JPS6310163B2 - - Google Patents

Info

Publication number
JPS6310163B2
JPS6310163B2 JP55009709A JP970980A JPS6310163B2 JP S6310163 B2 JPS6310163 B2 JP S6310163B2 JP 55009709 A JP55009709 A JP 55009709A JP 970980 A JP970980 A JP 970980A JP S6310163 B2 JPS6310163 B2 JP S6310163B2
Authority
JP
Japan
Prior art keywords
parts
polymerization
suspension polymerization
added
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55009709A
Other languages
Japanese (ja)
Other versions
JPS56106914A (en
Inventor
Kazuo Kishida
Naoki Yamamoto
Koji Nishida
Toshito Narita
Yasumasa Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP970980A priority Critical patent/JPS56106914A/en
Priority to AU66505/81A priority patent/AU537995B2/en
Priority to CA000369106A priority patent/CA1162679A/en
Priority to IT19366/81A priority patent/IT1193577B/en
Priority to GB8102965A priority patent/GB2068392B/en
Priority to DE19813103131 priority patent/DE3103131A1/en
Publication of JPS56106914A publication Critical patent/JPS56106914A/en
Priority to US06/473,369 priority patent/US4513111A/en
Publication of JPS6310163B2 publication Critical patent/JPS6310163B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、熱安定性、耐衝撃性に優れた熱可塑
性樹脂を製造する方法に関する。 一般に耐衝撃性樹脂として代表されるABS樹
脂は、ポリブタジエン又はスチレン―ブタジエン
系ゴム(SBR)とスチレン、アクリロニトリル
を主成分とするものである。その工業的に実施さ
れている態様を重合方式から分類すると、乳化重
合法、塊状重合法、懸濁重合法、溶液重合法、塊
状懸濁二段重合法そして乳化塊状重合法に大別さ
れる。 しかしながら、上記諸重合法は全ての面で満足
とは言い難く、例えば乳化重合法では、重合反応
制御や生産安定性は優れているものの、凝固工
程、洗浄工程さらに乾燥工程等による水使用量、
電力使用量は多大であり、かつ凝固工程で必須な
塩または酸等の不純物除去が極めて困難であり、
熱成形時の帯色の大きな要因ともなつている。 塊状重合法では、ゴムエラストマー成分をモノ
マーに溶解しなければならないため、可溶性ゴム
を使用する場合に限られるばかりでなく、重合系
の増粘現象のためゴム含量の限定を受け、また塊
状重合であるために、部分発熱の反応制御が容易
ではない。 懸濁重合法でもゴムエラストマーのモノマーへ
の溶解の問題、生成物の形態の問題、更に生成物
のゴム分散不均一化の問題を持つ。 また溶液重合法では、反応操作、反応制御は容
易であるが、溶剤回収に多大なユーテイリテイを
必要とする。 塊状懸濁二段重合法では、エラストマーの溶解
工程、重合工程での高粘度操作という点に塊状重
合法と同様の問題がある。 乳化塊状重合法では、一度生成したブタジエン
系エラストマーにスチレン、アクリロニトリルを
乳化重合してグラフト重合体を生成し、このグラ
フト重合体をモノマー抽出して塊状重合を行なう
が、塊状重合法の場合と同様、部分発熱の反応制
御の問題があるほかに更にゴム含量が大となる
と、部分発熱によるゴム劣化を免れ得ず、そのた
めに重合工程の連続化、重合製造装置の設計に苦
心を要し、更に生産面で品種切換えが困難となら
ざるを得ない。 これら種々の重合方式に比べ、乳化懸濁重合法
は、重合反応制御が容易な点、ゴムエラストマー
成分の選択の自由度が大きい点、およびゴムエラ
ストマー含量を大とできる点等、乳化重合法の優
れた面を保持しつつ、さらに凝固工程が不要であ
る点、得られた樹脂粒子が凝固によるものに比べ
かなり大きいため、乾燥が容易である点および微
粉末の取扱いではないため、粉塵爆発防止等の安
全面での対策も不要となる点等、従来乳化重合法
の持つ欠点を一挙に解決できる優れた製造方法で
ある。 しかしながら、この方法も水性媒体を用いる重
合法であるため、乾燥工程を必要とし、現在工業
的に使用されている流動乾燥、パドルドライヤー
等の乾燥方法では一部粉末の長時間滞溜は避けら
れない。一方、耐衝撃性樹脂に使用されるゴムエ
ラストマー成分は熱安定性、耐候性に乏しく、長
時間の加熱により変質して着色し、力学的物性も
低下してしまうという欠点がある。 本発明者等は、乳化懸濁重合法におけるこの問
題点を解決する、工業化可能な熱安定性に優れた
耐衝撃性樹脂を得るための検討を重ねた結果、本
発明に到達した。 本発明は、ゴム状重合体ラテツクス又は、ゴム
状重合体ラテツクスの存在下でエチレン性単量体
あるいは単量体混合物を重合して得られたグラフ
ト共重合体ラテツクスに(1)酸性物質または電解質
物質、(2)エチレン性単量体または単量体混合物お
よび(3)懸濁重合安定剤を添加して懸濁重合を行な
う方法に於て、酸性物質または電解質物質で部分
凝集すること、ならびに懸濁重合転化率が50%以
上となつた後に重合生成物に対して0.001重量%
以上のフエノール系化合物を添加することを特徴
とする熱安定性の優れた耐衝撃性樹脂の製造方法
である。 本発明において、酸性物質または電解質物質等
の部分凝集剤、エチレン性単量体または単量体混
合物および懸濁重合安定剤の添加順序に特に制限
はないが、酸性物質または電解質物質を添加し、
系を部分凝集させ、ついでエチレン性単量体また
は単量体混合物と懸濁重合安定剤とを同時に添加
するか、または系を部分凝集させついでエチレン
性単量体あるいは単量体混合物を添加し、しかる
後に懸濁重合安定剤を添加することが好ましい。
しかしながらまず懸濁重合安定剤を添加し次に酸
性物質または電解質物質を添加して系を部分凝集
させ、ついでエチレン性単量体あるいは単量体混
合物を添加する方法をとつてもよい。 本発明において、懸濁重合の途中でフエノール
系化合物を添加するのが重要な点であり、このこ
とによつてフエノール化合物は重合体粒子に均一
に吸着され、しかも懸濁重合も円滑に進行し、得
られる耐衝撃性樹脂の熱安定性が著しく改良され
