JPS6245246B2 - - Google Patents

Info

Publication number
JPS6245246B2
JPS6245246B2 JP2015980A JP2015980A JPS6245246B2 JP S6245246 B2 JPS6245246 B2 JP S6245246B2 JP 2015980 A JP2015980 A JP 2015980A JP 2015980 A JP2015980 A JP 2015980A JP S6245246 B2 JPS6245246 B2 JP S6245246B2
Authority
JP
Japan
Prior art keywords
parts
polymerization
monomer
graft copolymer
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2015980A
Other languages
Japanese (ja)
Other versions
JPS56116711A (en
Inventor
Kazuo Kishida
Naoki Yamamoto
Koji Nishida
Toshito Narita
Yasumasa Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2015980A priority Critical patent/JPS56116711A/en
Priority to AU66505/81A priority patent/AU537995B2/en
Priority to CA000369106A priority patent/CA1162679A/en
Priority to IT19366/81A priority patent/IT1193577B/en
Priority to DE19813103131 priority patent/DE3103131A1/en
Priority to GB8102965A priority patent/GB2068392B/en
Publication of JPS56116711A publication Critical patent/JPS56116711A/en
Priority to US06/473,369 priority patent/US4513111A/en
Publication of JPS6245246B2 publication Critical patent/JPS6245246B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐衝撃性に優れた熱可塑性樹脂を製
造する方法に関する。 一般に耐衝撃性樹脂として代表されるABS樹
脂は、ポリブタジエン又はスチレン−ブタジエン
系ゴム(SBR)とスチレン、アクリロニトリルを
主成分とするものである。その工業的に実施され
ている態様を重合方式から分類すると、乳化重合
法、塊状重合法、懸濁重合法、溶液重合法、塊状
懸濁二段重合法そして乳化塊状重合法に大別され
る。 しかしながら、上記諸重合法は全ての面で満足
とは言い難く、例えば乳化重合法では、重合反応
制御や生産安定性は優れているものの、凝固工
程、洗浄工程さらに乾燥工程等による水使用量、
電力使用量は多大であり、かつ凝固工程で必須な
塩または酸等の不純物除去が極めて困難であり、
熱成形時の帯色の大きな要因ともなつている。 塊状重合法では、ゴムエラストマー成分をモノ
マーに溶解しなければならないため、可溶性ゴム
を使用する場合に限られるばかりでなく、重合系
の増粘現象のためゴム含量の制限を受け、また塊
状重合であるために、部分発熱の反応制御が容易
ではない。 懸濁重合法でもゴムエラストマーのモノマーへ
の溶解の問題、生成物の形態の問題、更に生成物
のゴム分散不均一化の問題を持つ。 また溶液重合法では、反応操作、反応制御は容
易であるが、溶剤回収に多大なユーテイリテイを
必要とする。 塊状懸濁二段重合法では、エラストマーの溶解
工程、重合工程での高粘度操作という点に塊状重
合法と同様な問題がある。 乳化塊状重合法では、一度生成したブタジエン
系エラストマーにスチレン、アクリロニトリルを
乳化重合してグラフト共重合体を生成し、このグ
ラフト共重合体をモノマー抽出して塊状重合を行
なうが、塊状重合法の場合と同様、部分発熱の反
応制御の問題があるほかにゴム含量が大となる
と、部分発熱によるゴム劣化を免れ得ず、そのた
めに重合工程の連続化、重合製造装置の設計に苦
心を要し、更に生産面で品種切換えが困難となら
ざるを得ない。 乳化懸濁重合法においては、一度生成したブタ
ジエン系エラストマーにスチレン、アクリロニト
リルを乳化重合してグラフト共重合体を生成し、
このグラフト共重合体エマルジヨンラテツクスに
部分凝集剤、懸濁重合安定剤及びモノマーを添加
して懸濁重合を行ないビーズ状の形で回収するた
めに、重合反応制御や生産安定性は通常の乳化重
合と同等に優れており、更に凝固工程、洗浄工程
を必要としないためユーテイリテイ使用量が少な
く、不純物の混入も少ないため塾成形安定性も向
上する。 しかしながら現段階の乳化懸濁重合法において
は、改良すべき重大な問題が残されており未だ工
業的には実施されるに致つていない。 即ち重合系の安定性に起因する問題で、粗大顆
