JPS63101738A - Production yield measurement for sintered body - Google Patents

Production yield measurement for sintered body

Info

Publication number
JPS63101738A
JPS63101738A JP61247514A JP24751486A JPS63101738A JP S63101738 A JPS63101738 A JP S63101738A JP 61247514 A JP61247514 A JP 61247514A JP 24751486 A JP24751486 A JP 24751486A JP S63101738 A JPS63101738 A JP S63101738A
Authority
JP
Japan
Prior art keywords
sintered body
yield
image
sintering
scanner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61247514A
Other languages
Japanese (ja)
Other versions
JPH06105229B2 (en
Inventor
Shunji Kasama
俊次 笠間
Tadahiro Inasumi
忠弘 稲角
Katsuhiko Sato
勝彦 佐藤
Michio Sasaki
佐々木 三千夫
Masaru Konishi
勝 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61247514A priority Critical patent/JPH06105229B2/en
Publication of JPS63101738A publication Critical patent/JPS63101738A/en
Publication of JPH06105229B2 publication Critical patent/JPH06105229B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To achieve a higher production yield of a sintered body quickly and accurately, by synthesizing an image divided in terms of CT value level per composing pixel from an image of a transverse section taken with a CT scanner to measure the production yield from the area and peripheral length of the image. CONSTITUTION:A sinter-cake-shaped mass of a sintered body is sampled to be irradiated with X-rays and taken with a CT scanner to obtain an image of any transverse section of the sintered body. Images with the CT value above and below 2,000 respectively at 420kV of tube voltage are synthesized per image composing pixel to determine sintering degree eta1={1-M/(M+N)}X100% and breaking yield eta2=(1-kXL/N)X100% from the areas M and N(mm<2>), peripheral length L(mm) and breaking coefficient k(mm). Production yield eta3=eta1Xeta2 is measured from the sintering degree eta1 and breaking yield eta2.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は粉粒体を焼成して塊状化した産物の焼結体、
すなわち鉄鉱石焼結鉱およびCr、M n。
[Detailed Description of the Invention] (Industrial Application Field) This invention provides a sintered body of a product obtained by firing and agglomerating powder and granules;
That is, iron ore sinter and Cr, M n.

Ti等の合金用鉱石の焼結鉱の製造工程における製造歩
留を測定する方法に関するものである。
The present invention relates to a method for measuring the production yield in the production process of sintered ore for alloys such as Ti.

(従来の技術) 粉粒体を加熱し部分的に融液を生成させ、この融液を媒
体として粒子同志が合体あるいは結合する焼結反応にお
いては、生成する焼結体内に焼結の不充分な部分が形成
しゃすい。従来、これらの焼結の良否は、焼結が完了し
た時点のシンターケーキ重量に対する最終成品重量の比
率すなわち成品歩留で測定している。しかしながら、成
品歩留の測定は通常数時間に1回しか行われておらず、
迅速なアクションによる成品歩留の制御は困難である。
(Prior art) In a sintering reaction in which a powder or granular material is heated to partially generate a melt, and particles coalesce or bond together using this melt as a medium, insufficient sintering occurs in the generated sintered body. It is easy to form parts. Conventionally, the quality of sintering has been measured by the ratio of the weight of the final product to the weight of the sinter cake at the time of completion of sintering, that is, the product yield. However, measurement of product yield is usually only carried out once every few hours.
Controlling product yield through quick action is difficult.

また、この測定方法では焼結以外の多くの要因、例えば
原料の材質および成品等に左右されるため、製造工程で
の異常発生時あるいは成品の品質変動時には原因遡及が
難しく、歩留向上のためのアクションは経験と勘に頼ら
ざるを得なかった。
In addition, this measurement method is affected by many factors other than sintering, such as the quality of the raw materials and the finished product, so when an abnormality occurs in the manufacturing process or the quality of the finished product changes, it is difficult to trace the cause. Actions had to rely on experience and intuition.