る。これに対して例えばフエノール系化合物を懸
濁重合において重合すべきエチレン性単量体に溶
解させ単量体の添加と同時に添加する方法をとる
と、熱安定性向上には効果があるものの、フエノ
ール系化合物がラジカル捕捉剤として働くため、
懸濁重合が円滑に進行せず、重合安定性が著しく
低下し、アグロメレーシヨンを生じやすい。さら
に得られた重合体および水系に多量のエチレン性
単量体が残存し、生産価格の増大、環境汚染等の
問題を生ずる。また懸濁状態に移行する前にフエ
ノール系化合物を添加する方法でも、上記のエチ
レン性単量体に溶解した場合と同様の問題を生ず
る。また、他の酸化安定剤であるホスフアイト系
化合物、含硫黄系化合物を添加した場合、懸濁重
合に関しては何ら問題はないが、目的とする熱安
定性向上に関して十分な効果が認められない。 さらに、乾燥前に、重合体湿粉にフエノール系
化合物をV型ブレンダー、リボンミキサー、ヘン
シエルミキサー等の混合機を用いて添加する方法
では、重合体粒子に均一に吸着されないため長時
間の加熱により不均一に着色する。なおこのよう
な添加方法ではホスフアイト系化合物等を用いた
場合にも同様の問題を生ずる。 フエノール系化合物の添加量は重合生成物に対
して0.001重量%以上好ましくは0.05重量%以上
であり、それ以下では、効果が少ない。 フエノール系化合物は、界面活性剤等を用い均
一に水に分散させた分散液、あるいは水に不溶で
フエノール系化合物が可溶な溶媒を用い均一溶解
させた溶液、さらにはこの溶液を界面活性剤等を
用いて均一に水に分散させた分散液の形で添加さ
れる。 この様にして得られた重合体粒子は、乾燥工程
での滞溜の如き比較的低温長時間の熱安定性は勿
論のこと、押出成形、ロール成形、射出成形等の
比較的高温における熱安定性についても非常に優
れたものである。 フエノール系化合物を添加する時期は前述のよ
うに懸濁重合の途中であるが、懸濁重合開始直後
の如く、重合転化率が低すぎる場合はやはり重合
が円滑に進まないため、懸濁重合転化率が50%を
超えた後に添加する。 本発明において用いられるフエノール系化合物
としては例えば2,6―ジタ―シヤリ―ブチルフ
エノール、2,6―ジタ―シヤリ―ブチル―P―
クレゾール、2,4―ジメチル―6―タ―シヤリ
―ブチルフエノール、ブチルヒドロキシアニソー
ル、1,1―ビス(4―ヒドロキシフエニル)シ
クロヘキサン、2,2′―メチレンビス(4―メチ
ル―6―タ―シヤリブチルフエノール)、2,
2′―メチレンビス(4―エチル―6―タ―シヤリ
ブチルフエノール、4,4′―ブチリデンビス(3
―メチル―6―タ―シヤリブチルフエノール)、
4,4′―チオビス(3―メチル―6――タ―シヤ
リブチルフエノール)、テトラキス〔メチレン―
3(3,5―ジタ―シヤリ―ブチル―4―ヒドロ
キシフエニル)プロピオネート〕メタン、1,
1,3―トリス(2―メチル―4―ヒドロキシ―
5―タ―シヤリブチルフエニル)ブタン等が挙げ
られ、これらは単独あるいは2種以上の組み合せ
で用いられる。同時に他の酸化安定剤を併用して
も差しつかえない。 フエノール系化合物を水に均一分散させるた
め、通常は界面活性剤が用いられるが、界面活性
剤としては、例えば脂肪酸塩、高級アルコール硫
酸エステル塩、アルキルベンゼンスルフオン酸塩
等の陰イオン性界面活性剤、ポリオキシエチレン
アルキルエーテル、ポリオキシエチレンアルキル
フエニルエーテル等のノニオン系界面活性剤、さ
らには懸濁重合安定剤としても使用される、ゼラ
チン、部分ケン化ポリビニルアルコール、ポリア
クリル酸及びその塩、メチルセルロース、ヒドロ
キシエチルセルロース、ヒドロキシプロピルメチ
ルセルロース、ポリアルキレンオキサイド等が挙
げられ、フエノール系化合物100重量部に対して
0.1〜100重量部の範囲で使用される。 またフエノール系化合物を均一溶解させるため
に使用される水に不溶の溶媒としてはトルエン、
キシレン等の炭化水素、スチレン等のエチレン性
単量体、ジラウロイルチオジプロピルネート等比
較的低融点の含硫黄系化合物の溶融物、ジオクチ
ルフタレート等フタル酸エステル類、特殊な場合
として、2,4―ジメチル―6―タ―シヤリブチ
ルフエノールの如き液状のフエノール系化合物が
挙げられる。 本発明の方法はABS樹脂におけるブタジエン
系エラストマーを用いる場合のみでなく、種々の
ゴム系を用いる樹脂の場合に適用出来る。例えば
天然ゴム、ブタジエンゴム、スチレンブタジエン
ゴム、アクリロニトリルブタジエンゴム、イソプ
レンゴム、クロロプレンゴム、エチレンプロピレ
ンブタジエンゴム、エチレン酢酸ビニル共重合体
等があり、場合によつては共重合可能な単量体が
少量共重合されていてもよい。このようなゴムと
共重合可能な単量体としてはスチレン、α―メチ
ルスチレン、P―置換スチレンなどの芳香族単量
体の他にアクリル酸エステル、メタクリル酸エス
テル、アクリロニトリル、メタクリロニトリル、
低級アルキルアクリレート、低級アルコキシアク
リレート、シアノエチルアクリレート、アクリル
アミド、アクリル酸、メタクリル酸などがある。
なおゴムエラストマーは架橋でも未架橋でもよい
が、成形加工性等の問題から未架橋ゴムの場合、
適量の架橋剤を用いる方が好ましい。 ゴムエラストマーとしてジエン系ゴムを用いる
場合には、グラフト共重合するビニル単量体とし
てスチレン、α―メチルスチレン、P―置換スチ
レン誘導体の芳香族単量体と、アクリロニトリ
ル、アクリル酸エステル類の使用が好ましく、ま
たゴム含量は、得られる耐衝撃性樹脂の1〜60重
量%であることが好ましい。 乳化重合で使用される乳化剤としては、不均化
ロジン酸石けん、オレイン酸カリ石けん、アルギ
ルベンゼンスルフオン酸ソーダ等公知の陰イオン
性乳化剤が使用出来、又重合開始剤としては、キ
ユメンヒドロベルオキシド等過酸化物及び過硫酸
アンモニウム等の過硫酸塩、更にはt―ブチルヒ
ドロペルオキシド一還元剤系からなるレドツクス
系も使用しうる。 乳化重合において連鎖移動剤を添加することが
好ましいが、用いうる連鎖移動剤としては、アル
キルメルカプタンの他、ハロゲン化アルキル、ア
ルキルサルフアイド、アルキルジサルフアイド、
チオグリコール酸エステル、α―メチルスチレン
ダイマーなどが使用されるが、特にアルキルメル
カプタンが好ましい。 本発明での第一段階の乳化重合から次の懸濁重
合に移る工程で使用される、部分凝集剤として
は、酸または水溶性無機塩が全て使用可能であ
り、酸としては硫酸、塩酸類の鉱酸、酢酸等の解
離定数10-6mol/以上の有機酸(安息香酸、サ
ルチル酸、ギ酸、酒石酸を含む)である。塩とし
ては硫酸マグネシウム、硫酸ナトリウム等硫酸塩
や塩化物、酢酸塩を含むがこれらに限定されな
い。 懸濁重合安定剤としては通常の無機系分散剤や
有機系分散剤が使用できる。 無機系分散剤としては炭酸マグネシウム、第三
リン酸カルシウムなどが挙げられる。また有機系
分散剤のうち、天然及び合成高分子分散剤として
はでんぷん、ゼラチン、アクリルアミド、部分ケ
ン化ポリビニルアルコール、ポリアクリル酸及び
その塩、セルロース、メチルセルロース、ヒドロ
キシメチルセルロース、ヒドロキシエチルセルロ
ース、ポリアルキレンオキシド、ポリビニルピロ
リドン、ポリビニルイミダゾール、スルフオン化
