JPS63101817A - Optical shutter array element - Google Patents

Optical shutter array element

Info

Publication number
JPS63101817A
JPS63101817A JP24820486A JP24820486A JPS63101817A JP S63101817 A JPS63101817 A JP S63101817A JP 24820486 A JP24820486 A JP 24820486A JP 24820486 A JP24820486 A JP 24820486A JP S63101817 A JPS63101817 A JP S63101817A
Authority
JP
Japan
Prior art keywords
grooves
groove
optical shutter
electrode
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24820486A
Other languages
Japanese (ja)
Other versions
JPH0731315B2 (en
Inventor
Hirohisa Kitano
博久 北野
Itaru Saito
格 齊藤
Koichi Aragaki
新垣 康一
Ken Matsubara
兼 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP24820486A priority Critical patent/JPH0731315B2/en
Priority to US07/108,588 priority patent/US4854678A/en
Priority to DE3734849A priority patent/DE3734849C2/en
Publication of JPS63101817A publication Critical patent/JPS63101817A/en
Publication of JPH0731315B2 publication Critical patent/JPH0731315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the process for prepn. by providing an optical shutter part consisting of projecting parts of plate bodies enclosed by 1st, 2nd and 3rd grooves and satisfying the conditions a>c>b (a, b, c are the depth of the 1st, 2nd and 3rd grooves). CONSTITUTION:The many grooves 6, 6 for element sepn. are formed to PLZT2, which is deposited with aluminum by evaporation over the entire working surface, machining by using a dicing saw over the entire length at the specified pitch in the Y-axis direction intersecting orthogonally with the X-axis direction. The width of the grooves 6 is 20mum and the depth (c) satisfies the condition a>c>b. More specifically, the control electrode and electrode lead parts of the respective shutter elements can be separated and formed by cutting off part of the vapor deposited aluminum films of the grooves 4, 5 if the depth (c) of the grooves 6 is set in the above-mentioned manner with respect to the groove 3, and the grooves 4, 5. On the other hand, the need for cutting off the base part of the vapor deposited aluminum film of the groove 3 is eliminated and the electrode having nearly the same shape as the shape of control electrodes are formable simultaneously with the formation of the planar common electrode.

Description

【発明の詳細な説明】 生業J引を吐 この発明は、電気光学効果を有する物質を利用した光シ
ャッタに関し、特に光応用機器への用途が期待されてい
る光シャッタアレイ素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical shutter using a substance having an electro-optic effect, and particularly to an optical shutter array element that is expected to be used in optical application equipment.

K木へ抜帆 電気光学効果を有する物質、特にカ一定数の大きいPL
ZTを用いこの光シャッタ素子を一次元的に複数個配列
して光シャッタアレイ素子を形成し、これに偏光子と検
光子を組合わせて光シャッタが構成される。このような
光シャッタは応答速度が速く、高速プリンタとりわけ電
子写真式プリンタへの適用が期待されている。
Substances that have an electro-optic effect, especially PL with a large force constant
A plurality of optical shutter elements are arranged one-dimensionally using ZT to form an optical shutter array element, and an optical shutter is constructed by combining this with a polarizer and an analyzer. Such an optical shutter has a fast response speed and is expected to be applied to high-speed printers, especially electrophotographic printers.

従来、この種の光シャッタ7レイ素子は、ウェハ状のP
LZTの表面に電極パターンを形成することで構成され
ていたが(平面電極型)、ストレー容量の存在や駆動電
圧が高いこと等の欠点のため、最近ではシャッタ素子を
直方体状の立体に形成し対向面に電極を形成したいわゆ
る平行電極型の構造が、例えば特開昭60−15972
2号公報や特開昭60−170828号公報等で提案さ
れている。
Conventionally, this type of optical shutter 7-ray element uses a wafer-shaped P
It was constructed by forming an electrode pattern on the surface of LZT (planar electrode type), but due to drawbacks such as the presence of stray capacitance and high driving voltage, recently the shutter element has been formed into a rectangular solid shape. A so-called parallel electrode type structure in which electrodes are formed on opposing surfaces is disclosed in, for example, Japanese Patent Application Laid-Open No. 60-15972.
This method has been proposed in Publication No. 2, Japanese Patent Application Laid-open No. 170828/1983, and the like.