この対策として特開昭61−110726号公報では、
CTスキャナーを利用して焼結度を直接測定する方法が
開示されている。この方法は6丁スキャナーを用いて焼
結体の任意の横断面を撮像して得られた画像をCT値に
よって焼結完了部と未完了部とに区別し、焼結完了部の
割合、すなわち焼結度を直接測定するものである。この
方法によれば、焼結が未完了であるために生じる製造歩
留の低下を評価することができる。ここで、製造歩留と
は、焼結が完了した時点のシンターケーキ重量に対する
、その後に引き続く成品処理工程および輸送工程におけ
る任意の時点での生成品重量あるいは最終成品重量の比
率を言う。したがってシンターケーキ重量に対する最終
成品重量の比率の場合、製造歩留は成品歩留と同等であ
る。
As a countermeasure to this problem, Japanese Patent Application Laid-Open No. 110726/1983
A method for directly measuring the degree of sintering using a CT scanner is disclosed. This method uses a 6-blade scanner to image an arbitrary cross section of a sintered body, and the resulting image is divided into sintered areas and unfinished areas based on the CT value, and the percentage of sintered areas is determined. This method directly measures the degree of sintering. According to this method, it is possible to evaluate the decrease in manufacturing yield caused by incomplete sintering. Here, the production yield refers to the ratio of the weight of the product or the weight of the final product at any point in the subsequent product processing and transportation steps to the weight of the sinter cake at the time when sintering is completed. Therefore, for the ratio of final product weight to sinter cake weight, manufacturing yield is equivalent to finished product yield.

一方、全て焼成完了部で構成された焼結体であっても、
焼結後のクラッシャーやスクリーン等の成品処理工程お
よび輸送工程において衝りを受けることにより、焼結鉱
は少なからず破砕されるために、返鉱が発生する。
On the other hand, even if the sintered body is composed entirely of fired parts,
Since sintered ore is crushed to a considerable extent by being subjected to impacts during product processing and transportation steps such as crushers and screens after sintering, return ore is generated.

実際の製造工程においては、前記の焼結工程から成品処
理工程および輸送工程まで含めた製造歩留が製造コスト
に大きく影響を及ぼすため、単に焼結度の測定だけでは
なく破砕時の歩留を含めた総合的な製造歩留の迅速かつ
的確な測定方法が必要である。しかしながら、特開昭6
1−110726号の方法では、前記の破砕に基く返鉱
発生を含めた製造歩留を評価することができない。従っ
て、焼結度および破砕歩留を含めた総合的な製造歩留評
価法が望まれる。
In the actual manufacturing process, the manufacturing yield, which includes everything from the sintering process to the finished product processing process and transportation process, has a large impact on manufacturing costs, so it is important to not only measure the degree of sintering but also to measure the yield at the time of crushing. There is a need for a rapid and accurate method for measuring comprehensive manufacturing yields. However,
The method of No. 1-110726 cannot evaluate the production yield including the generation of return ore based on the above-mentioned crushing. Therefore, a comprehensive manufacturing yield evaluation method including the degree of sintering and crushing yield is desired.

(発明が解決しようとする問題点) 本発明は、焼結体製造工程において、CTスキャナーで
撮像した焼結体の横断面画像を利用し、迅速かつ高錆度
な焼結体の製造歩留測定方法を提供することを目的とす
る。
(Problems to be Solved by the Invention) The present invention utilizes a cross-sectional image of the sintered body taken by a CT scanner in the sintered body manufacturing process, thereby increasing the manufacturing yield of the sintered body quickly and with high rust resistance. The purpose is to provide a measurement method.