ポリスチレンなどが挙げられ、また低分子分散剤
として、例えばアルキルベンゼンスルフオン酸
塩、脂肪酸塩などの通常の乳化剤も使用可能であ
る。 懸濁重合における開始剤としてはベンゾイルペ
ルオキシド、ラウロイルペルオキシド等の過酸化
物やアゾビスイソブチロニトリルの如きアゾ化合
物が使用される。 また、本発明によつて得られる耐衝撃性樹脂を
他の樹脂、例えばポリプロピレン、ポリスチレ
ン、アクリロニトリル―スチレン共重合体、ポリ
メチルメタクリレート、ポリ塩化ビニル、ポリ塩
化ビニリデン等のビニル系ポリマーやポリカーボ
ネート、熱可塑性ポリエステル、ポリアミド類と
混合することにより成形加工性、耐衝撃性を著し
く改良することが可能となる。 下記実施例中、部は重量部をあらわす。 実施例 1 ポリブタジエンラテツクス(固形分)※
80部(40部) スチレン 25.9部 アクリロニトリル 9.1部 硫酸第一鉄 0.0045部 デキストローズ 0.3部 キユメンヒドロペルオキシド 0.35部 タ―シヤリドデシルメルカプタン 0.35部 ピロリン酸ソーダ 0.15部 不均化ロジン酸石ケン 1.0部 苛性ソーダ 0.015部 メチレンビスナフタリンスルホン酸ソーダ0.12部 脱イオン水 210部 (※住友ノーガタツク社製SN―800B固形分50
%) 上記組成の混合物を反応器に仕込み、反応器内
を窒素置換した後、200r.p.m.の撹拌速度で70℃、
2時間重合して、反応を完結させグラフト重合体
ラテツクスを得た。重合転化率は92%であつた。 得られたグラフト重合体ラテツクスを30℃まで
冷却し、350r.p.m.の撹拌のもとで10%硫酸水溶
液5倍を加え、高粘度の部分凝集体を生成し、次
いでスチレン18.5部、アクリロニトリル6.5部、
ラウロイルペルオキシド0.25部、タ―シヤリドデ
シルメルカプタン0.5部の混合液を加え、しかる
後に懸濁重合安定剤として、メタクリル酸メチル
―アクリル酸カリウム共重合体3%水溶液10部を
添加すると、系は高粘性状態から低粘性状態(約
10センチポイズ)の懸濁分散液に移行した。この
分散液を80℃で1.5時間加熱重合させ(懸濁部重
合転化率70%)、2,2′―メチレンビス(4―メ
チル―6―タ―シヤリブチルフエノール)0.2部
を不均化ロジン酸石けん0.05部を用いて脱イオン
水10部に均一分散させた液を加え、さらに1.5時
間加熱重合させた。この時重合転化率は97%であ
つた。 重合体をろ別した後、バスケツト型遠心脱水機
で脱水して、得られた湿粉を流動乾燥機を用いた
連続乾燥工程での重合体粒子の滞溜を想定して、
熱風循環式蒸気乾燥機により100℃20日間の乾燥
を行つた。しかし乾燥粉の熱劣化による着色は認
められなかつた。 また、得られた重合体37.5部、アクリロニトリ
ル―スチレン共重合体(ηsp/c(25℃DMF)=
0.61)62.5部、ステアリン酸カルシウム0.4部およ
びエチレンビスステアリルアミド0.4部を10容
ヘンシエルミキサーで3000r.p.m.で5分間混合し
た後、押出ペレツト化し、スクリユー式射出成形
機(シリンダー温度220℃、金型温度60℃)を用
いてノツチ付アイゾツト衝撃強度測定試験片およ
び1.5mm厚の平板を作成し、アイゾツト衝撃強度、
ならびに黄変度(yellowness)を測定したが、
いずれの結果も良好であつた。これらの結果を、
乾燥粉の着色の度合いと共に、表―1に示した
が、以下に述べる比較例と比べ熱安定性に優れて
いることがわかる。 比較例 1 実施例1において2,2′―メチレンビス(4―
メチル―6―タ―シヤリブチルフエノール)を無
添加にした以外は実施例1と同様にして重合体粉
を得(重合転化率97.5%)、評価を行つたが100℃
5日間の乾燥ですでに着色が認められ、20日間の
乾燥では、重合体粉は完全に劣化し、茶褐色とな
り、押出し成形は不能であつた。表―1に結果を
示す。 比較例 2 実施例1において、2,2′―メチレンビス(4
―メチル―6―タ―シヤリブチルフエノール)の
代りに、トリフエニルホスフアイト0.6部を用い
た以外は実施例1と同様にして重合体粉を得(重
合転化率97.1%)評価を行つたが100℃10日間の
乾燥で着色が認められた。20日間乾燥した重合体
粉を用い作成した成形試片は黄帯色が著しくアイ
ゾツト衝撃強度も低かつた。表―1に結果を示
す。 比較例 3 実施例1において2,2′―メチレンビス(4―
メチル―6―タ―シヤリブチルフエノール)の代
りにジラウロイルチオジプロピオネート0.6部を
用いた以外は実施例1と同様にして重合体粉を得
(重合転化率97.3%)、評価を行つたが、100℃7
日間の乾燥で着色が認められ、20日間の乾燥で
は、重合体粉は完全に劣化し茶褐色となり、押出
し成形は不能であつた。表―1に結果を示す。 比較例 4 比較例1と同様にして得られた重合体湿粉に
2,2′―メチレンビス(4―メチル―6―タ―シ
ヤリブチルフエノール)0.2部を加え、10容ヘ
ンシエルミキサーで3000r.p.m.10分間混合した
後、実施例1と同様にして評価を行つたが、100
℃10日間の乾燥で着色ムラが認められた。20日間
の乾燥ではさらにこの程度が強まり、成形試片は
黄帯色し、アイゾツト衝撃強度も低かつた。表―
1に結果を示す。 比較例 5 実施例1と同様な条件でグラフト重合体ラテツ
クスを得、これに2,2′―メチレンビス(4―メ
チル―6―タ―シヤリブチルフエノール)0.2部
を懸濁重合で使用するスチレンモノマーのうちの
一部に溶かして撹拌添加し、以下、実施例1と同
様にして懸濁分散液を得た。この分散液を80℃で
5時間加熱重合させたが、重合転化率は82%と低
かつた。 比較例 6 実施例1と同様な条件で、グラフト重合体ラテ
ツクスを得、350r.p.m.の撹拌のもとで、10%硫
酸水溶液5部を加え、高粘度の部分凝集体を生成
し、次いでスチレン18.5部、アクリロニトリル
6.5部、ラウロイルペルオキシド0.25部、タ―シ
ヤリ―ドデシルメルカプタン0.5部、2,2′―メ
チレンビス(4―メチル―6―タ―シヤリブチル
フエノール)0.2部の混合液を加え、しかる後に
懸濁重合安定剤としてメタクリル酸メチル―アク
リル酸カリウム共重合体3%水溶液10部を添加す
ると系は高粘性状態から低粘性状態の懸濁分散液
に移行した。この分散液を80℃で5時間加熱重合
させたが、重合転化率は79%と低かつた。 実施例 2 実施例1と同様にして得られた分散液を80℃で
2時間加熱重合させ(懸濁重合転化率80%)、2,
6―ジタ―シヤリブチル―p―クレゾール0.3部
を不均化ロジン酸石けん0.05部を用いて脱イオン
水10部に均一分散させた液を加え、さらに1時間
加熱重合させた。この時、重合転化率は96.8%で
あつた。これを実施例1と同様にして評価を行つ
たが、結果は良好であつた。(表―1)。 実施例 3 実施例1において2,2′―メチレンビス(4―
メチル―6―タ―シヤリブチルフエノール)の添
加量を0.1部とし、不均化ロジン酸石けん0.05部
の代りにオレイン酸カリ石けん0.05部を用いた以
外は実施例1と同様にして重合体粉を得(重合転
化率97.2%)、評価を行つたが、結果は良好であ
つた(表―1)。 実施例 4 実施例1において、2,2′―メチレンビス(4
―メチル―6―タ―シヤリブチルフエノール)の