特開昭60−159722号公報の技術は、予め接続層
の電極をパターニングしたガラス基板の上に、対向電極
を形成した棒状のPLZTを接着し、これをダイヤモン
ドカッターにより一定のピッチで切断して光シャッタア
レイ素子とするものである。
The technique disclosed in Japanese Patent Application Laid-Open No. 60-159722 involves adhering rod-shaped PLZT on which a counter electrode is formed onto a glass substrate on which electrodes for a connection layer have been patterned in advance, and cutting the rod-shaped PLZT at a constant pitch using a diamond cutter. This is an optical shutter array element.

もう一つの特開昭60−170828号公報の技術は、
7オトリソグラフイー技術を用いるもので、平板状のP
LZTを化学エツチングして電極配設部の溝を形成し、
次いで全面に電極用の金属を蒸着し、その後所定の1!
極パターン、構造となるように再度7オトリソグラフイ
ー技術によるエツチング工程を経て光シャッタ7レイ素
子を完成するものである。
Another technique disclosed in JP-A-60-170828 is
7 Otolithography technology is used, and a flat P
Chemically etching the LZT to form a groove for the electrode placement part,
Next, a metal for electrodes is deposited on the entire surface, and then a predetermined 1!
The optical shutter 7-ray element is completed through an etching process using the 7-lithography technique again so as to form a polar pattern and structure.

明が  しようとする  弘 しかしながら、上記前者の技術は、極めて複雑な製作工
程を経るという問題があり、他方、後者の技術も、製作
工程が複雑であり、また化学エツチングによる溝形成で
あるのでこの溝の深さを深くできず(実施例では約2μ
論)、シャッタ素子駆動の観点から低電圧化が困難な問
題がある。
However, the former technique described above has the problem of an extremely complicated manufacturing process.On the other hand, the latter technology also has a complicated manufacturing process and groove formation is done by chemical etching, so this method is difficult to achieve. The depth of the groove cannot be increased (approximately 2μ in the example).
theory), there is a problem in which it is difficult to reduce the voltage from the viewpoint of driving the shutter element.

【 gを γするための−1 本発明は、シャフタ駆動の低電圧化を容易ならしめ製作
も極めて容易な光シャッタアレイ素子を提供することを
目的とする。
[-1 for g to γ] An object of the present invention is to provide an optical shutter array element that can easily reduce the voltage for driving the shutter and is extremely easy to manufacture.

本発明に係る光シャッタアレイ素子は、電気光学効果を
有する長尺の板状体に、その長手方向に沿って設けられ
、底面及び側面に電極用金属1膜を有する第1の溝と、
この第1の溝に沿って第1の溝から所定の距離をおいて
設けられ、底面及び側面に断続的に電極用金属薄膜を有
する第2の溝と、前記板状体の幅方向に所定のピッチで
多数設けられた第3の溝と、これら第1.第2.第3の
溝により囲まれた板状体の突部からなる光シャッタ部と
を備え、下記の条件を満たすことを特徴とするものであ
る。
The optical shutter array element according to the present invention includes a first groove provided along the longitudinal direction of an elongated plate-like body having an electro-optic effect and having a single electrode metal film on the bottom and side surfaces;
A second groove is provided at a predetermined distance from the first groove along the first groove, and has a metal thin film for electrodes intermittently on the bottom and side surfaces; A large number of third grooves are provided at a pitch of . Second. and an optical shutter section consisting of a protrusion of a plate-like body surrounded by a third groove, and is characterized in that it satisfies the following conditions.

a>c>b 但し、agbHcはそれぞれ第1.第2.第3の溝の深
さである。
a>c>b However, agbHc is the first . Second. This is the depth of the third groove.

前記第1.第2を第3の溝の深さをa>c>bとするこ
とにより、第3の溝を形成する際に、#41の溝に設け
られた電極用の金属薄膜を各シャッタ部に共用させた状
態で第2の溝に設けられた電極用の金属薄膜を各シャッ
タ部ごとに1tli続化させることが可能となる。この
ため、製作工程が非常に簡単化される。
Said 1st. By making the depths of the second and third grooves a>c>b, when forming the third groove, the metal thin film for the electrode provided in the #41 groove is shared by each shutter part. In this state, it becomes possible to connect the metal thin film for the electrode provided in the second groove by 1tli for each shutter portion. This greatly simplifies the manufacturing process.