(問題点を解決するための手段および作用)本発明は、
上記の目的を達成するため次のように構成している。す
なわち、CTスキャナーで撮像して得られた焼結体の任
意の横断面画像より、構成画素毎のCT値リレベル区分
した画像を合成し、註画像の面積および周囲長を求めた
のち、これらの関数として焼結体の製造歩留を測定する
ことを特徴とする焼結体の製造歩留測定方法である。
(Means and effects for solving the problems) The present invention has the following features:
In order to achieve the above purpose, it is configured as follows. In other words, from an arbitrary cross-sectional image of a sintered body obtained by imaging with a CT scanner, images with CT values releveled for each constituent pixel are synthesized, and after determining the area and perimeter of the annotated image, these This is a method for measuring the manufacturing yield of a sintered body, characterized in that the manufacturing yield of the sintered body is measured as a function.

また、本発明は、CTスキャナーで撮像して得られた焼
結体の任意の横断面画像より構成画素毎のCT値リレベ
ル区分した画像を合成し、該画像の面積および周囲長を
求めたのち次式で焼結体の製造歩留を測定することを特
徴とする焼結体の製造歩留測定方法である。
In addition, the present invention combines images obtained by releveling CT values of each constituent pixel from arbitrary cross-sectional images of a sintered body obtained by imaging with a CT scanner, and calculates the area and perimeter of the images. This is a method for measuring the manufacturing yield of a sintered body, which is characterized by measuring the manufacturing yield of a sintered body using the following formula.

773 =rj+ X772 /100ただし ηl 
:焼結度[%] η2 :破砕歩留[96] η3 :製造歩留 N :管電圧420kvとした時のCT値で2000以
上と実質的に同等なCT値リレ ベル画像の面M [mm”] M :管電圧420kvとした時のCT値で2000未
満と実質的に同等なCT値リレ ベル画像の面IIt[1II1121 L :管電圧420kvとした時のCT値で2000以
上と実質的に同等なCT値リレ ベル画像の周囲長[mm] k :破砕係数[mm] 以下、本発明について詳細に説明する。
773 = rj + X772 /100 However, ηl
: Sintering degree [%] η2 : Crushing yield [96] η3 : Manufacturing yield N : Surface M of CT value relevel image that is substantially equivalent to 2000 or more in CT value when tube voltage is 420 kv [mm” ] M: CT value substantially equivalent to less than 2000 when the tube voltage is 420 kV Surface IIt of the relevel image Perimeter length of CT value relevel image [mm] k: Crushing coefficient [mm] The present invention will be described in detail below.

放射、VIICTスキャナーによる撮像は、前記特開昭
61−110726号に記載された方法で行ったのち、
管電圧420kvとした時のCT値で2000以上と実
質的に同等なCT値レベルの画像を合成する。なお、本
発明で指定するCT値は以降CTスキャナーで測定した
場合のX線強度を管電圧を420kvとした時と実質的
に同等なX線強度を基準としし次式(1)で算出した値
を示す。
Imaging using a radiation and VIICT scanner was performed using the method described in JP-A-61-110726, and then
An image with a CT value level substantially equivalent to 2000 or more when the tube voltage is 420 kV is synthesized. The CT value specified in the present invention was calculated using the following formula (1) based on the X-ray intensity when measured with a CT scanner, which is substantially equivalent to when the tube voltage is 420 kV. Show value.

CT値=□×K       ・・・・−(1)μ W ここで  μS :サンプルの放射線の吸収係数μw:
水の放射線の吸収係数 K :定数(通常に= 1000) 次に特開昭61−110726号においては、CT値2
000以上と未満に区分しそれぞれの画像の合成面積を
求めたのち、次式(2)により焼結工程における焼結度
η、を求めることができる。
CT value = □×K ・・・・−(1) μ W where μS: Absorption coefficient of radiation of sample μw:
Absorption coefficient K of water radiation: Constant (usually = 1000) Next, in JP-A-61-110726, CT value 2
After dividing the image into 000 or more and less than 000 and finding the composite area of each image, the degree of sintering η in the sintering process can be found using the following equation (2).