粒子が生成したり、餅状化現象が起つたりする場
合がある。更に、生成物中のゴムの凝集に起因す
る問題で成形加工性が悪化したり、成形加工時の
外観が平滑性に欠ける場合がある。更には、ポリ
マー構造の設計に起因する問題で満足な耐衝撃性
が得られない場合がある。これらの点を同時に解
決する方法は現段階では見出されておらず、これ
らの点の改良なくして乳化懸濁重合法の工業的実
施は困難である。 本発明者等は、このような現状に鑑み従来の耐
衝撃性樹脂の製造方法を改良すべく鋭意研究した
結果本発明を完成した。 本発明は、ゴム状重合体(A)ラテツクスにエチレ
ン性単量体もしくは単量体混合物(B)を添加し乳化
重合してグラフト共重合体(C)ラテツクスを製造
し、次いで該グラフト共重合体(C)ラテツクスに酸
性物質もしくは電解質物質を添加して部分凝集さ
せた後、まずエチレン性単量体もしくは単量体混
合物(D)を添加ししかる後に懸濁重合安定剤を添加
するか又はエチレン性単量体もしくは単量体混合
物(D)と懸濁重合安定剤とを同時に添加するかし、
懸濁重合してグラフト共重合体(E)をビーズ状で得
ることより成る方法において、 (1) ゴム状重合体(A)がジエン系単量体成分を少な
くとも60重量%含み、且つ膨潤度10〜35、ゲル
含量70%以上、重量平均粒径0.2〜0.4μで粒子
の大部分が0.03〜0.5μの範囲内にあること (2) (B)及び(D)のエチレン性単量体もしくは単量体
混合物がそれぞれ芳香族ビニル単量体50〜100
重量%とこれと共重合し得るビニル単量体50〜
0重量%とからなること (3) グラフト共重合体(C)がフリーポリマー率20%
以上、アセトン可溶分の還元粘度(ηsp/
C)が0.30〜1.0dl/gであること を特徴とする耐衝撃性樹脂の製造方法である。 本発明において膨潤度及びゲル含量は次のよう
にして定義される。 即ちゴム状重合体(A)W0gを約50倍量のトルエ
ンに30℃で48時間浸漬し、膨潤した試料の重量を
W1g、膨潤試料W1gを恒量になるまで真空乾燥
し、乾燥後の重量をW2gとしたとき、 膨潤度=W−W/W ゲル含量=W/W×100(%) また、フリーポリマー率及びアセトン可溶分の
ηsp/Cは次のようにして定義される。 即ちグラフト共重合体(C)からゴム状重合体(A)に
グラフトしていない重合体(以下フリーポリマー
と記述する)をアセトンで抽出分離しその重量測
定から、 フリーポリマー率=アセトン可溶な重合体の重量/ゴム状重合体(A)の重量×100(%) アセトン可溶分のηsp/Cはこのアセトンで抽
出分離した重合体0.1gをN・N−ジメチルホル
ムアミド100mlに溶解し、25℃でオストワルド粘
度計で測定する。 本発明の方法はゴム状重合体(A)としてあらゆる
種類のジエン系ゴム例えば天然ゴム、ブタジエン
ゴム、スチレン−ブタジエンゴム、アクリロニト
リル−ブタジエンゴム、イソプレンゴム、クロロ
プレンゴム、エチレン−プロピレン−ブタジエン
ゴム等を用いる場合に適用でき、しかも均一細粒
顆粒子形状の優れた、熱安定性が良好で、耐衝撃
性、成形加工性及び成形加工時の外観に優れた耐
衝撃性樹脂を製造することを可能にする。この場
合ゴム状重合体(A)はモノマー組成中にジエン系単
量体を60重量%以上含有しその架橋度がゲル含量
70%以上、かつ膨潤度が10〜35の範囲内にあるこ
とが必要で、これ以外のジエン含量、架橋度を有
する場合には優れた耐衝撃性、成形加工性、成形
加工時の外観を有する組成物を得ることができな
い。 ゲル含量70%未満及び/又は膨潤度35を越える
未架橋または不充分な架橋度を有するゴム状重合
体成分を用いる場合には、成形加工時に組成物中
のゴム粒子が凝集して樹脂の流動方向に変形し、
表面光沢の不足、成形加工時の外観の不良等の欠
陥が現われる。 一方膨潤度10未満の架橋度過分のゴム状重合体
を用いた場合には、耐衝撃性に於いて劣るという
欠点を有する。 粒子径に関しては、連続樹脂相中にゴム粒子を
分散させて得られる樹脂組成物の場合一般に粒子
径を余り小さくしすぎると耐衝撃性の発現が悪
く、逆に粒子径が大きすぎると成形加工性に劣る
という欠点が出てくる。以上のような理由によ
り、本発明においてはゴム状重合体(A)の粒子径は
耐衝撃性、成形加工性、成形加工時の外観共にす
ぐれた、バランスのとれた組成物を得る為に重量
平均粒径0.2〜0.4μで粒子の大部分が0.03〜0.5μ
の範囲内にあることが必要である。 本発明の第一段階としての乳化重合部及び第二
段階としての懸濁重合部に用いられるエチレン性
単量体としてはスチレン、α−メチルスチレン、
P−置換スチレンなどの芳香族ビニル単量体と、
これと共重合可能なアクリロニトリル、メタクリ
ロニトリル、アクリル酸エステル、メタクリル酸
エステル等のビニル単量体が用いられる。乳化重
合部と懸濁重合部で用いられるモノマーの種類は
同一であつても異種のものであつても差仕えな
い。 芳香族ビニル単量体とこれと共重合可能なビニ
ル単量体の割合は、耐衝撃性、成形加工性の上か
ら、芳香族ビニル単量体50〜100重量%に対して
ビニル単量体50〜0重量%とすることが必要であ
る。この割合は乳化重合部で使用するモノマーと
懸濁重合部で使用するモノマーとでは同一であつ
ても異つていても差仕えない。 ゴム状重合体(A)の割合は、得られる耐衝撃性樹
脂であるグラフト共重合体(E)の5〜70重量%であ
ることが好ましく、ゴム含量が5%未満の場合に