X血皿 以下、添付図面に示す実施例によって具体的に説明する
XBlood Dish The following will specifically explain the embodiments shown in the accompanying drawings.

第4図に一実施例の光シャッタアレイ素子を示す。光シ
ャッタアレイ素子(10)は、中央部に、直方体状の光
シャッタ部(11)、(11)、・・・の素子アレイ(
11^)と、光シャッタ部(11)と同形の光シャッタ
部(12) 、 (12)=・・・の素子アレイ(12
八)の2列の7レイを備える@(13)、(13)は素
子アレイ(11八)、素子アレイ(12八)にまたがる
ように設けられた共通電極、(14)は光シャッタ部(
11)の制御電極で外部の駆動回路と接続するためのリ
ード部(14N)を備え、光シャッタ1(12)の制御
電極(15)も同様に外部の駆動回路と接続するための
リード部(15N)を備えでいる。
FIG. 4 shows an example of an optical shutter array element. The optical shutter array element (10) has a rectangular parallelepiped optical shutter section (11), (11), .
11^), an optical shutter section (12) having the same shape as the optical shutter section (11), and an element array (12) of (12)=...
(13) is a common electrode provided to span the element array (118) and the element array (128), and (14) is an optical shutter section (
The control electrode (11) has a lead part (14N) for connecting to an external drive circuit, and the control electrode (15) of the optical shutter 1 (12) similarly has a lead part (14N) for connecting to an external drive circuit. 15N).

共通電極(13)、 (13)が設けられている溝(3
)、制御電極(14)、(15)が設けられている溝(
4)、(5)及び素子アレイ(IIA)、<12^)の
各素子を共通に分離させている多数の溝(6)、(6)
t・・・は、いずれもが切削加工によって形成されてい
る。第1図〜第4図によって、この光シャッタアレイ素
子(10)の製作工程を説明する。
Groove (3) provided with common electrodes (13), (13)
), the groove (
4), (5) and a number of grooves (6), (6) commonly separating each element of the element array (IIA), <12^).
t... are all formed by cutting. The manufacturing process of this optical shutter array element (10) will be explained with reference to FIGS. 1 to 4.

第1図(、)に示すように、平板状長尺のPLZT(1
)を準備する。PLZT(1)の表裏両面は予め光学研
磨されている。PLZT(1)は例えば組成が9/65
/35のもので、その形状は長さ100a+m、幅5m
m5厚さ0.5mmである。
As shown in Figure 1(,), a long plate-shaped PLZT (1
) to prepare. Both the front and back surfaces of PLZT (1) have been optically polished in advance. For example, PLZT (1) has a composition of 9/65
/35, its shape is 100a+m long and 5m wide.
m5 thickness is 0.5 mm.

tPJ1図(b)に示すように、このPLZT(1)の
表面のほぼ中央部に、帯状のレジストパターン(2)を
形成する。レノストパターン(2)の幅は、300μ論
とし、通常一般のフォトリソグラフィーの技術を利用し
た。このレジストパターン(2)は、後述するように、
蒸着金属の除去に用いられる。なお、PLZT(1)の
長手方向をX軸方向、1唱方向でX軸線方向に直交する
方向をY軸方向とし、■−■線に沿う断面図を第2図に
示す。レジストパターン(2)の厚みは1μm程度でよ
い。
tPJ1 As shown in Figure (b), a band-shaped resist pattern (2) is formed approximately at the center of the surface of this PLZT (1). The width of the Lennost pattern (2) was set to 300 μm, and a general photolithography technique was used. This resist pattern (2) is, as described later,
Used to remove deposited metal. Note that the longitudinal direction of PLZT (1) is the X-axis direction, and the direction perpendicular to the X-axis direction in the first direction is the Y-axis direction, and a cross-sectional view taken along the line ■-■ is shown in FIG. The thickness of the resist pattern (2) may be about 1 μm.