添加量を0.1部とし、不均化ロジン酸石けん0.05
部の代りに部分ケン化ポリビニルアルコール(日
本合成化学製:ゴーセノールKH―17)0.05部を
用いた以外は、実施例1と同様にして重合体粉を
得(重合転化率97.2%)、評価を行つたが、結果
は良好であつた(表―1)。 実施例 5 実施例1において、トルエン0.5部に2,2′―
メチレンビス(4―メチル―6―タ―シヤリブチ
ルフエノール)0.2部を溶解し、添加した以外は
実施例1と同様にして重合体粉を得(重合転化率
97.0%)、評価を行つたが結果は良好であつた。
(表―1) 実施例 6 実施例5において2,2′―メチレンビス(4―
メチル―6―タ―シヤリブチルフエノール)0.2
部の代りに2,4―タ―シヤリブチル―p―クレ
ゾール0.3部を用いた以外は、実施例5と同様に
して重合体粉を得(重合転化率97.0%)、評価を
行つたが、結果は良好であつた。(表―1) 実施例 7 実施例1において、スチレン0.6部に2,2′―
メチレンビス(4―メチル―6―タ―シヤリブチ
ルフエノール)0.2部を溶解し、添加した以外は
実施例1と同様にして重合体粉を得(重合転化率
97.0%)、評価を行つたが、結果は良好であつた。
(表―1) 実施例 8 実施例5において、2,2′―メチレンビス(4
―メチル―6―タ―シヤリブチルフエノール)
0.2部をトルエン0.5部に溶解した溶液をさらにメ
チルセルロース(松本油脂製マーポローズM―
400)0.05部を用い、脱イオン水10部に均一分散
させ、系に添加する以外は実施例5と同様にして
重合体粉を得(重合転化率97.1%)、評価を行つ
たが、結果は良好であつた。(表―1) 実施例 9 ポリブタジエンラテツクス(固形分)※
90部(45部) スチレン 24.9部 アクリロニトリル 10.1部 硫酸第一鉄 0.005部 デキストローズ 0.16部 キユメンヒドロペルオキシド 0.3部 タ―シヤリドデシルメルカプタン 0.35部 ピロリン酸ソーダ 0.16部 不均化ロジン酸石けん 0.8部 苛性ソーダ 0.016部 メチレンビスナフタリンスルホン酸ソーダ0.12部 脱イオン水 200部 (※住友ノーガタツク社製SN―800B固形分50
%) 上記組成の混合物を反応器に仕込み、反応器内
を窒素置換した後、200r.p.m.の撹拌速度で60℃、
3時間重合して反応を完結させ、グラフト重合体
ラテツクスを得た。 重合転化率は91%であつた。得られたグラフト
重合体ラテツクスにタ―シヤリドデシルメルカプ
タン0.4部を添加し、撹拌を続け、40℃まで冷却
し、350r.p.m.の撹拌のもとで、10%硫酸水溶液
5部を加え高粘度の部分凝集体を生成し、次いで
スチレン14.2部、アクリロニトリル5.8部、アゾ
ビスイソブチロニトリル0.15部の混合液と懸濁重
合安定剤としてメタクリル酸メチル―アクリル酸
カリウム共重合体3%水溶液10部を同時に添加す
ると、系は高粘性状態から低粘性状態(約10セン
チポイズ)の懸濁分散液に移行した。この分散液
を80℃で2時間加熱重合させ(懸濁重合転化率81
%)、2,2′―メチレンビス(4―メチル―6―
タ―シヤリブチルフエノール)0.1部を、液状の
フエノール系化合物である2,4―ジメチル―6
―タ―シヤリブチルフエノール0.4部に溶解し、
系に添加した後、さらに1時間加熱重合させた。
この時の重合転化率は97.3%であつた。以下実施
例1と同様にして評価を行つたが結果は良好であ
つた。(表―1) 実施例 10 実施例9において、2,4―ジメチル―6―タ
―シヤリブチルフエノール0.4部の代りに、加熱
溶融したジラウロイルチオジプロピオネート0.5
部を用い、それに2,2′―メチレンビス(4―メ
チル―6―タ―シヤリブチルフエノール)0.1部
を溶解させ系に添加した以外は実施例9と同様に
して重合体粉を得(重合転化率97.3%)、評価を
行つたが、結果は良好であつた。(表―1) 実施例 11 実施例9において2,4―ジメチル―6―タ―
シヤリブチルフエノール0.4部の代りにジオクチ
ルフタレート0.2部を用い、それに2,2′―メチ
レンビス(4―メチル―6―タ―シヤリブチルフ
エノール)0.1部を溶解させ系に添加した以外は
実施例9と同様にして重合体粉を得(重合転化率
97.1%)、評価を行つたが結果は良好であつた。
(表―1) 実施例 12 実施例9において2,2′―メチレンビス(4―
メチル―6―タ―シヤリブチルフエノール)0.1
部を2,4―ジメチル―6―タ―シヤリブチルフ
エノール0.4部に溶解した溶液をさらに不均化ロ
ジン酸石けん0.02部を用いて脱イオン水10部に均
一分散させ系に添加した以外は、実施例9と同様
にして重合体粉を得(重合転化率97.2%)、評価
を行つたが結果は良好であつた。(表―1)
The present invention relates to a method for producing a thermoplastic resin with excellent thermal stability and impact resistance. ABS resin, which is generally represented as an impact-resistant resin, is mainly composed of polybutadiene or styrene-butadiene rubber (SBR), styrene, and acrylonitrile. The industrially carried out methods can be categorized based on the polymerization method, and are broadly divided into emulsion polymerization method, bulk polymerization method, suspension polymerization method, solution polymerization method, bulk suspension two-stage polymerization method, and emulsion bulk polymerization method. . However, the above-mentioned polymerization methods are far from satisfactory in all respects.For example, although emulsion polymerization is excellent in polymerization reaction control and production stability, the amount of water used in the coagulation process, washing process, drying process, etc.
The amount of electricity consumed is large, and it is extremely difficult to remove impurities such as salts or acids that are essential in the coagulation process.