Mll:T値2000以上を示す部分の面積[mm2]
N:CT値2000未満を示す部分の面積[mm21本
発明においては前記の合成面積の他、さらにCT値20
00以上の部分の周囲長を測定する。このときCT値2
000以上を示す部分の面積および周囲長は、通常の画
像解析システムによって簡単に求めることができる。例
えば、周囲長は周囲に相当する画素の数を求め、これに
1画素の単位長さを乗することによって算出される。
Mll: Area of the part showing T value 2000 or more [mm2]
N: Area of the part showing a CT value of less than 2000 [mm21 In the present invention, in addition to the above-mentioned composite area, the area has a CT value of less than 20
Measure the circumference of the part of 00 or more. At this time, CT value 2
The area and perimeter of the portion showing 000 or more can be easily determined using a normal image analysis system. For example, the perimeter is calculated by finding the number of pixels corresponding to the perimeter and multiplying this by the unit length of one pixel.

次に、周囲長を用いて成品処理工程および輸送工程での
返鉱発生を判定する指数、すなわち破砕歩留り2は次式
(3)で求めることができる。
Next, an index for determining the occurrence of return ore in the product processing process and transportation process using the perimeter length, that is, the crushing yield 2, can be determined by the following equation (3).

ここで L : CT値2000以上を示す画像の周囲
長[OIl] N : にT値2000以上を示す画像の面積[III
II+2] k:破砕係数[llll11] 従って、焼結体製造工程における製造歩留η3は(4)
式に示すように、焼結度η1と破砕歩留η2の積として
算出される。
Here, L: Perimeter length of the image showing a CT value of 2000 or more [OIl] N: Area of the image showing a T value of 2000 or more [III
II+2] k: Fracture coefficient [llll11] Therefore, the manufacturing yield η3 in the sintered body manufacturing process is (4)
As shown in the formula, it is calculated as the product of the degree of sintering η1 and the crushing yield η2.

η3=η1×η2 /100 [!fil    ・・
・・−(4)本発明は前記のように構成したので、焼結
体製造工程における破砕歩留および製造歩留を測定すべ
き横断面まで破壊することなく、焼結体内部の部位毎に
測定することができる。
η3=η1×η2 /100 [! fil...
...-(4) Since the present invention is configured as described above, the crushing yield and manufacturing yield in the sintered body manufacturing process can be measured for each part inside the sintered body without destroying the cross section to be measured. can be measured.

以下に本発明の作用について説明する。測定する焼結体
をシンターケーキ状の塊もしくはその一部をサンプリン
グする。このとき大きな焼結体のサンプル、例えば鉄鉱
石焼結鉱のシンターケーキの場合には、実公昭56−1
3639号公報で提案されている様なコアサンプラーに
よって焼結ベッドよりコアサンプルを採取する。ついで
、X線を照射して焼結体の横断面像を撮像する。X線法
の場合には特開昭60−203841号公報で示された
方法に準じて行うことができる。特開昭61−1107
26号はこの方法をさらに発展させ、CT値によって焼
成完了部と焼成未完了部を区分することによって、焼結
工程の良否の判定を可能にしたものである。
The operation of the present invention will be explained below. A sinter cake-like lump or a part thereof is sampled from the sintered body to be measured. At this time, in the case of a large sintered body sample, for example, a sinter cake of iron ore sinter,
A core sample is taken from the sintered bed using a core sampler such as that proposed in Publication No. 3639. Next, X-rays are irradiated to take a cross-sectional image of the sintered body. In the case of the X-ray method, it can be carried out according to the method disclosed in JP-A-60-203841. Japanese Patent Publication No. 61-1107
No. 26 further develops this method and makes it possible to judge the quality of the sintering process by classifying fired parts and unfinished parts by CT value.