は耐衝撃性に於いて劣り、70%を越えると、重合
反応時及び/又は成形加工時にゴム粒子が凝集し
て、重合反応が不安定化し、及び/又は成形加工
性、成形加工時の外観が不良化することがある。 乳化懸濁重合法の第一段階としての乳化重合部
では一般に重合転化率を100%にすることは困難
であるが、本発明の方法ではある程度の未反応単
量体を残留した状態(重合転化率75%以上)で第
二段階の懸濁重合部に移行しても優れた耐衝撃
性、成形加工性、成形加工時の外観を有する耐衝
撃性樹脂を製造することが可能である。 乳化重合部における生成物であるグラフト共重
合体(C)ラテツクスは反応容器内にゴム状重合体(A)
ラテツクス、乳化剤、重合開始剤、単立体(B)及び
必要ならば連鎖移動剤を加え、40〜120℃で乳化
重合することによつて得られる。 乳化剤としては、アルキルベンゼンスルフオン
酸ソーダ等公知の陰イオン性乳化剤が使用出来
る。 重合開始剤としては過硫酸塩、過硼酸塩のよう
な水溶性無機開始剤を単独で、あるいは亜硫酸
塩、亜硫酸水素塩、チオ硫酸塩等と組み合わせて
レドツクス開始剤として用いることもできる。 また、有機ヒドロパーオキシド−第一鉄塩、有
機ヒドロパーオキシド−ナトリウムフオルムアル
デヒドスルフオキシレートのようなレドツクス開
始剤系も用い得る。 本発明の方法においては後述するように重合度
及びフリーポリマー率の調節が重要な要因であ
る。重合度及びフリーポリマー率の調節のために
必要ならば連鎖移動剤を用いるが、連鎖移動剤と
してはアルキルメルカプタンの他、ハロゲン化ア
ルキル、アルキルサルフアイド、アルキルジサル
フアイド、チオグリコール酸エステル、α−メチ
ルスチレンダイマーも使用されるが、特にアルキ
ルメルカプタンが好ましい。 重合に要する時間は開始剤の種類と量、重合温
度などによつて異なるが、通常は0.5〜10時間で
ある。 グラフト共重合体(C)に関し、本発明で重要な事
はフリーポリマー率が20%以上で、アセトン可溶
分のηsp/Cが0.30〜1.0dl/gであることであ
る。 ηsp/Cが0.30dl/g未満の場合は成形加工
性、成形加工時の外観は一般に良好であるが、優
れた耐衝性を得ることはできない。驚くべきこと
には懸濁重合部で種々の改質法を試みてもこの性
質を変えることが出来ないことである。 またフリーポリマー率が20%未満及び/又はア
セトン可溶分のηsp/Cが1.0dl/gを越える場
合は、乳化状態から懸濁状態へ相転移する時点
で、しばしば系の不安定化を招き餅状化現象を起
したり、肥大粒子が生成したりすることがあり、
また重合反応が順調に終了しても、優れた成形加
工性、成形加工時の外観を有する組成物を得るこ
とはできない。即ち、生成物の流動性が悪く、通
常の温度、圧力での成形加工が困難であり、成形
加工品の外観も平滑性に欠ける。 グラフト共重合体(E)はグラフト共重合体(C)ラテ
ツクスに酸性物質又は電解質物質等の部分凝集
剤、懸濁重合安定剤、単量体(D)及び重合開始剤を
加えて40〜120℃で懸濁重合することによつて得
られる。 部分凝集剤としては、酸または水溶性無機塩が
全て使用可能であり、酸としては硫酸、塩酸類の
鉱酸、酢酸等の解離定数10-6mol/以上の有機
酸(安息香酸、サリチル酸、ギ酸、酒石酸を含
む)である。塩としては硫酸マグネシウム、硫酸
ナトリウム等硫酸塩や塩化物、酢酸塩を含むがこ
れらに限定されない。 懸濁重合安定剤としては通常の無機系分散剤や
有機系分散剤が使用できる。 無機系分散剤としては炭酸マグネシウム、第三
リン酸カルシウムなどが挙げられる。また有機系
分散剤のうち、天然及び合成高分子分散剤として
はでんぷん、ゼラチン、アクリルアミド、部分ケ
ン化ポリビニルアルコール、部分ケン化ポリメタ
クリル酸メチル、ポリアクリル酸及びその塩、セ
ルロース、メチルセルロース、ヒドロキシメチル
セルロース、ヒドロキシエチルセルロース、ポリ
アルキレンオキシド、ポリビニルピロリドン、ポ
リビニルイミダゾール、スルフオン化ポリスチレ
ンなどが挙げられ、また低分子分散剤として、例
えばアルキルベンゼンスルフオン酸塩、脂肪酸塩
などの通常の乳化剤も使用可能である。 グラフト共重合体(C)ラテツクス、部分凝集剤、
単量体(D)、懸濁重合安定剤の添加順序は、グラフ
ト共重合体(C)ラテツクスに部分凝集剤を添加した
後、単量体D及び懸濁重合安定剤を添加すること
が必要であり、単量体(D)と懸濁重合安定剤は同時
に添加しても、単量体(D)を添加した後懸濁重合安
定剤を添加しても良い。 これ以外の添加順序の場合は、重合系が不安定
化し、粗大顆粒子が生成したり、餅状化現象が起
つたりする。 懸濁部重合の重合開始剤としてはベンゾイルペ
ルオキシド、ラウロイルペルオキシド等の過酸化
物やアゾビスイソブチロニトリルの如きアゾ化合
物が使用される。 また重合度調節のために、連鎖移動剤を用いて
も良く、連鎖移動剤としては炭素数2〜18のアル
キルメルカプタン、チオグリコール酸エステル、
β−メルカプトプロピオン酸エステル等のエステ
ル系メルカプタン、チオグリコール酸、β−メル
カプトプロピオン酸等のメルカプト酸、ベンジル
メルカプタン、あるいはチオフエノール、チオク
レゾール、チオナフトール等の芳香族メルカプタ
ン等が用い得るが、特に好ましいのは炭素数4〜
12のアルキルメルカプタンである。 重合開始剤及び連鎖移動剤の添加方法は特に制
