed the amount of O2 .
When we conducted similar studies on Ti-Mo alloys, we found that the upper limit of the O 2 content has a correlation with the Mo content. That is, it was found that as the amount of Mo increases, the upper limit value of the amount of O 2 needs to be lowered according to the following relational expression. O 2 (%) ≦9/35-1/28・Mo (%) Although it is not clear in detail why such constraints from moldability on the amount of O 2 appear in relation to the amount of Mo, Considering that O 2 is an α-phase (dense hexagonal crystal) stabilizing element and Mo is a β-phase (body-centered cubic crystal) stabilizing element, it is unlikely that each effect is due to a correlation with each other. It is assumed that there is no such thing. The basic structure of the present invention is as described above, but in order to more reliably obtain good formability as a wrought material among the above-mentioned required properties, it is desirable to appropriately set the final annealing heat treatment conditions. In other words, the appropriate conditions are heating and holding temperature of 700℃.
℃ or more and below the β transformation point (first condition), and the cooling rate is slower than 500℃/min (second condition)
It is something. The reason is that in terms of temperature, 700℃
If it is below the β transformation point (temperature at which α + β two-phase structure transforms to β single-phase structure: it varies somewhat depending on the content of Mo, the main alloying element), then the temperature This is because, when cooled from 100 to 100 mL, a uniform α+β structure is not formed, but a structure containing an acicular α phase, an unstable β phase, etc. is formed, and as a result, moldability is considered to be poor. On the other hand, regarding the cooling rate, if cooling is performed at a rate of 500° C./min or higher, since the alloy contains Mo, it is thought that the moldability will deteriorate due to a kind of quenching effect. [Examples] Example 1 Using sponge Ti, Ti powder, and Mo powder as raw materials, a Mo-containing Ti alloy (Mo content: 0 to 8% by weight) was melted using a vacuum arc melting furnace. The obtained ingot was hot-rolled after hot forging, and further subjected to cold rolling and annealing heat treatment to obtain a 2 mmt alloy plate. cut this
A square plate of 20 mm x 20 mm was obtained, and a Ti lead wire was spot welded to make an electrode for measuring the pitting corrosion potential (for measuring the anode polarization curve). An aqueous solution with a bromide ion concentration of 1% (NaBr equivalent) was placed in an autoclave for electrochemical testing and heated to 140°C.
The electrode was immersed under two conditions: and 200°C, and the pitting corrosion potential was determined. A Pt plate was used as the counter electrode, and an external Ag/AgCl electrode was used as the reference electrode, and the measurement was carried out according to the potential scanning method using an automatic potentiostatic electrolyzer. The results are shown in Table 1.

【表】 第1表に示す通り、Mo含有量が0.2%以上にな
ると孔食発生電位が急激に高くなり、耐孔食効果
を発揮するが、この効果はMo含有量3%あたり
で飽和に達する。 実施例 2 実施例1と同じ試験片を用い、同じ要領で孔食
発生電位を求めた。但し温度は200℃、臭素イオ
ン濃度は0.1%及び5%とした。結果は第1図に
示す通りであつて、Mo含有量が0.2%以上になる
と孔食発生電位が著しく高くなつた。 実施例 3 Ti−0.5%Mo、Ti−2%Mo、Ti−3%Moを
ベースにFe量を変えた合金板(O2量は0.05〜0.06
%のレベル)について、曲げR=板圧の2.5倍、
曲げ角度=180゜の曲げテストを実施した。結果は
第2表(全結果)及び第2図(2%Moベースの
データ)に示すとおりでありFe量が0.1%を超え
ると曲げ頂部にクラツクが発生するか、もしくは
180゜曲げの途中で破断するようになつて加工性の
劣化が認められた。尚Fe0.1%以下の範囲では孔
食電位に有意差のないことを別途確認した。
[Table] As shown in Table 1, when the Mo content exceeds 0.2%, the pitting corrosion generation potential increases rapidly and exhibits a pitting corrosion resistance effect, but this effect reaches saturation at around 3% Mo content. reach Example 2 Using the same test piece as in Example 1, the pitting corrosion potential was determined in the same manner. However, the temperature was 200°C, and the bromide ion concentrations were 0.1% and 5%. The results are shown in Figure 1, and the pitting corrosion potential became significantly higher when the Mo content was 0.2% or more. Example 3 Alloy plates with different amounts of Fe based on Ti-0.5%Mo, Ti-2%Mo, and Ti-3%Mo ( O2 amount is 0.05 to 0.06
% level), bending R = 2.5 times the plate pressure,
A bending test was conducted with a bending angle of 180°. The results are shown in Table 2 (full results) and Figure 2 (data based on 2%Mo).If the Fe content exceeds 0.1%, cracks will occur at the top of the bend, or
It began to break during 180° bending, and deterioration in workability was observed. It was separately confirmed that there was no significant difference in pitting potential in the Fe 0.1% or less range.