次に、このレジストパターン(2)を形成したPLZT
(1)の当Mレジストパターン(2)の中央をX軸方向
にPLZT(1)の全長にわたって切削し、第3図に示
す共通電極用のm(3)を形成する。切削は、送り精度
5μ論のグイシングツ−で行い、刃厚が25μ膣のダイ
ヤモンドカッターを用いた。
Next, the PLZT on which this resist pattern (2) was formed is
The center of the M resist pattern (2) of (1) is cut along the entire length of the PLZT (1) in the X-axis direction to form m (3) for the common electrode shown in FIG. Cutting was performed with a guissing tool with a feed accuracy of 5 μm, and a diamond cutter with a blade thickness of 25 μm was used.

!(3)の形状は、幅80μW、深さa=150μ論で
ある。
! The shape of (3) has a width of 80 μW and a depth of a=150 μ.

なお、深さはPLZT(1)の表面を基準とする。Note that the depth is based on the surface of PLZT (1).

さらに、上記切削工程と同様の態様で、前記溝(3)の
両側縁から一定の間隔をおいて溝(3)と平行に、すな
わちX軸方向にPLZT(1)の全長にわたって切削し
、第3図に示すように、7レイ素子用の溝(4)、溝(
5)を順に形成する。溝(4)、(5)の形状は等しく
、′@80μ論、深さb=tiop−である。
Furthermore, in the same manner as the cutting process described above, the PLZT (1) is cut over the entire length in parallel to the groove (3) at a constant interval from both side edges of the groove (3), that is, in the X-axis direction. As shown in Figure 3, the groove (4) for the 7-ray element, the groove (
5) are formed in order. The grooves (4) and (5) have the same shape, '@80μ theory, and depth b=tiop-.

溝(3)と溝(4)、(5)の間隔すなわち光シャッタ
部のシャツタ窓の長さは80μ輪とした。なお、このシ
ャツタ窓の長さ80AIIIl及び!(3L溝(4)(
5)の深さa、bは、光シャッタに要求される性能に応
じてかつ切削加工の精度の範囲内において自在に選択可
能である。ただし、a>bを条件とする。
The distance between groove (3) and grooves (4) and (5), that is, the length of the shutter window of the optical shutter section was set to 80 μm. In addition, the length of this shirt window is 80AIIIl and! (3L groove (4) (
The depths a and b in 5) can be freely selected depending on the performance required of the optical shutter and within the range of cutting accuracy. However, the condition is a>b.

次の工程は、電極用の導電性金属を設ける工程である。The next step is to provide conductive metal for the electrodes.

実施例ではスパッタリング法を用い、切削加工したPL
ZT(1)の加工面を含む表面の全体にアルミを蒸着し
た。
In the example, PL was cut using a sputtering method.
Aluminum was deposited on the entire surface of ZT (1) including the processed surface.

次にこのアルミを加工面全体に蒸着したPLZT(1)
に対し、グイシングツ−を用いてX軸方向とは直交する
Y軸方向に一定のピッチで全長にわたって切削し、第4
図に示すように、素子分離用の多数の溝(6)、(6L
・・・を形成する。ダイヤモンドカッターは刃厚が15
μmのものを用いた。!(6)の幅は20μ鑓、深さc
=130μm1 ピッチは80μmとした。深さCは、
a>c>bの条件を満足する。即ち、溝(3)、溝(4
)(5)に対し溝(6)の深さCをこのように設定する
と、m(4)、(5)のアルミ蒸着膜の一部を削り取っ
て各シャッタ素子の制御電極及び電極リード部を分離形
成できる一方、溝(3)のアルミ蒸着膜のうち底面部の
ものを削り取らずに済み、面状の共通電極を形成すると
同時に制御電極とほぼ同形の対向電極を形成できる。従
来例における電極形成が大変複雑な工程をとっていたこ
とに比べると、本例は単なる溝入れ加工のみでよく電極
形成のための工程が大幅に簡略化される。
Next, PLZT (1) with this aluminum vapor-deposited over the entire processed surface.
Then, using a cutting tool, cutting was performed over the entire length at a constant pitch in the Y-axis direction perpendicular to the X-axis direction, and the fourth
As shown in the figure, there are many grooves (6), (6L) for element isolation.
... to form. The blade thickness of the diamond cutter is 15
A micrometer was used. ! (6) width is 20μ, depth c
=130 μm1 The pitch was 80 μm. The depth C is
The condition a>c>b is satisfied. That is, groove (3), groove (4
) If the depth C of the groove (6) is set in this manner for (5), part of the aluminum vapor deposited film of m(4) and (5) is scraped off to form the control electrode and electrode lead portion of each shutter element. While it can be formed separately, it is not necessary to scrape off the bottom part of the aluminum vapor deposited film in the groove (3), and at the same time a planar common electrode can be formed and a counter electrode having substantially the same shape as the control electrode can be formed. Compared to the conventional example in which electrode formation required a very complicated process, this example requires only a simple grooving process, and the process for electrode formation is greatly simplified.