限がないが、重合開始剤及び連鎖移動剤の両方と
も単量体(D)に溶解する方法、一方を単量体(D)に溶
解し他方をグラフト共重合体(C)ラテツクス中へ加
える方法、両方ともグラフト共重合体(C)ラテツク
ス中へ加える方法及び一方または両方をグラフト
共重合体(C)ラテツクス、部分凝集剤、懸濁重合安
定剤、単量体(D)の混合した系へ加える方法等が用
いられる。重合に要する時間は開始剤の種類と
量、重合温度などによつて異なるが通常は0.5〜
10時間である。 なお懸濁部重合時に可塑剤、滑剤、安定剤及び
紫外線吸収剤などを添加することも可能である。
また、本発明によつて得られる耐衝撃性樹脂を他
の樹脂、例えばポリプロピレン、ポリスチレン、
アクリロニトリル−スチレン共重合体、ポリメチ
ルメタクリレート、ポリ塩化ビニル、ポリ塩化ビ
ニリデン等のビニル系ポリマーやポリカーボネー
ト、熱可塑性ポリエステル、ポリアミド等と混合
することにより成形加工性、耐衝撃性を著しく改
良することが可能となる。 下記実施例中の部は重合部を、%は重量%を表
わす。 実施例 1 (混合物1) ポリブタジエンラテツクス(固形分)*
60部(30部) 硫酸第一鉄 0.003部 デキストローズ 0.5部 ピロリン酸ソーダ 0.2部 不均化ロジン酸石ケン 2.5部 苛性ソーダ 0.1部 メチレンビスナフタリンスルフオン酸ソーダ
0.2部 脱イオン水 150部 *固形分 50% 膨潤度 16.0 ゲル含量 83.1% 重量平均粒子径 0.33μ モノマー組成 ブタジエン90%、スチレン10% (混合物2) スチレン 22.2部 アクリロニトリル 7.8部 キユメンヒドロペルオキシド 0.33部 ターシヤリドデシルメルカプタン 0.1部 (混合物1)を反応器に仕込み、反応器内を窒
素置換した後、60℃で200rpmの撹拌速度で撹拌
しながら(混合物2)を30分間で滴下した。 その後、3時間重合して反応を完成させグラフ
ト共重合体ラテツクスを得た。重合転化率は80%
であり、グラフト共重合体のフリーポリマー率は
37%、アセトン可溶分のηsp/Cは0.56dl/gで
あつた。 得られたグラフト共重合体ラテツクス(PH
11.0)を室温に戻し、350rpmの撹拌のもとで10
%硫酸水溶液8部を加えて高粘度の部分凝集体
(PH2.8)を生成し、次いでスチレン29.6部、アク
リロニトリル10.4部、ベンゾイルペルオキシド
0.2部、ターシヤリブチルメルカプタン0.5部の混
合液を添加すると、分散液は高粘性状態から低粘
性(10センチポイズ)状態にかわつた。この分散
液に、懸濁安定剤であるスルフオン化ポリスチレ
ンナトリウム塩水溶液(0.3%、数平均分子量
20000)10部を添加し、80℃で5時間重合させ
た。重合体をろ別した後、バツケツト型遠心脱水
機で洗浄脱水して乾燥した。重合転化率は97%で
あり、得られた重合体は下記の如き粒度分布を持
つ美麗なビーズ体であつた。
The present invention relates to a method for producing a thermoplastic resin with excellent impact resistance. ABS resin, which is generally represented as an impact-resistant resin, mainly contains polybutadiene or styrene-butadiene rubber (SBR), styrene, and acrylonitrile. The industrially carried out methods can be categorized based on the polymerization method, and are broadly divided into emulsion polymerization method, bulk polymerization method, suspension polymerization method, solution polymerization method, bulk suspension two-stage polymerization method, and emulsion bulk polymerization method. . However, the above-mentioned polymerization methods are far from satisfactory in all respects.For example, although emulsion polymerization is excellent in polymerization reaction control and production stability, the amount of water used in the coagulation process, washing process, drying process, etc.
The amount of electricity consumed is large, and it is extremely difficult to remove impurities such as salts or acids that are essential in the coagulation process.