ところで本発明者らの実験によると、実際の返鉱発生原
因には2つあり、1つは焼結工程での焼成不良に起因す
るもので、焼成未完了部として検出される。もう1つは
焼成完了部がクラッシャー、スクリーン等の成品処理工
程および輸送工程において衝箪を受は破砕されることに
起因する。
According to experiments conducted by the present inventors, there are two actual causes of return ore generation. One is due to poor firing in the sintering process, and is detected as an incompletely fired portion. The other reason is that the fired part is crushed during the product processing process and transportation process using a crusher, screen, etc.

本発明者らは破砕による返鉱発生が焼結体の物理的形状
に関連すると考え、解析を進めた結果、焼結体から発生
する返鉱の量は焼結完了部の周囲長と極めて良い相関を
示すことを見い出した。このように返鉱の発生が周囲長
で決まるメカニズムとしては、焼結体表面の凹凸度の影
習が考えられる。すなわち、焼結体表面が凹凸に富んだ
形状であれば、凸部は欠けやすく、また凹部はクラック
の起点となりつるため、結果的に返鉱が多く発生しやす
い。したがって破砕歩留は周囲長の関数として与えられ
る。
The inventors believe that the generation of return ore due to crushing is related to the physical shape of the sintered body, and as a result of proceeding with the analysis, the amount of return ore generated from the sintered body is extremely close to the circumference of the sintered part. We found that there is a correlation. The mechanism by which the occurrence of return ore is determined by the circumference length is thought to be the effect of the unevenness of the surface of the sintered body. That is, if the surface of the sintered body has a highly uneven shape, the convex portions are likely to be chipped, and the concave portions become starting points for cracks and tend to generate a large amount of return ore. The crushing yield is therefore given as a function of the perimeter.

本発明者らの検討結果では、破砕歩留と周囲長との関数
関係は前記(3)式で表わすのが最適である。このとき
、(3)式中の破砕係数には成品処理工程および輸送工
程に3けるハンドリング時の衝撃力で決まる係数で、焼
結体製造設備によって異なるのが一般的である。
According to the study results of the present inventors, the functional relationship between the crushing yield and the perimeter is optimally expressed by the above equation (3). At this time, the crushing coefficient in equation (3) is determined by the impact force during handling in the product processing process and transportation process, and generally varies depending on the sintered body manufacturing equipment.

3つの異なる鉄鉱石焼結鉱製造設備における焼結機A、
B、C3基の破砕係数にの算出例を以下に示す。
Sintering machine A in three different iron ore sinter production facilities,
An example of calculating the fracture coefficient of B and C3 groups is shown below.

本発明法の構成手順に従って前記(3)式中のL/Nを
求めると同時に、成品歩留実績ηと焼結度η1から次式
(5)でη2を算出する。
L/N in the above formula (3) is determined according to the configuration procedure of the method of the present invention, and at the same time, η2 is calculated using the following formula (5) from the product yield record η and the degree of sintering η1.

(5)式で求めたη2およびL/Nの値から(3)式に
て破砕係数kが求められる。η2とL/Nの測定を異な
る操業条件下で繰り返して行ない、焼結完了部の面積に
対する周囲長(L/N)と返鉱発生率(1−−)の関係
を調査した結果、第1図】00 に示すように各焼結機毎にその勾配は異なるが、それぞ
れの焼結機毎に直線の勾配を有する知見を得た。従って
、破砕係数には第1図の直線の勾配から、各焼結機毎に
設定される。
From the values of η2 and L/N determined by equation (5), the fracture coefficient k is determined by equation (3). As a result of repeatedly measuring η2 and L/N under different operating conditions and investigating the relationship between the perimeter length (L/N) and return ore generation rate (1--) with respect to the area of the sintered part, the first As shown in Figure 00, the slope is different for each sintering machine, but it was found that each sintering machine has a linear slope. Therefore, the crushing coefficient is set for each sintering machine based on the slope of the straight line shown in FIG.