最後に、シャッタ素子(11)、<12)の上面に形成
されているアルミ蒸着膜を除去する。アルミ蒸着膜はレ
ノスト(2)上に形成されており、レジスト剥離液によ
ってレジスト(2)をアルミ蒸着膜とともに剥離する(
す7トオ7法)、なお、蒸着膜の除去方法は、レジスト
を用いる方法のほか、レジストを使用せず(レジスト形
成工程の省略)、PLZT表面に直接蒸着された金属薄
膜を光学研磨と同等の手法で削り取るようにしてもよい
Finally, the aluminum vapor deposition film formed on the upper surface of the shutter element (11), <12) is removed. The aluminum vapor deposited film is formed on the renost (2), and the resist (2) is removed together with the aluminum vapor deposited film using a resist stripping solution (
In addition, the method for removing the deposited film is the method using a resist, or the method equivalent to optical polishing, which does not use a resist (omission of the resist forming step) and directly deposits a metal thin film on the PLZT surface. It is also possible to scrape it off using the method described below.

以上のようにして第4図に示される光シャッタ7レイ素
子(10)を得る。光シャッタアレイ素子(10)は、
光シャッタ部(11)、(11)、・・・からなる索子
7レイ(11A)と光シャッタ部(12)、 (12)
、・・・からなる素子7レイ(12八)の2列から構成
される。第5図に等価な回路図を示す。図中、(20)
は素子アレイ(11^)のシャッタ素子(11)に駆動
パルスを与える駆動回路(半導体チップ状の回路を含む
)、(21)は素子アレイ(12^)のシャッタ素子(
12)を駆動する駆動回路である。
In the manner described above, the optical shutter 7-ray element (10) shown in FIG. 4 is obtained. The optical shutter array element (10) is
A cable 7-ray (11A) consisting of an optical shutter section (11), (11), ... and an optical shutter section (12), (12)
, . . . consists of two rows of 7 arrays (128) of elements. FIG. 5 shows an equivalent circuit diagram. In the figure, (20)
is a drive circuit (including a circuit in the form of a semiconductor chip) that provides a drive pulse to the shutter element (11) of the element array (11^), and (21) is the shutter element (12^) of the element array (12^).
12).

駆動回路(20)と素子アレイ(11^)とは、素子ア
レイ(11^)の奇数番目の光シャッタ部(11)とリ
ード線を介して電気的に個別に接続し、他方、駆動回路
(21)と素子アレイ(12^)とは、素子アレイ(1
2八)の偶数番目の光シャッタ部(12)と同様にリー
ド線を介し個別に接続する。駆動回路(20)、(21
)と接続しない光シャッタ部は利用されない、駆動回路
(20)、(21)は時分割で作rJhされ、2列のシ
ャッタ7レイ(IIA)、(12^)のシャッタ作用で
画像のドツト状ライン1本を形成する0時間差は、画像
形成部たとえば感光体ドラムの回転により調整する。
The drive circuit (20) and the element array (11^) are individually electrically connected to the odd-numbered optical shutter sections (11) of the element array (11^) via lead wires, and the drive circuit ( 21) and element array (12^) are element array (1
Similarly to the even-numbered optical shutter sections (12) in item 28), they are individually connected via lead wires. Drive circuit (20), (21
) is not used. The drive circuits (20) and (21) are created in a time-division manner, and the shutter action of the two rows of shutters 7 rays (IIA) and (12^) produces a dot-shaped image. The zero time difference for forming one line is adjusted by rotating the image forming unit, for example, the photosensitive drum.

これにより、実施例の光シャッタで80μ輸ピツチすな
わち12ドツト/lII+1の高解像度が達成できる。
As a result, a high resolution of 80 μm transfer pitch, that is, 12 dots/lII+1, can be achieved with the optical shutter of the embodiment.