It is also a major cause of color banding during thermoforming. In the bulk polymerization method, the rubber elastomer component must be dissolved in the monomer, so it is not only possible to use soluble rubber, but also the rubber content is limited due to the thickening phenomenon of the polymerization system. Therefore, it is not easy to control the reaction of partial heat generation. Even the suspension polymerization method has problems with dissolution of the rubber elastomer into the monomer, problems with the morphology of the product, and further problems with uneven dispersion of the product in the rubber. Further, in the solution polymerization method, reaction operation and reaction control are easy, but a large amount of utility is required for solvent recovery. The two-stage bulk suspension polymerization method has the same problems as the bulk polymerization method in that it requires high viscosity operations during the elastomer dissolution step and the polymerization step. In the emulsion bulk polymerization method, a graft copolymer is produced by emulsion polymerizing styrene and acrylonitrile onto a butadiene-based elastomer that is once produced, and monomers are extracted from this graft copolymer to perform bulk polymerization. Similarly, in addition to the problem of reaction control due to partial heat generation, when the rubber content becomes large, rubber deterioration due to partial heat generation cannot be avoided, which requires painstaking efforts to make the polymerization process continuous and to design the polymerization production equipment. Furthermore, it becomes difficult to switch types in terms of production. In the emulsion suspension polymerization method, styrene and acrylonitrile are emulsion polymerized to a butadiene-based elastomer once produced to produce a graft copolymer.
In order to perform suspension polymerization by adding a partial coagulant, suspension polymerization stabilizer, and monomer to this graft copolymer emulsion latex and recovering it in the form of beads, polymerization reaction control and production stability are difficult to maintain. It is as good as emulsion polymerization, and since no coagulation or washing steps are required, the amount of utility used is small, and the stability of molding is improved because there is less contamination of impurities. However, the current emulsion suspension polymerization method still has serious problems that need to be improved, and has not yet been put into practical use industrially. That is, due to problems caused by the stability of the polymerization system, coarse granules may be formed or a cake-like phenomenon may occur. Furthermore, problems caused by agglomeration of the rubber in the product may result in poor molding processability or lack of smoothness in appearance during molding. Furthermore, problems due to the design of the polymer structure may prevent satisfactory impact resistance from being achieved. At present, no method has been found that simultaneously solves these problems, and it will be difficult to industrially implement emulsion suspension polymerization without improving these points. In view of the current situation, the present inventors completed the present invention as a result of intensive research to improve the conventional method for producing impact-resistant resins. The present invention involves adding an ethylenic monomer or monomer mixture (B) to a rubbery polymer (A) latex and carrying out emulsion polymerization to produce a graft copolymer (C) latex, and then producing a graft copolymer (C) latex. After adding an acidic substance or an electrolyte substance to the coalescing (C) latex to cause partial coagulation, first adding an ethylenic monomer or monomer mixture (D) and then adding a suspension polymerization stabilizer, or Adding the ethylenic monomer or monomer mixture (D) and the suspension polymerization stabilizer at the same time,
In a method comprising suspension polymerization to obtain a graft copolymer (E) in the form of beads, (1) the rubbery polymer (A) contains at least 60% by weight of a diene monomer component, and has a degree of swelling. 10 to 35, gel content of 70% or more, weight average particle size of 0.2 to 0.4μ, with the majority of particles within the range of 0.03 to 0.5μ.(2) Ethylene monomers of (B) and (D) Or each monomer mixture contains 50 to 100 aromatic vinyl monomers.
Weight% and vinyl monomer copolymerizable with it: 50~
0% by weight (3) Graft copolymer (C) has a free polymer content of 20%
Above, the reduced viscosity of the acetone soluble component (ηsp/
C) is 0.30 to 1.0 dl/g. In the present invention, swelling degree and gel content are defined as follows. That is, 0 g of rubbery polymer (A)W was immersed in approximately 50 times the amount of toluene at 30°C for 48 hours, and the weight of the swollen sample was calculated.
When W 1 g and the swollen sample W 1 g are vacuum-dried to a constant weight, and the weight after drying is W 2 g, degree of swelling = W 1 - W 0 /W 0 Gel content = W 2 /W 0 × 100 (%) Furthermore, the free polymer rate and the acetone soluble content ηsp/C are defined as follows. In other words, the polymer that is not grafted onto the rubbery polymer (A) from the graft copolymer (C) (hereinafter referred to as free polymer) is extracted and separated using acetone, and its weight is measured. Weight of polymer/weight of rubbery polymer (A) x 100 (%) ηsp/C of the acetone soluble portion is obtained by dissolving 0.1 g of the polymer extracted and separated with this acetone in 100 ml of N·N-dimethylformamide. Measured with an Ostwald viscometer at 25°C. The method of the present invention uses all kinds of diene rubbers such as natural rubber, butadiene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, isoprene rubber, chloroprene rubber, ethylene-propylene-butadiene rubber, etc. as the rubbery polymer (A). It is possible to produce an impact-resistant resin that is applicable to various applications, has an excellent uniform fine granule shape, has good thermal stability, and has excellent impact resistance, moldability, and appearance during molding. Make it. In this case, the rubbery polymer (A) contains 60% by weight or more of a diene monomer in its monomer composition, and the degree of crosslinking is equal to the gel content.