第1図で求めたkを表1に示す。また同表には第1図に
おける前記の(L/N)と(1−−)+00 の相関係数を並記した。表1の相関係数は非常に高く末
法によれば、高精度の成品歩留測定が可能である。
Table 1 shows k determined in FIG. In addition, the correlation coefficients of (L/N) and (1--)+00 in FIG. 1 are also listed in the same table. The correlation coefficients in Table 1 are very high, and according to the final method, it is possible to measure the product yield with high precision.

表       1 なお、前記において鉄鉱石焼結鉱製造における成品歩留
測定の例を示したか、首記成品歩留に限定されるもので
はなく、焼結鉱製造設備の成品処理系統における1次、
2次、3次スクリーンおよび高炉設備における焼結鉱整
粒用スクリーン等に達するまでの破砕係数kをそれぞれ
のスクリーン毎に求めておけば、各スクリーンを通過後
の製造歩留を算出することができる。
Table 1 In addition, although the example of the product yield measurement in iron ore sinter manufacturing is shown above, it is not limited to the product yield shown in the head, but is also applicable to the primary,
If the crushing coefficient k until reaching the secondary and tertiary screens and the sintered ore sizing screen in blast furnace equipment is calculated for each screen, it is possible to calculate the production yield after passing through each screen. can.

また本発明においては放射線としてX線を使用したが、
X線に限定されるものではなく、γ線。
In addition, although X-rays were used as radiation in the present invention,
Not limited to X-rays, but gamma rays.

中性子線等の放射線を照射することによっても、X線と
同様に焼結体の製造歩留が測定可能である。
The manufacturing yield of a sintered body can also be measured by irradiating radiation such as neutron beams in the same manner as with X-rays.

(実施例) ■第1図の鉄鉱石焼結機Aにおいて焼結ケーキのコアサ
ンプルを特公昭56−13639号公報で提案された方
法で採取し、CTスキャナーによる撮像を実施した。前
記(1)〜(4)式を用いてη1.η2゜η3を計算し
実際の製造工程における成品歩留との比較を行った。そ
の結果を表2に示す。このとき、η2はk = 1.0
5として算出した。焼結度η1、あるいは破砕歩留η2
それぞれ単独では実際の成品歩留と対応しないが、両者
を総合した製造歩留η3を求めれば成品歩留の変動をリ
アルタイムに測定することができる。
(Example) (1) A core sample of the sintered cake was collected in the iron ore sintering machine A shown in FIG. 1 by the method proposed in Japanese Patent Publication No. 13639/1982, and imaged with a CT scanner. Using equations (1) to (4) above, η1. η2°η3 was calculated and compared with the product yield in the actual manufacturing process. The results are shown in Table 2. At this time, η2 is k = 1.0
It was calculated as 5. Sintering degree η1 or crushing yield η2
Each of these alone does not correspond to the actual product yield, but if the manufacturing yield η3 is obtained by combining both, fluctuations in the product yield can be measured in real time.

表    2 ■鉄鉱石焼結機Bで、8時間毎に求めた成品歩留実績で
管理した場合(従来法)と30分毎に製造歩留η3を測
定して管理した場合(末法)との比較を成品歩留実績の
推移で第2図(イ)に示す。このときのアクションは、
x−R管理図で異常値と判定された場合に粉コークスの
増減で対処した。また破砕係数には1.25としてη3
を測定した。
Table 2 ■In iron ore sintering machine B, the case where the product yield is managed by measuring the product yield obtained every 8 hours (conventional method) and the case where the production yield η3 is measured and managed every 30 minutes (final method) A comparison is shown in Figure 2 (a) with changes in product yield performance. The action at this time is
If an abnormal value was determined in the x-R control chart, this was dealt with by increasing or decreasing the amount of coke breeze. In addition, the fracture coefficient is set to 1.25 and η3
was measured.

第2図(ロ)は末法により求めた製造歩留η3の推移を
示す。このようにアクション回数を増やすことにより、
安定した操業が可能となった。
FIG. 2(b) shows the change in manufacturing yield η3 determined by the final method. By increasing the number of actions in this way,
Stable operations became possible.