It is also a major cause of color banding during thermoforming. In the bulk polymerization method, the rubber elastomer component must be dissolved in the monomer, so it is not only possible to use soluble rubber, but also the rubber content is limited due to the thickening phenomenon of the polymerization system. Therefore, it is not easy to control the reaction of partial heat generation. Even the suspension polymerization method has problems with dissolution of the rubber elastomer into the monomer, problems with the morphology of the product, and further problems with uneven dispersion of the product in the rubber. Further, in the solution polymerization method, reaction operation and reaction control are easy, but a large amount of utility is required for solvent recovery. The two-stage bulk suspension polymerization method has the same problems as the bulk polymerization method in terms of high viscosity operation in the elastomer dissolution step and polymerization step. In the emulsion bulk polymerization method, once a butadiene-based elastomer is produced, styrene and acrylonitrile are emulsion polymerized to produce a graft polymer, and monomers are extracted from this graft polymer to perform bulk polymerization, but this is the same as in the case of the bulk polymerization method. In addition to the problem of reaction control due to partial heat generation, when the rubber content becomes large, rubber deterioration due to partial heat generation cannot be avoided, which requires painstaking efforts to make the polymerization process continuous and to design the polymerization production equipment. In terms of production, it becomes difficult to switch types. Compared to these various polymerization methods, the emulsion suspension polymerization method has the advantages of the emulsion polymerization method, such as easier control of the polymerization reaction, greater freedom in selecting rubber elastomer components, and the ability to increase the rubber elastomer content. While maintaining its excellent properties, it also eliminates the need for a coagulation process, the resulting resin particles are much larger than those produced by coagulation, making drying easier, and the handling of fine powder prevents dust explosions. This is an excellent production method that can solve all the drawbacks of conventional emulsion polymerization methods, such as eliminating the need for safety measures such as: However, since this method is also a polymerization method that uses an aqueous medium, it requires a drying step, and with the drying methods currently used industrially such as fluidized drying and paddle dryers, it is impossible to avoid the long retention of some powders. do not have. On the other hand, the rubber elastomer component used in impact-resistant resins has the drawbacks of poor thermal stability and weather resistance, deterioration and coloring due to long-term heating, and deterioration of mechanical properties. The present inventors have arrived at the present invention as a result of repeated studies to solve this problem in emulsion suspension polymerization and to obtain an industrially applicable impact resistant resin with excellent thermal stability. The present invention provides a rubber-like polymer latex or a graft copolymer latex obtained by polymerizing an ethylenic monomer or a monomer mixture in the presence of a rubber-like polymer latex; (1) an acidic substance or an electrolyte; (2) an ethylenic monomer or monomer mixture and (3) suspension polymerization by adding a suspension polymerization stabilizer; 0.001% by weight of the polymerized product after the suspension polymerization conversion rate is 50% or more
This is a method for producing an impact-resistant resin with excellent thermal stability, which is characterized by adding the above-mentioned phenolic compound. In the present invention, there is no particular restriction on the order of addition of a partial flocculant such as an acidic substance or an electrolyte substance, an ethylenic monomer or monomer mixture, and a suspension polymerization stabilizer, but adding an acidic substance or an electrolyte substance,
Either the system is partially flocculated and then the ethylenic monomer or monomer mixture and the suspension polymerization stabilizer are added simultaneously, or the system is partially flocculated and the ethylenic monomer or monomer mixture is added. It is preferred that a suspension polymerization stabilizer is then added.
However, it is also possible to first add a suspension polymerization stabilizer, then add an acid or electrolyte substance to partially coagulate the system, and then add the ethylenic monomer or monomer mixture. In the present invention, it is important to add the phenol compound during the suspension polymerization, which allows the phenol compound to be uniformly adsorbed to the polymer particles and also allows the suspension polymerization to proceed smoothly. , the thermal stability of the resulting impact resistant resin is significantly improved. On the other hand, for example, if a phenolic compound is dissolved in the ethylenic monomer to be polymerized in suspension polymerization and added at the same time as the monomer, it is effective in improving thermal stability, but the phenol Because the compound acts as a radical scavenger,
Suspension polymerization does not proceed smoothly, polymerization stability is significantly reduced, and agglomeration is likely to occur. Furthermore, a large amount of ethylenic monomer remains in the obtained polymer and water system, causing problems such as increased production costs and environmental pollution. Also, a method in which a phenolic compound is added before transitioning to a suspended state causes the same problem as in the case of dissolving it in the above-mentioned ethylenic monomer. Further, when other oxidation stabilizers such as phosphite compounds and sulfur-containing compounds are added, there is no problem with suspension polymerization, but a sufficient effect is not observed in terms of the desired improvement in thermal stability. Furthermore, in the method of adding phenolic compounds to wet polymer powder before drying using a mixer such as a V-type blender, ribbon mixer, Henschel mixer, etc., the phenolic compound is not evenly adsorbed to the polymer particles and requires long heating times. Colors unevenly. Note that this method of addition causes similar problems even when phosphite compounds are used. The amount of the phenolic compound added is 0.001% by weight or more, preferably 0.05% by weight or more, based on the polymerization product; if it is less than that, the effect will be small. Phenol compounds can be prepared by dispersing them uniformly in water using a surfactant, or by dissolving them uniformly using a solvent that is insoluble in water but soluble in phenolic compounds, or by dispersing this solution with a surfactant. It is added in the form of a dispersion liquid, which is uniformly dispersed in water. The polymer particles obtained in this way are not only thermally stable at relatively low temperatures for long periods of time, such as during retention in the drying process, but also thermally stable at relatively high temperatures, such as during extrusion molding, roll molding, and injection molding. It is also very good in terms of sex. As mentioned above, the time to add the phenolic compound is during the suspension polymerization, but if the polymerization conversion rate is too low, such as immediately after the suspension polymerization starts, the polymerization will not proceed smoothly, so the suspension polymerization conversion will be delayed. Add after the percentage exceeds 50%. Examples of the phenolic compounds used in the present invention include 2,6-di-tert-butylphenol, 2,6-di-tert-butyl-P-
Cresol, 2,4-dimethyl-6-tert-butylphenol, butylhydroxyanisole, 1,1-bis(4-hydroxyphenyl)cyclohexane, 2,2'-methylenebis(4-methyl-6-tert) syabutylphenol), 2,
2'-methylenebis(4-ethyl-6-tertiarybutylphenol, 4,4'-butylidenebis(3)
-methyl-6-tertiarybutylphenol),
4,4′-thiobis(3-methyl-6-tertiarybutylphenol), tetrakis[methylene-
3(3,5-ditertiary-butyl-4-hydroxyphenyl)propionate]methane, 1,
1,3-tris(2-methyl-4-hydroxy-
Examples include 5-tert-butylphenyl)butane, which may be used alone or in combination of two or more. There is no problem in using other oxidation stabilizers at the same time. In order to uniformly disperse phenolic compounds in water, surfactants are usually used. Examples of surfactants include anionic surfactants such as fatty acid salts, higher alcohol sulfate ester salts, and alkylbenzene sulfonates. , nonionic surfactants such as polyoxyethylene alkyl ether and polyoxyethylene alkyl phenyl ether, gelatin, partially saponified polyvinyl alcohol, polyacrylic acid and its salts, which are also used as suspension polymerization stabilizers, Examples include methyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, polyalkylene oxide, etc., based on 100 parts by weight of the phenolic compound.