70% or more, and the degree of swelling must be within the range of 10 to 35. If the diene content and degree of crosslinking are other than these, it must have excellent impact resistance, moldability, and appearance during molding. It is not possible to obtain a composition with When using a rubbery polymer component with a gel content of less than 70% and/or a swelling degree of more than 35, which is uncrosslinked or has an insufficient degree of crosslinking, the rubber particles in the composition may aggregate during molding and the resin may flow. deformed in the direction,
Defects such as lack of surface gloss and poor appearance during molding appear. On the other hand, when a rubbery polymer with an excessive degree of crosslinking and a swelling degree of less than 10 is used, it has the disadvantage of poor impact resistance. Regarding particle size, in the case of resin compositions obtained by dispersing rubber particles in a continuous resin phase, if the particle size is too small, impact resistance will generally be poor, and conversely, if the particle size is too large, molding process will be difficult. The disadvantage of being inferior in sex appears. For the reasons mentioned above, in the present invention, the particle size of the rubbery polymer (A) is determined by weight in order to obtain a well-balanced composition with excellent impact resistance, molding processability, and appearance during molding. The average particle size is 0.2-0.4μ, with the majority of particles being 0.03-0.5μ.
It is necessary to be within the range of . Ethylene monomers used in the emulsion polymerization section as the first step and the suspension polymerization section as the second step of the present invention include styrene, α-methylstyrene,
an aromatic vinyl monomer such as P-substituted styrene;
Vinyl monomers copolymerizable with this, such as acrylonitrile, methacrylonitrile, acrylic ester, and methacrylic ester, are used. It does not matter whether the types of monomers used in the emulsion polymerization section and the suspension polymerization section are the same or different. The ratio of aromatic vinyl monomer and vinyl monomer copolymerizable with aromatic vinyl monomer is 50 to 100% by weight of aromatic vinyl monomer and vinyl monomer in terms of impact resistance and moldability. It is necessary to set it as 50-0 weight%. It does not matter whether this ratio is the same or different for the monomers used in the emulsion polymerization section and the monomers used in the suspension polymerization section. The proportion of the rubbery polymer (A) is preferably 5 to 70% by weight of the graft copolymer (E), which is the resulting impact-resistant resin, and when the rubber content is less than 5%, the impact-resistant If it exceeds 70%, the rubber particles will aggregate during the polymerization reaction and/or molding process, making the polymerization reaction unstable and/or causing poor moldability and appearance during molding process. There are things to do. It is generally difficult to achieve a polymerization conversion rate of 100% in the emulsion polymerization section, which is the first step of the emulsion suspension polymerization method, but in the method of the present invention, a certain amount of unreacted monomer remains (polymerization conversion rate 75% or more), it is possible to produce an impact-resistant resin that has excellent impact resistance, molding processability, and appearance during molding even when transferred to the second stage of suspension polymerization. The graft copolymer (C) latex, which is the product of the emulsion polymerization section, is mixed with the rubbery polymer (A) in the reaction vessel.
It is obtained by adding a latex, an emulsifier, a polymerization initiator, a monostere (B) and, if necessary, a chain transfer agent, and carrying out emulsion polymerization at 40 to 120°C. As the emulsifier, known anionic emulsifiers such as sodium alkylbenzenesulfonate can be used. As the polymerization initiator, water-soluble inorganic initiators such as persulfates and perborates can be used alone or in combination with sulfites, bisulfites, thiosulfates, etc. as redox initiators. Redox initiator systems such as organic hydroperoxide-ferrous salts, organic hydroperoxide-sodium formaldehyde sulfoxylates may also be used. In the method of the present invention, adjustment of the degree of polymerization and free polymer ratio are important factors, as will be described later. A chain transfer agent is used if necessary to adjust the degree of polymerization and free polymer ratio, and chain transfer agents include alkyl mercaptans, alkyl halides, alkyl sulfides, alkyl disulfides, thioglycolic acid esters, α - Alkylmercaptans are particularly preferred, although methylstyrene dimers are also used. The time required for polymerization varies depending on the type and amount of initiator, polymerization temperature, etc., but is usually 0.5 to 10 hours. Regarding the graft copolymer (C), what is important in the present invention is that the free polymer ratio is 20% or more and the acetone soluble content ηsp/C is 0.30 to 1.0 dl/g. When ηsp/C is less than 0.30 dl/g, moldability and appearance during molding are generally good, but excellent impact resistance cannot be obtained. Surprisingly, even if various modification methods were tried in the suspension polymerization section, this property could not be changed. Furthermore, if the free polymer ratio is less than 20% and/or the acetone-soluble content ηsp/C exceeds 1.0 dl/g, the system often becomes unstable at the time of phase transition from an emulsified state to a suspended state. It may cause a cake-like phenomenon or the formation of enlarged particles.