【表】 × 破断
実施例 4 Ti−0.5%Mo、Ti−2%Mo、Ti−3%Moを
ベースにO2量を変えた合金板(Fe量は0.04〜0.05
%レベル)について、実施例3と同様の曲げテス
トを実施した。 結果は第3表に示すとおりであり、O2量の増
加は曲げ性劣化をもたらすが、その上限値はMo
量の関係で変化した。(Moが多いほど上限値が
低い) すなわち第3図に示す如く、O2量の上限値は
Mo量とほゞ直線関係になり、成型加工性の面か
ら、この領域内にO2量を収める必要のあること
が明らかである。尚このO2量範囲内では孔食電
位に有意差がなく、Moの効果が支配的であるこ
とを別途確認した。
[Table] × Fracture Example 4 Alloy plates with varying amounts of O2 based on Ti-0.5%Mo, Ti- 2 %Mo, and Ti-3%Mo (Fe amount is 0.04 to 0.05
% level), the same bending test as in Example 3 was conducted. The results are shown in Table 3, and an increase in the amount of O 2 causes deterioration in bendability, but the upper limit is
It changed depending on the amount. (The more Mo there is, the lower the upper limit is.) In other words, as shown in Figure 3, the upper limit of O 2 amount is
There is a nearly linear relationship with the amount of Mo, and it is clear that the amount of O 2 must be kept within this range from the viewpoint of moldability. It was separately confirmed that there was no significant difference in the pitting corrosion potential within this O 2 content range, and that the effect of Mo was dominant.

【表】【table】

【表】 ○ 曲げ性良好(クラツクなし)
△ クラツク発生
× 破断
実施例 5 Ti−2%Mo−0.04%Fe−0.05%O2材(この材
料のβ変態点:882℃)の冷延板を各種熱処理条
件(温度及び冷却速度)で焼鈍後、180゜曲げテス
トを実施した。このとき、Fe及び/又はO2量が
前記規定範囲を外れた材料についても一部テスト
を実施した。 結果は第4表(全結果)、第4図(加熱温度と
曲げ性の関係を示すデータ)及び第5図(冷却速
度と曲げ性の関係を示すデータ)に示す通りであ
り、加熱温度と冷却速度が適正であれば良好な曲
げ性を得られることが明らかである。 但し、Fe及び/又はO2量が規定範囲外であれ
ば、温度と冷却速度が適正であつても加工性は不
良であつた。 尚、合金成分規定範囲内の材料は、焼鈍条件に
よつて孔食電位がほとんど変化しないことを別途
確認している。
[Table] ○ Good bendability (no cracks)
△Crack occurrence × Fracture Example 5 A cold rolled plate of Ti-2%Mo-0.04%Fe-0.05% O2 material (β transformation point of this material: 882℃) was annealed under various heat treatment conditions (temperature and cooling rate). After that, a 180° bending test was conducted. At this time, some tests were also conducted on materials whose Fe and/or O 2 amounts were outside the specified range. The results are shown in Table 4 (full results), Figure 4 (data showing the relationship between heating temperature and bendability), and Figure 5 (data showing the relationship between cooling rate and bendability). It is clear that good bendability can be obtained if the cooling rate is appropriate. However, if the amount of Fe and/or O 2 was outside the specified range, the workability was poor even if the temperature and cooling rate were appropriate. It has been separately confirmed that the pitting potential of materials within the specified alloy composition ranges hardly changes depending on the annealing conditions.

【表】【table】

【表】 △ クラツク発生
× 破断
[発明の効果] 本発明は以上の様に構成され、Moを含有する
ことによつて臭素イオン環境下におけるTi合金
の耐孔食性を著しく改善し、かつ不純物元素の
Fe及びO2量の上限を規定することにより、耐孔
食性には影響をもたらさずに成型加工性を改善す
ることに成功した。
[Table] △ Crack occurrence × Fracture [Effect of the invention] The present invention is constructed as described above, and by containing Mo, the pitting corrosion resistance of Ti alloy in a bromide ion environment is significantly improved, and the impurity element of
By specifying the upper limits of Fe and O 2 amounts, we succeeded in improving moldability without affecting pitting corrosion resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はTi−Mo合金におけるMo含有量と孔
食発生電位の関係を示すグラフ、第2図はTi−
2%Mo合金における曲げ性とFe量との関係を示
すグラフ、第3図は、Ti−Mo合金の曲げ性に関
して、O2量(上限値)とMo量との相関及び適正
域を示すグラフ、第4図は、曲げ性と焼鈍温度の
関係を示すグラフ、第5図は曲げ性と冷却速度の
関係を示すグラフ、第6図はアノード分極曲線の
模式図である。
Figure 1 is a graph showing the relationship between Mo content and pitting potential in Ti-Mo alloys, and Figure 2 is a graph showing the relationship between Mo content and pitting potential in Ti-Mo alloys.
A graph showing the relationship between bendability and Fe content in a 2% Mo alloy. Figure 3 is a graph showing the correlation between the O2 content (upper limit) and Mo content and the appropriate range regarding the bendability of a Ti-Mo alloy. , FIG. 4 is a graph showing the relationship between bendability and annealing temperature, FIG. 5 is a graph showing the relationship between bendability and cooling rate, and FIG. 6 is a schematic diagram of an anode polarization curve.