It is used in a range of 0.1 to 100 parts by weight. In addition, toluene, water-insoluble solvents used to uniformly dissolve phenolic compounds are
Hydrocarbons such as xylene, ethylenic monomers such as styrene, melts of sulfur-containing compounds with relatively low melting points such as dilauroyl thiodipropylnate, phthalate esters such as dioctyl phthalate, and in special cases, 2. Examples include liquid phenolic compounds such as 4-dimethyl-6-tertiarybutylphenol. The method of the present invention can be applied not only to ABS resins using butadiene-based elastomers, but also to resins using various rubber systems. Examples include natural rubber, butadiene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, isoprene rubber, chloroprene rubber, ethylene-propylene-butadiene rubber, ethylene-vinyl acetate copolymer, etc., and in some cases, there are small amounts of copolymerizable monomers. It may be copolymerized. Monomers that can be copolymerized with such rubber include aromatic monomers such as styrene, α-methylstyrene, and P-substituted styrene, as well as acrylic esters, methacrylic esters, acrylonitrile, methacrylonitrile,
Examples include lower alkyl acrylate, lower alkoxy acrylate, cyanoethyl acrylate, acrylamide, acrylic acid, and methacrylic acid.
Note that the rubber elastomer may be crosslinked or uncrosslinked, but due to problems such as moldability, in the case of uncrosslinked rubber,
It is preferable to use an appropriate amount of crosslinking agent. When using diene rubber as a rubber elastomer, aromatic monomers such as styrene, α-methylstyrene, and P-substituted styrene derivatives, acrylonitrile, and acrylic esters may be used as vinyl monomers to be graft copolymerized. Preferably, the rubber content is 1 to 60% by weight of the resulting impact resistant resin. As the emulsifier used in emulsion polymerization, known anionic emulsifiers such as disproportionated rosin acid soap, potassium oleate soap, and sodium argylbenzenesulfonate can be used, and as the polymerization initiator, kyumene hydro Redox systems consisting of peroxides such as peroxide and persulfates such as ammonium persulfate, as well as t-butyl hydroperoxide monoreductant systems, may also be used. It is preferable to add a chain transfer agent in emulsion polymerization, and usable chain transfer agents include alkyl mercaptans, alkyl halides, alkyl sulfides, alkyl disulfides,
Thioglycolic acid ester, α-methylstyrene dimer, etc. are used, but alkyl mercaptan is particularly preferred. As the partial flocculant used in the process of moving from the first stage of emulsion polymerization to the next suspension polymerization in the present invention, any acid or water-soluble inorganic salt can be used. mineral acids such as acetic acid, and organic acids (including benzoic acid, salicylic acid, formic acid, and tartaric acid) with a dissociation constant of 10 -6 mol/or more. Salts include, but are not limited to, sulfates such as magnesium sulfate and sodium sulfate, chlorides, and acetates. As the suspension polymerization stabilizer, ordinary inorganic dispersants and organic dispersants can be used. Examples of inorganic dispersants include magnesium carbonate and tribasic calcium phosphate. Among organic dispersants, natural and synthetic polymer dispersants include starch, gelatin, acrylamide, partially saponified polyvinyl alcohol, polyacrylic acid and its salts, cellulose, methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, polyalkylene oxide, Examples include polyvinylpyrrolidone, polyvinylimidazole, and sulfonated polystyrene. Also, as low-molecular dispersants, common emulsifiers such as alkylbenzene sulfonates and fatty acid salts can also be used. Peroxides such as benzoyl peroxide and lauroyl peroxide, and azo compounds such as azobisisobutyronitrile are used as initiators in suspension polymerization. In addition, the impact-resistant resin obtained by the present invention may be used with other resins, such as vinyl polymers such as polypropylene, polystyrene, acrylonitrile-styrene copolymer, polymethyl methacrylate, polyvinyl chloride, polyvinylidene chloride, polycarbonate, heat-resistant resin, etc. By mixing it with plastic polyesters and polyamides, it becomes possible to significantly improve moldability and impact resistance. In the following examples, parts represent parts by weight. Example 1 Polybutadiene latex (solid content)*
80 parts (40 parts) Styrene 25.9 parts Acrylonitrile 9.1 parts Ferrous sulfate 0.0045 parts Dextrose 0.3 parts Qyumene hydroperoxide 0.35 parts Tertiarydodecyl mercaptan 0.35 parts Sodium pyrophosphate 0.15 parts Disproportionated rosinate soap 1.0 parts Caustic soda 0.015 parts Methylene bisnaphthalene sulfonic acid sodium 0.12 parts Deionized water 210 parts (*Sumitomo Nogatatsuku SN-800B solid content 50
%) The mixture with the above composition was charged into a reactor, and after purging the inside of the reactor with nitrogen, the mixture was heated at 70°C with a stirring speed of 200 rpm.
Polymerization was carried out for 2 hours to complete the reaction and obtain a graft polymer latex. The polymerization conversion rate was 92%. The obtained graft polymer latex was cooled to 30°C, 5 times 10% sulfuric acid aqueous solution was added under stirring at 350 rpm to form a highly viscous partial aggregate, and then 18.5 parts of styrene and 6.5 parts of acrylonitrile were added. ,
A mixture of 0.25 parts of lauroyl peroxide and 0.5 parts of tertiary dodecyl mercaptan is added, and then 10 parts of a 3% aqueous solution of methyl methacrylate-potassium acrylate copolymer is added as a suspension polymerization stabilizer. From viscous state to low viscosity state (approximately
10 centipoise). This dispersion was heat-polymerized at 80°C for 1.5 hours (polymerization conversion rate of suspended part 70%), and 0.2 part of 2,2'-methylenebis(4-methyl-6-tertiarybutylphenol) was added to the disproportionated rosin. A solution prepared by uniformly dispersing 0.05 parts of acid soap in 10 parts of deionized water was added, and polymerization was further carried out by heating for 1.5 hours. At this time, the polymerization conversion rate was 97%. After filtering the polymer, it was dehydrated using a basket-type centrifugal dehydrator, and the resulting wet powder was subjected to a continuous drying process using a fluidized fluidized dryer, assuming that the polymer particles would accumulate.
Drying was carried out at 100°C for 20 days using a hot air circulation steam dryer. However, no coloration due to thermal deterioration of the dry powder was observed. In addition, 37.5 parts of the obtained polymer, acrylonitrile-styrene copolymer (ηsp/c (25°C DMF) =
0.61) 62.5 parts, calcium stearate 0.4 parts and ethylene bis stearylamide 0.4 parts were mixed in a 10 volume Henschel mixer at 3000 rpm for 5 minutes, extruded into pellets, and made using a screw injection molding machine (cylinder temperature 220°C, mold A notched Izot impact strength measurement test piece and a 1.5 mm thick flat plate were prepared using a temperature of 60°C), and the Izot impact strength,
and yellowness were measured.