上記実施例に示すように、シャツタ列を2列設。As shown in the above embodiment, two shirt rows are provided.

けるのは、この高解像度を達成できるように光シャッタ
アレイ素子と駆動回路間のリード線接続の困難さを回避
するためである。すなわち、第6図の、シャッタ素子(
12)の制御電極に連なる電極リード部(15β)の部
分平面拡大図に示すように、電極リード部(15N)は
80μ論のピッチでしかもその幅は60μ鴫しかない、
現状のリード線ワイヤーボングーでは、ピッチ80μ−
の精度をもちハング等の接続平均径が60μ論以内で充
分な接続強度が得られるものは見出し難い。
The reason for this is to avoid the difficulty of connecting lead wires between the optical shutter array element and the drive circuit so that this high resolution can be achieved. That is, the shutter element (
As shown in the partial plan enlarged view of the electrode lead part (15β) connected to the control electrode in 12), the electrode lead part (15N) has a pitch of 80 μm and a width of only 60 μm.
The current lead wire bongoo has a pitch of 80μ-
It is difficult to find a device with such accuracy that sufficient connection strength can be obtained with an average connection diameter of 60 μm or less.

そこで、ワイヤーボングーの現状に適するように、電極
リード部(151)、 (14Z)を1つおきに、すな
わち160μmピッチでリード線と接続するようにした
ものである。したがって、このようにすれば、容易に自
動化ラインに乗せることが可能となり、生産性の利益が
大きい。
Therefore, in order to suit the current state of wire bongs, the electrode lead parts (151) and (14Z) are connected to the lead wires every other electrode, that is, at a pitch of 160 μm. Therefore, in this way, it becomes possible to easily put it on an automated line, and there is a great benefit in terms of productivity.

第7図は、シャツタ列2列の他の実施例を示している。FIG. 7 shows another embodiment with two shirt shirt rows.

第4図の光シャッタアレイ素子(10)にリード線接続
の観点から改良を加えたものである。
This is an improved version of the optical shutter array element (10) shown in FIG. 4 from the viewpoint of lead wire connection.

すなわち、動作させない光シャッタ部(11’)、(1
2’)の電極リード部(141) 、 (151)の端
部を削り取って削除部(34)、(35)とし、動作さ
せるべき光シャッタ部の電極リード部(141)、 <
151)の端部にリード線をハング等で接続する際、こ
の削除部(34)、(35)により、接続、α(接続強
度を確保するために平均径100μm以上必要)が隣接
の電極リード部と接続されるのを有効に防止する。なお
、この削除部(34)、(35)も溝の加工と同様にダ
イヤモンドカッターを用いて形成することができる。
That is, the optical shutter parts (11') and (1
The ends of the electrode lead parts (141) and (151) of 2') are scraped off to form deleted parts (34) and (35), and the electrode lead parts (141) and 2' of the optical shutter part to be operated are cut off to form deleted parts (34) and (35).
When connecting the lead wire to the end of the 151) by hanging, etc., the removed parts (34) and (35) allow the connection and α (average diameter of 100 μm or more is required to ensure connection strength) to be connected to the adjacent electrode lead. This effectively prevents the device from being connected to other parts. Note that the deleted portions (34) and (35) can also be formed using a diamond cutter in the same manner as the groove processing.

また、このような切削加工に替え、tlIJ4図に示す
例において、隣接の電極リード部に接続点部が接続され
てしまっても、シャッタ実動作上は何ら    ・支障
がないように、動作させないシャッタ素子のシャツタ窓
を予めマスクしておくようにしてもよ〜1゜ 上記の実施例はいずれも、外部の駆動回路との接続を考
慮して2列のシャツタ列を設けたものであるが、特にこ
の接続に配慮する必要がない、もしくは別段の精密接続
技術が存するなら、基本的には、第8図(a)、(b)
に示されるようなシャツタ列1列のものでもよい、これ
ら実施例でも、2列のちのと同様に機能し、均等である
ことは言うよでもない。すべての光シャッタ部を動作可
能としてもよく、また1つおきに動作可能としでもよい
In addition, instead of such cutting, in the example shown in Figure tlIJ4, even if the connection point part is connected to the adjacent electrode lead part, there will be no problem in the actual operation of the shutter. The shutter window of the element may be masked in advance~1° In both of the above embodiments, two rows of shutter shutters are provided in consideration of connection with an external drive circuit. If there is no need to pay special attention to this connection, or if there is a separate precision connection technology, basically the method shown in Figures 8(a) and (b)
It goes without saying that these embodiments may also have one row of shirts as shown in FIG. All the optical shutter sections may be made operable, or every other optical shutter section may be made operable.