(発明の効果) 本発明は焼結体を破壊することなく、その内部構造から
、焼結体内の位置別の製造歩留を容易に測定する方法で
ある。実際の焼結体製造工程ては、必要に応じて迅速か
つ的確な測定結果をアウトプットすることにより、歩留
変動に対するリアルタイムなアクションが可能となる。
(Effects of the Invention) The present invention provides a method for easily measuring the manufacturing yield of each position within a sintered body from its internal structure without destroying the sintered body. In the actual sintered body manufacturing process, by outputting quick and accurate measurement results as necessary, real-time action can be taken against yield fluctuations.

したがって、焼結体製造工程の歩留の向上、コストの削
減等にその効果は極めて大きい。
Therefore, it is extremely effective in improving the yield and reducing costs in the sintered body manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼結完了部の面積に対する周囲長(L/N)と
成品処理工程および輸送工程における返鉱発生率(1−
−)との関係を示す図、第2図(イ)は従来法および末
法による成品歩留(実績)推移、(ロ)は末法により求
めた製造歩留η3の推移を示す図である。
Figure 1 shows the perimeter length (L/N) of the completed sintered part and the return ore generation rate (1-
-), FIG. 2(a) is a diagram showing the change in product yield (actual results) by the conventional method and the final method, and FIG. 2(b) is a diagram showing the transition in the manufacturing yield η3 determined by the final method.

Claims (2)

【特許請求の範囲】[Claims] (1)CTスキャナーで撮像して得られた焼結体の任意
の横断面画像より構成画素毎のCT値レベルで区分した
画像を合成し、該画像の面積および周囲長を求めたのち
、これらの関数として焼結体の製造歩留を測定すること
を特徴とする焼結体の製造歩留測定方法。
(1) From arbitrary cross-sectional images of the sintered body obtained by imaging with a CT scanner, images divided by the CT value level of each constituent pixel are synthesized, and after determining the area and perimeter of the images, A method for measuring the manufacturing yield of a sintered body, comprising measuring the manufacturing yield of the sintered body as a function of .
(2)CTスキャナーで撮像して得られた焼結体の任意
の横断面画像より構成画素毎のCT値レベルで区分した
画像を合成し、該画像の面積および周囲長を求めたのち
、次式で焼結体の製造歩留を測定することを特徴とする
焼結体の製造歩留測定方法。 η_1={1−(M/(M+N))}×100 η_2={1−k(L/N)}×100 η_3=η_1×η_2/100 ただしη_1:焼結度[%] η_2:破砕歩留[%] η_3:製造歩留 N:管電圧420kvとした時のCT値で2000以上
と実質的に同等なCT値レベルの画像の面積[mm^2
] M:管電圧420kvとした時のCT値で2000未満
と実質的に同等なCT値レベルの画像の面積[mm^2
] L:管電圧420kvとした時のCT値で2000以上
と実質的に同等なCT値レベルの画像の周囲長[mm] k:破砕係数[mm]
(2) Composite images divided by the CT value level of each constituent pixel from arbitrary cross-sectional images of the sintered body obtained by imaging with a CT scanner, calculate the area and perimeter of the image, and then A method for measuring the manufacturing yield of a sintered body, characterized by measuring the manufacturing yield of a sintered body using the formula. η_1={1-(M/(M+N))}×100 η_2={1-k(L/N)}×100 η_3=η_1×η_2/100 where η_1: Degree of sintering [%] η_2: Crushing yield [%] η_3: Manufacturing yield N: Area of image with CT value level substantially equivalent to 2000 or more when tube voltage is 420 kv [mm^2
] M: Area of image with CT value level substantially equivalent to less than 2000 when tube voltage is 420 kv [mm^2
] L: Peripheral length of an image with a CT value level substantially equivalent to 2000 or more when the tube voltage is 420 kv [mm] k: Fracture coefficient [mm]
JP61247514A 1986-10-20 1986-10-20 Sintered product manufacturing yield measurement method Expired - Lifetime JPH06105229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61247514A JPH06105229B2 (en) 1986-10-20 1986-10-20 Sintered product manufacturing yield measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61247514A JPH06105229B2 (en) 1986-10-20 1986-10-20 Sintered product manufacturing yield measurement method