All results were good. These results,
The degree of coloration of the dry powder is shown in Table 1, and it can be seen that the dry powder has excellent thermal stability compared to the comparative example described below. Comparative Example 1 In Example 1, 2,2'-methylenebis(4-
A polymer powder was obtained in the same manner as in Example 1 (polymerization conversion rate 97.5%) except that no methyl-6-tert-butylphenol (methyl-6-tert-butylphenol) was added and evaluated at 100°C.
Coloration was already observed after 5 days of drying, and after 20 days of drying, the polymer powder had completely deteriorated and turned brown, making extrusion impossible. Table 1 shows the results. Comparative Example 2 In Example 1, 2,2′-methylenebis(4
Polymer powder was obtained in the same manner as in Example 1, except that 0.6 part of triphenyl phosphite was used instead of (methyl-6-tert-butylphenol) (polymerization conversion rate 97.1%) and evaluation was performed. However, coloration was observed after drying at 100°C for 10 days. The molded specimens prepared using the polymer powder dried for 20 days had a markedly yellowish color and had low Izot impact strength. Table 1 shows the results. Comparative Example 3 In Example 1, 2,2'-methylenebis(4-
A polymer powder was obtained in the same manner as in Example 1 except that 0.6 part of dilauroyl thiodipropionate was used instead of methyl-6-tert-butylphenol (polymerization conversion rate 97.3%), and evaluation was performed. Ivy, 100℃7
Coloration was observed after one day of drying, and after 20 days of drying, the polymer powder completely deteriorated and turned brown, making extrusion impossible. Table 1 shows the results. Comparative Example 4 0.2 part of 2,2'-methylenebis(4-methyl-6-tertiarybutylphenol) was added to the wet polymer powder obtained in the same manner as in Comparative Example 1, and the mixture was heated for 3000 r in a 10 volume Henschel mixer. After mixing for 10 minutes, evaluation was carried out in the same manner as in Example 1.
Uneven coloring was observed after drying for 10 days at ℃. After drying for 20 days, this degree became even stronger, and the molded specimen became yellowish in color, and its Izot impact strength was also low. table-
1 shows the results. Comparative Example 5 A graft polymer latex was obtained under the same conditions as in Example 1, and 0.2 part of 2,2'-methylenebis(4-methyl-6-tert-butylphenol) was added to the styrene polymer latex in suspension polymerization. The mixture was dissolved in a portion of the monomers and added with stirring to obtain a suspension dispersion in the same manner as in Example 1. This dispersion was polymerized by heating at 80° C. for 5 hours, but the polymerization conversion rate was as low as 82%. Comparative Example 6 A graft polymer latex was obtained under the same conditions as in Example 1, and 5 parts of a 10% aqueous sulfuric acid solution was added under stirring at 350 rpm to form a highly viscous partial aggregate, and then styrene was added. 18.5 parts acrylonitrile
A mixture of 6.5 parts of lauroyl peroxide, 0.25 parts of tert-dodecyl mercaptan, and 0.2 parts of 2,2'-methylenebis(4-methyl-6-tert-butylphenol) was added, followed by suspension polymerization. When 10 parts of a 3% aqueous solution of methyl methacrylate-potassium acrylate copolymer was added as a stabilizer, the system transitioned from a high viscosity state to a low viscosity suspension dispersion. This dispersion was polymerized by heating at 80° C. for 5 hours, but the polymerization conversion rate was as low as 79%. Example 2 A dispersion obtained in the same manner as in Example 1 was heated and polymerized at 80°C for 2 hours (suspension polymerization conversion rate 80%).
A solution obtained by uniformly dispersing 0.3 parts of 6-ditertiabutyl-p-cresol in 10 parts of deionized water using 0.05 parts of disproportionated rosin acid soap was added, and polymerization was further carried out by heating for 1 hour. At this time, the polymerization conversion rate was 96.8%. This was evaluated in the same manner as in Example 1, and the results were good. (Table-1). Example 3 In Example 1, 2,2'-methylenebis(4-
A polymer was prepared in the same manner as in Example 1, except that the amount of methyl-6-tert-butylphenol added was 0.1 part, and 0.05 part of potassium oleate soap was used instead of 0.05 part of disproportionated rosin acid soap. A powder was obtained (polymerization conversion rate 97.2%) and evaluated, and the results were good (Table 1). Example 4 In Example 1, 2,2′-methylenebis(4
-Methyl-6-tertiarybutylphenol) was added to 0.1 part, and disproportionated rosin acid soap was added to 0.05 parts.
Polymer powder was obtained in the same manner as in Example 1 (polymerization conversion rate 97.2%), except that 0.05 part of partially saponified polyvinyl alcohol (Nippon Gosei Kagaku: GOHSENOL KH-17) was used instead of The results were good (Table 1). Example 5 In Example 1, 2,2′- was added to 0.5 part of toluene.
A polymer powder was obtained in the same manner as in Example 1 except that 0.2 part of methylenebis(4-methyl-6-tertiarybutylphenol) was dissolved and added (polymerization conversion rate
97.0%), and the results were good.
(Table 1) Example 6 In Example 5, 2,2'-methylenebis(4-
Methyl-6-tert-butylphenol) 0.2
A polymer powder was obtained in the same manner as in Example 5 (polymerization conversion rate 97.0%) except that 0.3 part of 2,4-tert-butyl-p-cresol was used instead of 1 part of 2,4-tert-butyl-p-cresol, and evaluation was performed. was in good condition. (Table-1) Example 7 In Example 1, 2,2'-
A polymer powder was obtained in the same manner as in Example 1 except that 0.2 part of methylenebis(4-methyl-6-tertiarybutylphenol) was dissolved and added (polymerization conversion rate
97.0%), and the results were good.
(Table 1) Example 8 In Example 5, 2,2'-methylenebis(4
-Methyl-6-tert-butylphenol)
A solution of 0.2 parts dissolved in 0.5 parts of toluene was further added to methyl cellulose (Matsumoto Yushi Marporose M-
Polymer powder was obtained in the same manner as in Example 5 except that 0.05 part of 400) was used, uniformly dispersed in 10 parts of deionized water, and added to the system (polymerization conversion rate 97.1%), and evaluated. was in good condition. (Table-1) Example 9 Polybutadiene latex (solid content)*
90 parts (45 parts) Styrene 24.9 parts Acrylonitrile 10.1 parts Ferrous sulfate 0.005 parts Dextrose 0.16 parts Ciumene hydroperoxide 0.3 parts Tertiarydodecyl mercaptan 0.35 parts Sodium pyrophosphate 0.16 parts Disproportionated rosin acid soap 0.8 parts Caustic soda 0.016 parts Methylene bisnaphthalene sulfonic acid sodium 0.12 parts Deionized water 200 parts (*SN-800B manufactured by Sumitomo Nogatatsu Co., Ltd. Solid content 50
%) A mixture with the above composition was charged into a reactor, and after purging the inside of the reactor with nitrogen, the mixture was heated at 60°C with a stirring speed of 200 rpm.