Claims (1)

【特許請求の範囲】 1 Mo:0.2〜3.0%(重量%の意味、以下同じ)
を含み、且つ不純物元素のうち、 Fe:0.1%以下 O2:Mo含有量(%)に対し次の関係を満たす量 O2(%)≦9/35−1/28・Mo(%) に制限し、残部が実質的にTiよりなるこことを
特徴とする臭素イオン環境下における耐孔食性に
すぐれ、かつ成型加工性の良いTi−Mo系合金。
[Claims] 1 Mo: 0.2 to 3.0% (meaning of weight %, the same applies hereinafter)
and among the impurity elements, Fe: 0.1% or less O 2 : An amount that satisfies the following relationship with Mo content (%) O 2 (%) ≦9/35-1/28・Mo (%) A Ti-Mo alloy having excellent pitting corrosion resistance in a bromide ion environment and good moldability.
JP18647785A 1985-08-24 1985-08-24 Ti-mo alloy excellent in pitting resistance in bromine ion environfment and having superior formability Granted JPS6247444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18647785A JPS6247444A (en) 1985-08-24 1985-08-24 Ti-mo alloy excellent in pitting resistance in bromine ion environfment and having superior formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18647785A JPS6247444A (en) 1985-08-24 1985-08-24 Ti-mo alloy excellent in pitting resistance in bromine ion environfment and having superior formability

Publications (2)

Publication Number Publication Date
JPS6247444A JPS6247444A (en) 1987-03-02
JPS6310217B2 true JPS6310217B2 (en) 1988-03-04

Family

ID=16189163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18647785A Granted JPS6247444A (en) 1985-08-24 1985-08-24 Ti-mo alloy excellent in pitting resistance in bromine ion environfment and having superior formability

Country Status (1)

Country Link
JP (1) JPS6247444A (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DESALINATION=1967 *
LOCALIZED CORROSION=1974 *

Also Published As

Publication number Publication date
JPS6247444A (en) 1987-03-02

Similar Documents

Publication Publication Date Title
Streicher Development of pitting resistant Fe-Cr-Mo alloys
Kang et al. Study of the correlation between pitting corrosion and the component ratio of the dual phase in duplex stainless steel welds
US7081173B2 (en) Super-austenitic stainless steel
KR101707284B1 (en) Titanium alloy
JP5379752B2 (en) Titanium alloy with excellent intergranular corrosion resistance
JP5661938B2 (en) Ni-Fe-Cr-Mo-alloy
JP5660253B2 (en) Titanium alloy with excellent corrosion resistance in environments containing bromine ions
Aimone et al. Niobium alloys for the chemical process industry
EP0171132B1 (en) Method for producing a weldable austenitic stainless steel in heavy sections
JP5505214B2 (en) High corrosion resistance titanium alloy having a large 0.2% proof stress in the rolling direction and its manufacturing method
JPS62216B2 (en)
EP0396821B1 (en) Zirconium alloy having improved corrosion resistance in nitric acid and good creep strength
WO2004015151A1 (en) Titanium alloys excellent in hydrogen absorption-resistance
JPH083670A (en) Nickel-base alloy excellent in workability and corrosion resistance
US3932175A (en) Chromium, molybdenum ferritic stainless steels
JPS6310217B2 (en)
US4050928A (en) Corrosion-resistant matrix-strengthened alloy
Rao et al. Effect of chemical composition and ferrite content on room temperature SCC behavior of austenitic weld metals
JP3878376B2 (en) Corrosion resistant Ti alloy
Poznansky et al. Stress Corrosion Cracking of Annealed and Sensitized Type 304 Stainless Steel in Deaerated Chloride/Sulfate Solutions at 290 C
JPH0231631B2 (en)
US3932174A (en) Chromium, molybdenum ferritic stainless steels
WO2022049796A1 (en) Austenitic stainless steel sheet and method for producing same
JPH0457735B2 (en)
Adenike Heat treatment and corrosion behaviour of 2101 duplex stainless steel cathodically modified with ruthenium