先に示した実施例の寸法形状に限定されることなく、ま
たカッターの精度が許容する範囲の切削加工を行うこと
ができる。そして、溝をより深くすると、駆動電圧をよ
り低くすることができ、シャツタ窓の幅をより大きくし
ても駆動電圧の低下を図ることができる。
Cutting can be performed within the range allowed by the accuracy of the cutter without being limited to the dimensions and shapes of the embodiments shown above. Further, if the groove is made deeper, the driving voltage can be lowered, and even if the width of the shutter window is made larger, the driving voltage can be lowered.

なお、第8図(a)は溝(6)を溝(3)まで設けた例
、同図(b)は溝(6)をPLZT(1)の幅方向いっ
ばいに切削した例であり、加工の容易さでは後者が秀れ
るが、ベースバイアスを与える共通電極(13)の面積
の広い前者は電気的特性で有利である。
In addition, FIG. 8(a) is an example in which the groove (6) is provided up to the groove (3), and FIG. 8(b) is an example in which the groove (6) is cut all the way in the width direction of the PLZT (1). Although the latter is superior in terms of ease of processing, the former has an advantage in electrical characteristics because the common electrode (13) that provides a base bias has a large area.

尚、以上の実施例において、リード部(14F)、(1
51)は、リード線が接続されるためのものであり、特
に溝(4)、(5)の底面に対して突出している必要は
なく、溝(4)、(5)の底面と同一平面内に設けられ
ていてもよい。
In addition, in the above embodiment, the lead part (14F), (1
51) is for connecting the lead wire, and does not need to protrude from the bottom of the grooves (4) and (5), but should be flush with the bottom of the grooves (4) and (5). It may be provided inside.

免哩二災及 以上のように、本発明によれば、クロストークがなく、
低電圧で駆動可能な光シャッタアレイ素子を実質的に溝
入れ加工のみで得られ、製作工程を極めて簡易なものと
できる効果がある。
As mentioned above, according to the present invention, there is no crosstalk,
An optical shutter array element that can be driven at a low voltage can be obtained substantially only by grooving, and the manufacturing process can be made extremely simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)、第2図、第3図、第4図は本発
明の一実施例に係る光シャッタアレイ素子の製作工程の
説明図であり特に第4図は一実施例の光シャフタアレイ
素子を模式的に示した図、第5図は運動回路との接続を
示す等価回路図、第6図は電極リード部の部分拡大平面
図、$7図は他の実施例を示す図、第8図(a)、(b
)はシャツタ列が1列の実施例を示す図である。 1・・・PLZT、3・・・共通電極用の溝、4,5・
・・制御電極用の溝、6・・・素子分離用の溝、11.
12・・・光シャッタ部、13・・・共通電極、14.
15・・・制御電極。
1(a), (b), FIG. 2, FIG. 3, and FIG. 4 are explanatory diagrams of the manufacturing process of an optical shutter array element according to an embodiment of the present invention, and in particular, FIG. FIG. 5 is an equivalent circuit diagram showing the connection with the motion circuit, FIG. 6 is a partially enlarged plan view of the electrode lead part, and FIG. Figure 8 (a), (b)
) is a diagram showing an example in which the number of shirt shirt rows is one. 1... PLZT, 3... Groove for common electrode, 4, 5...
...Groove for control electrode, 6...Groove for element isolation, 11.
12... Optical shutter section, 13... Common electrode, 14.
15...Control electrode.