The reaction was completed by polymerizing for 3 hours to obtain a graft polymer latex. The polymerization conversion rate was 91%. Add 0.4 part of tertiary dodecyl mercaptan to the obtained graft polymer latex, continue stirring, cool to 40°C, and add 5 parts of 10% sulfuric acid aqueous solution under stirring at 350 rpm to obtain a high viscosity. Then, a mixed solution of 14.2 parts of styrene, 5.8 parts of acrylonitrile, 0.15 parts of azobisisobutyronitrile and 10 parts of a 3% aqueous solution of methyl methacrylate-potassium acrylate copolymer as a suspension polymerization stabilizer were added. When added simultaneously, the system transitioned from a high viscosity state to a low viscosity (approximately 10 centipoise) suspended dispersion. This dispersion was polymerized by heating at 80℃ for 2 hours (suspension polymerization conversion rate: 81
%), 2,2'-methylenebis(4-methyl-6-
0.1 part of tertiary butylphenol) was added to 2,4-dimethyl-6, a liquid phenolic compound.
-Dissolved in 0.4 part of tertiary butylphenol,
After adding it to the system, it was further heated and polymerized for 1 hour.
The polymerization conversion rate at this time was 97.3%. Evaluation was carried out in the same manner as in Example 1, and the results were good. (Table 1) Example 10 In Example 9, instead of 0.4 part of 2,4-dimethyl-6-tertiarybutylphenol, 0.5 part of dilauroyl thiodipropionate melted by heating was used.
Polymer powder was obtained in the same manner as in Example 9, except that 0.1 part of 2,2'-methylenebis(4-methyl-6-tertiarybutylphenol) was dissolved in it and added to the system. The conversion rate was 97.3%), and the results were good. (Table 1) Example 11 In Example 9, 2,4-dimethyl-6-ter
Example except that 0.2 parts of dioctyl phthalate was used instead of 0.4 parts of syabutylphenol, and 0.1 part of 2,2'-methylenebis(4-methyl-6-tert-butylphenol) was dissolved therein and added to the system. Polymer powder was obtained in the same manner as in 9 (polymerization conversion rate
97.1%), and the results were good.
(Table 1) Example 12 In Example 9, 2,2'-methylenebis(4-
Methyl-6-tert-butylphenol) 0.1
% of 2,4-dimethyl-6-tertiarybutylphenol was dissolved in 0.4 parts of 2,4-dimethyl-6-tert-butylphenol, and then 0.02 parts of disproportionated rosin acid soap was further dispersed in 10 parts of deionized water, and added to the system. A polymer powder was obtained in the same manner as in Example 9 (polymerization conversion rate 97.2%) and evaluated, and the results were good. (Table-1)

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 ゴム状重合体ラテツクス又はゴム状重合体ラ
テツクスの存在下でエチレン性単量体あるいは単
量体混合物を重合して得られたグラフト共重合体
ラテツクスに(1)酸性物質または電解質物質、(2)エ
チレン性単量体または単量体混合物および(3)懸濁
重合安定剤を添加して懸濁重合を行なう方法に於
て、酸性物質または電解質物質で部分凝集するこ
と、ならびに懸濁重合転化率が50%以上となつた
後に重合生成物に対して0.001重量%以上のフエ
ノール系化合物を添加することを特徴とする熱安
定性の優れた耐衝撃性樹脂の製造方法。 2 フエノール系化合物を水に均一分散させるか
又は溶媒に溶解して懸濁重合系に添加することを
特徴とする特許請求の範囲第1項に記載の製造方
法。
[Scope of Claims] 1. A rubbery polymer latex or a graft copolymer latex obtained by polymerizing an ethylenic monomer or a monomer mixture in the presence of a rubbery polymer latex (1) containing an acidic substance; or partial agglomeration with an acidic substance or electrolyte substance in a method of carrying out suspension polymerization by adding an electrolyte substance, (2) an ethylenic monomer or monomer mixture, and (3) a suspension polymerization stabilizer. , and a method for producing an impact-resistant resin with excellent thermal stability, characterized by adding 0.001% by weight or more of a phenolic compound to the polymerization product after the suspension polymerization conversion rate reaches 50% or more. . 2. The manufacturing method according to claim 1, characterized in that the phenol compound is uniformly dispersed in water or dissolved in a solvent and added to the suspension polymerization system.
JP970980A 1980-01-30 1980-01-30 Production of shock-resistant resin Granted JPS56106914A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP970980A JPS56106914A (en) 1980-01-30 1980-01-30 Production of shock-resistant resin
AU66505/81A AU537995B2 (en) 1980-01-30 1981-01-21 Graft polymerisation process
CA000369106A CA1162679A (en) 1980-01-30 1981-01-22 Process for producing impact-resistant resins
IT19366/81A IT1193577B (en) 1980-01-30 1981-01-27 PROCESS TO PRODUCE IMPACT RESISTANT RESINS
GB8102965A GB2068392B (en) 1980-01-30 1981-01-30 Process for producing impact-resistant graft polymers
DE19813103131 DE3103131A1 (en) 1980-01-30 1981-01-30 METHOD FOR PRODUCING AN IMPACT RESISTANT RESIN
US06/473,369 US4513111A (en) 1980-01-30 1983-03-08 Process for producing impact-resistant resins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP970980A JPS56106914A (en) 1980-01-30 1980-01-30 Production of shock-resistant resin

Publications (2)

Publication Number Publication Date
JPS56106914A JPS56106914A (en) 1981-08-25
JPS6310163B2 true JPS6310163B2 (en) 1988-03-04

Family

ID=11727769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP970980A Granted JPS56106914A (en) 1980-01-30 1980-01-30 Production of shock-resistant resin

Country Status (1)

Country Link
JP (1) JPS56106914A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344959A (en) * 1976-10-04 1978-04-22 Pont A Mousson Large diameter heat insulation pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344959A (en) * 1976-10-04 1978-04-22 Pont A Mousson Large diameter heat insulation pipe

Also Published As

Publication number Publication date
JPS56106914A (en) 1981-08-25

Similar Documents

Publication Publication Date Title
CN113166521B (en) Thermoplastic resin composition comprising (meth) acrylate graft copolymer and method for preparing thermoplastic resin composition
US4513111A (en) Process for producing impact-resistant resins
JP2019500434A (en) Rubber-modified vinyl graft copolymer and thermoplastic resin composition containing the same
US4690974A (en) Method for producing rubber modified thermoplastic resins
JPS6310163B2 (en)
KR100358231B1 (en) Manufacturing method of heat resistant thermoplastic resin with excellent impact resistance and thermal stability
US2643995A (en) Emulsion polymerization process
JP2010116427A (en) Thermoplastic resin composition
KR100452856B1 (en) Thermoplastic resin latex manufacturing method with excellent impact resistance, whiteness and retention gloss
JPS625443B2 (en)
JPS6320246B2 (en)
US3641209A (en) Emulsion polymerization employing azoacyl catalysts
US3665057A (en) Method of preparing high impact resistance resins by a bulk-suspension two stage process
US4690975A (en) Method for producing rubber modified thermoplastic resins
JPS627926B2 (en)
KR100205059B1 (en) A process for preparing heat-resistant thermoplastic in compositions
JPS6223963B2 (en)
US5849836A (en) Coagulation of polymers using sulfurous acid
JPS6255546B2 (en)
CN113121740B (en) Polybutadiene latex for preparing high-whiteness ABS resin and preparation method and application thereof
JPS6245246B2 (en)
KR940011156B1 (en) Process for producing a heat resistant copolymer
JP2000178405A (en) Resin composition and its production
JPS6246564B2 (en)
JPH0568485B2 (en)