Publications (2)

Publication Number Publication Date
JPS63101738A true JPS63101738A (en) 1988-05-06
JPH06105229B2 JPH06105229B2 (en) 1994-12-21

Family

ID=17164612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61247514A Expired - Lifetime JPH06105229B2 (en) 1986-10-20 1986-10-20 Sintered product manufacturing yield measurement method

Country Status (1)

Country Link
JP (1) JPH06105229B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030104A (en) * 2007-07-26 2009-02-12 Nippon Steel Corp Method for evaluating mineral structure of iron ore to be sintered by x-ray ct, and method for manufacturing sintered ore

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120845A (en) * 1984-07-09 1986-01-29 Toshiba Corp Measuring device for singular part area frequency
JPS61110726A (en) * 1984-11-02 1986-05-29 Nippon Steel Corp Measuring method of sintering degree of sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120845A (en) * 1984-07-09 1986-01-29 Toshiba Corp Measuring device for singular part area frequency
JPS61110726A (en) * 1984-11-02 1986-05-29 Nippon Steel Corp Measuring method of sintering degree of sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030104A (en) * 2007-07-26 2009-02-12 Nippon Steel Corp Method for evaluating mineral structure of iron ore to be sintered by x-ray ct, and method for manufacturing sintered ore

Also Published As

Publication number Publication date
JPH06105229B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
DE112019000498B4 (en) Additive manufacturing process
CN1178057C (en) Process control by transient thermography
CN107402217B (en) Online diagnosis method for laser additive manufacturing defects based on visual sensing
DE3600452C2 (en)
EP2666612B1 (en) Method and device for imaging at least one three-dimensional component
Wroe et al. In-situ thermal image correlation with mechanical properties of nylon-12 in SLS
DE102015003697B4 (en) Beam profile measuring device with measurement of the intensity distribution of a laser beam and laser processing device
Hirsch et al. Meso-scale defect evaluation of selective laser melting using spatially resolved acoustic spectroscopy
CN101543844A (en) Online thickness measurement and control method for metal alloy sheet strip hot rolling mill
EP4241907A1 (en) Method for predicting defect of additive-manufactured product and method for manufacturing additive-manufactured product
JPS63101738A (en) Production yield measurement for sintered body
DE4234516A1 (en) METHOD AND DEVICE FOR CERAMIC WELDING
DE2442559C3 (en) Method and device for determining the throughput of a substance to be treated in a rotating cylinder
Gutknecht et al. Relevance of single channel signals for two-colour pyrometer process monitoring of laser powder bed fusion
Keiser Jr et al. Detailed measurements of local thickness changes for U-7Mo dispersion fuel plates with Al-3.5 Si matrix after irradiation at different powers in the RERTR-9B experiment
CN206764093U (en) A kind of infrared nondestructive detection device of arc-welding quality
CN106841177A (en) Defect inline diagnosis method in laser cladding process
Molnar et al. In Situ Thermography During Laser Powder Bed Fusion of a Nickel Superalloy 625 Artifact with Various Overhangs and Supports
DE102012206221A1 (en) Method and device for surface inspection of metallurgical cast products in a production line
JP2017015737A (en) Method of inspecting copper slag containing fine aggregate
JPH032425B2 (en)
JP2011213827A (en) Method for producing coke for blast furnace
CN111398288A (en) System, method and device for full-width circumferential detection of surface of continuous casting billet in online hot state
EP3928899A1 (en) Method for simulating properties of an additively manufactured articles or in part
CN103149229A (en) Method for detecting material compositions and contents thereof of welding material