Furthermore, even if the polymerization reaction is completed smoothly, a composition having excellent moldability and appearance during molding cannot be obtained. That is, the fluidity of the product is poor, making it difficult to mold it at normal temperatures and pressures, and the appearance of the molded product also lacks smoothness. The graft copolymer (E) is prepared by adding a partial flocculant such as an acidic substance or an electrolyte substance, a suspension polymerization stabilizer, a monomer (D), and a polymerization initiator to the graft copolymer (C) latex. Obtained by suspension polymerization at ℃. As a partial flocculant, any acid or water-soluble inorganic salt can be used. Examples of acids include mineral acids such as sulfuric acid and hydrochloric acid, and organic acids (benzoic acid, salicylic acid, salicylic acid, (including formic acid and tartaric acid). Salts include, but are not limited to, sulfates such as magnesium sulfate and sodium sulfate, chlorides, and acetates. As the suspension polymerization stabilizer, ordinary inorganic dispersants and organic dispersants can be used. Examples of inorganic dispersants include magnesium carbonate and tribasic calcium phosphate. Among organic dispersants, natural and synthetic polymer dispersants include starch, gelatin, acrylamide, partially saponified polyvinyl alcohol, partially saponified polymethyl methacrylate, polyacrylic acid and its salts, cellulose, methyl cellulose, hydroxymethyl cellulose. , hydroxyethyl cellulose, polyalkylene oxide, polyvinylpyrrolidone, polyvinylimidazole, sulfonated polystyrene, etc. Also, as a low molecular weight dispersant, common emulsifiers such as alkylbenzene sulfonates and fatty acid salts can also be used. Graft copolymer (C) latex, partial flocculant,
The order of addition of monomer (D) and suspension polymerization stabilizer is that it is necessary to add monomer D and suspension polymerization stabilizer after adding the partial flocculant to the graft copolymer (C) latex. The monomer (D) and the suspension polymerization stabilizer may be added at the same time, or the suspension polymerization stabilizer may be added after the monomer (D) is added. If the addition order is other than this, the polymerization system will become unstable, and coarse granules may be formed or a cake-like phenomenon may occur. As the polymerization initiator for suspension polymerization, peroxides such as benzoyl peroxide and lauroyl peroxide, and azo compounds such as azobisisobutyronitrile are used. In addition, a chain transfer agent may be used to adjust the degree of polymerization, and examples of chain transfer agents include alkyl mercaptans having 2 to 18 carbon atoms, thioglycolic acid esters,
Ester mercaptans such as β-mercaptopropionic acid ester, mercapto acids such as thioglycolic acid and β-mercaptopropionic acid, benzyl mercaptan, or aromatic mercaptans such as thiophenol, thiocresol, and thionaphthol can be used, but in particular Preferably carbon number is 4~
12 alkyl mercaptans. There are no particular restrictions on the method of adding the polymerization initiator and chain transfer agent, but there are methods in which both the polymerization initiator and chain transfer agent are dissolved in the monomer (D), and methods in which one is dissolved in the monomer (D) and the other is dissolved in the monomer (D). Adding one or both to the graft copolymer (C) latex, Partial flocculant, Suspension polymerization stabilization method A method of adding the agent to a mixed system of monomer (D), etc. is used. The time required for polymerization varies depending on the type and amount of initiator, polymerization temperature, etc., but is usually 0.5~
It is 10 hours. It is also possible to add plasticizers, lubricants, stabilizers, ultraviolet absorbers, etc. during the suspension polymerization.
The impact-resistant resin obtained by the present invention can also be used with other resins such as polypropylene, polystyrene,
By mixing with vinyl polymers such as acrylonitrile-styrene copolymer, polymethyl methacrylate, polyvinyl chloride, polyvinylidene chloride, polycarbonate, thermoplastic polyester, polyamide, etc., moldability and impact resistance can be significantly improved. It becomes possible. In the following examples, parts represent polymerized parts, and % represents weight %. Example 1 (Mixture 1) Polybutadiene latex (solid content) *
60 parts (30 parts) Ferrous sulfate 0.003 parts Dextrose 0.5 parts Sodium pyrophosphate 0.2 parts Disproportionated rosin acid soap 2.5 parts Caustic soda 0.1 parts Sodium methylene bisnaphthalene sulfonate
0.2 parts Deionized water 150 parts *Solid content 50% Swelling degree 16.0 Gel content 83.1% Weight average particle size 0.33μ Monomer composition 90% butadiene, 10% styrene (Mixture 2) Styrene 22.2 parts Acrylonitrile 7.8 parts Kyumene hydroperoxide 0.33 parts After charging 0.1 part of tertiary dodecyl mercaptan (Mixture 1) into a reactor and purging the inside of the reactor with nitrogen, (Mixture 2) was added dropwise over 30 minutes while stirring at 60°C and a stirring speed of 200 rpm. Thereafter, polymerization was carried out for 3 hours to complete the reaction and a graft copolymer latex was obtained. Polymerization conversion rate is 80%
and the free polymer ratio of the graft copolymer is
37%, and the acetone soluble content ηsp/C was 0.56 dl/g. The resulting graft copolymer latex (PH
11.0) to room temperature and stirred at 350 rpm for 10
% sulfuric acid aqueous solution to form a highly viscous partial aggregate (PH2.8), then 29.6 parts of styrene, 10.4 parts of acrylonitrile, and benzoyl peroxide.
When a mixture of 0.2 parts of tertiary butyl mercaptan and 0.5 parts of tertiary butyl mercaptan was added, the dispersion changed from a high viscosity state to a low viscosity state (10 centipoise). To this dispersion, add a suspension stabilizer, a sulfonated polystyrene sodium salt aqueous solution (0.3%, number average molecular weight
20000) was added and polymerized at 80°C for 5 hours. After the polymer was filtered off, it was washed, dehydrated, and dried using a bucket-type centrifugal dehydrator. The polymerization conversion rate was 97%, and the obtained polymer was a beautiful bead body having a particle size distribution as shown below.