Claims (1)

【特許請求の範囲】[Claims] (1)電気光学効果を有する長尺の板状体に、その長手
方向に沿って設けられ、底面及び側面に電極用金属薄膜
を有する第1の溝と、 この第1の溝に沿って第1の溝から所定の距離をおいて
設けられ、底面及び側面に断続的に電極用金属薄膜を有
する第2の溝と、 前記板状体の幅方向に所定のピッチで多数設けられた第
3の溝と、 これら第1、第2、第3の溝により囲まれた板状体の突
部からなる光シャッタ部とを備え、下記の条件を満たす
ことを特徴とする光シャッタアレイ素子。 a>c>b 但し、a、b、cは第1、第2、第3の構の深さである
(1) A first groove provided along the longitudinal direction of a long plate-like body having an electro-optic effect and having a metal thin film for electrodes on the bottom and side surfaces; A second groove is provided at a predetermined distance from the first groove and has a metal thin film for electrodes intermittently on the bottom and side surfaces, and a large number of third grooves are provided at a predetermined pitch in the width direction of the plate-shaped body. An optical shutter array element comprising: a groove; and an optical shutter section consisting of a protrusion of a plate-shaped body surrounded by the first, second, and third grooves, and satisfying the following conditions. a>c>b where a, b, and c are the depths of the first, second, and third structures.
JP24820486A 1986-10-17 1986-10-17 Optical shutter array element Expired - Lifetime JPH0731315B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP24820486A JPH0731315B2 (en) 1986-10-17 1986-10-17 Optical shutter array element
US07/108,588 US4854678A (en) 1986-10-17 1987-10-14 Electro-optical light shutter device
DE3734849A DE3734849C2 (en) 1986-10-17 1987-10-14 Electro-optical dimming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24820486A JPH0731315B2 (en) 1986-10-17 1986-10-17 Optical shutter array element

Publications (2)

Publication Number Publication Date
JPS63101817A true JPS63101817A (en) 1988-05-06
JPH0731315B2 JPH0731315B2 (en) 1995-04-10

Family

ID=17174740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24820486A Expired - Lifetime JPH0731315B2 (en) 1986-10-17 1986-10-17 Optical shutter array element

Country Status (1)

Country Link
JP (1) JPH0731315B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989003541A1 (en) * 1987-10-09 1989-04-20 Eastman Kodak Company In-depth electrode light valve array devices and improved fabrication method therefor
JPH08211345A (en) * 1995-11-09 1996-08-20 Minolta Co Ltd Manufacture of optical shutter array
US5911944A (en) * 1996-06-28 1999-06-15 Minolta Co., Ltd. Method for production of fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989003541A1 (en) * 1987-10-09 1989-04-20 Eastman Kodak Company In-depth electrode light valve array devices and improved fabrication method therefor
JPH08211345A (en) * 1995-11-09 1996-08-20 Minolta Co Ltd Manufacture of optical shutter array
US5911944A (en) * 1996-06-28 1999-06-15 Minolta Co., Ltd. Method for production of fiber

Also Published As

Publication number Publication date
JPH0731315B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
EP0305204B1 (en) Method of fabricating image sensor dies for use in assembling arrays
US5128282A (en) Process for separating image sensor dies and the like from a wafer that minimizes silicon waste
EP0364964B1 (en) Field emission cathodes
EP0210723B1 (en) Ultrasonic probe
US5219796A (en) Method of fabricating image sensor dies and the like for use in assembling arrays
US4604161A (en) Method of fabricating image sensor arrays
EP0366974B1 (en) Semiconductor circuit
US20050070059A1 (en) Method of making thin silicon sheets for solar cells
US4992908A (en) Integrated circuit module
JPS63107074A (en) Manufacture of infrared emission detecting device
JP4967777B2 (en) Inkjet head manufacturing method
US4289384A (en) Electrode structures and interconnecting system
JP2590988B2 (en) Optical shutter array
US5067233A (en) Method of forming an integrated circuit module
US8269400B2 (en) Ultrasonic transducer, ultrasonic diagnosis apparatus using the same, and ultrasonic flaw inspection apparatus using the same
JPS63101817A (en) Optical shutter array element
US4624741A (en) Method of fabricating electro-mechanical modulator arrays
EP0417851B1 (en) Two-terminal non-linear devices and their method of fabrication
JPS63159823A (en) Optical shutter array
US20020141030A1 (en) Opposing electrode light modulator array and method for manufacturing the same
US4388525A (en) Precision optical spacers for image sensor filters
JP2555616B2 (en) Optical shutter array
JPH05315703A (en) Manufacture of semiconductor laser
JPH0416767B2 (en)
US4515662A (en) Process for fabricating precision optical spacers for image sensor filters

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term