【表】 乾燥した粒子50部、アクリロニトリルースチレ
ンコポリマー(ηsp/C(25℃DMF)=0.60)50
部およびステアリン酸カルシウム0.4部を
3000rpmで10容ヘンシエルミキサーで混合した
後、ペレツト化し射出成形によりテストピースを
成形した。成形物は熱帯色もなく表面光沢のきわ
めて優れたものであつた。 比較例 1−1 実施例1と同じ(混合物1)を反応器に仕込
み、反応器内を窒素置換した後、45℃で200rpm
の撹拌速度で撹拌しながら、実施例1と同じ(混
合物2)を5分間で滴下した。その後、3時間重
合して反応を完結させグラフト共重合体ラテツク
スを得た。重合転化率は77%でありグラフト共重
合体のフリーポリマー率は45%、アセトン可溶分
のηsp/Cは1.09dl/gであつた。 以下実施例1と同様に処理してテストピースを
作成した。 比較例 1−2 (混合物2) スチレン 22.2部 アクリロニトリル 7.8部 キユメンヒドロペルオキシド 0.33部 ターシヤリドデシルメルカプタン 0.8部 実施例1と同じ(混合物1)を反応器に仕込
み、反応器内を窒素置換した後、75℃で200rpm
の撹拌速度で撹拌しながら上記の(混合物2)を
90分間で滴下した。その後、3時間重合して反応
を完結させ、クラフト共重合体ラテツクスを得
た。重合転化率は84%であり、グラフト共重合体
のフリーポリマー率は42%、アセトン可溶分のη
sp/Cは0.26dl/gであつた。 以下実施例1と同様に処理してテストピースを
作成した。 実施例 2 (混合物1) ポリブタジエンラテツクス(固形分)*
90部(45部) 硫酸第一鉄 0.005部 デキストローズ 0.5部 ピロリン酸ソーダ 0.2部 不均化ロジン酸石ケン 1.0部 苛性ソーダ 0.02部 メチレンビスナフタレンスルフオン酸ソーダ
0.2部 脱イオン水 150部 *固形分 50% 膨潤度 24.0 ゲル含量 76.3% 重量平均粒子径 0.28μ モノマー組成 ブタジエン100% (混合物2) スチレン 14.8部 アクリロニトリル 5.2部 キユメンヒドロペルオキシド 0.2部 (混合物3) スチレン 11.1部 アクリロニトリル 3.9部 キユメンヒドロペルオキシド 0.3部 ターシヤリドデシルメルカプタン 0.3部 (混合物1)を反応器に仕込み、反応器内を窒
素置換した後、60℃で150rpmの撹拌速度で撹拌
しながら(混合物2)を10分間で滴下した。滴下
終了後、1時間経過してから(混合物3)を30分
間で滴下した。その後3時間重合して反応を完結
させ、グラフト共重合体ラテツクスを得た。重合
転化率は88%であり、グラフト共重合体のフリー
ポリマー率は36%、アセトン可溶分のηsp/C
は0.54dl/gであつた。 得られたグラフト共重合体ラテツクス(PH
10.8)を室温に戻し、350rpmの撹拌のもとでタ
ーシヤリドデシルメルカプタン2部を添加した後
10%の硫酸水溶液8部を加えて高粘度の部分凝集
体(PH3.0)を生成し、次いでスチレン15.0部、
アクリロニトリル5.0部、アゾビスイソブチロニ
トリル0.3部の混合液を添加しながら同時に懸濁
安定剤のスルフオン化ポリスチレン塩の0.3%水
溶液(数平均分子量20000)10部を添加すると、
分散液は高粘性状態から低粘性(10センチポイズ
状態にかわつた。この分散液を80℃で5時間加熱
重合させた。重合体をろ別した後、バスケツト型
遠心脱水機で洗浄脱水して乾燥した。重合転化率
は97%であり、得られた重合体は下記の如き粒度
分布を持つ美麗なビーズ体であつた。
[Table] 50 parts of dry particles, acrylonitrile styrene copolymer (ηsp/C (25°C DMF) = 0.60) 50
part and 0.4 parts of calcium stearate
After mixing in a 10 volume Henschel mixer at 3000 rpm, the mixture was pelletized and a test piece was formed by injection molding. The molded product had no tropical color and had an extremely high surface gloss. Comparative example 1-1 The same material as in Example 1 (mixture 1) was charged into a reactor, and after replacing the inside of the reactor with nitrogen, the mixture was heated at 45°C and 200 rpm.
The same mixture as in Example 1 (mixture 2) was added dropwise over 5 minutes while stirring at a stirring speed of . Thereafter, polymerization was carried out for 3 hours to complete the reaction and a graft copolymer latex was obtained. The polymerization conversion rate was 77%, the free polymer rate of the graft copolymer was 45%, and the acetone soluble content ηsp/C was 1.09 dl/g. Thereafter, a test piece was prepared in the same manner as in Example 1. Comparative Example 1-2 (Mixture 2) Styrene 22.2 parts Acrylonitrile 7.8 parts Qumene hydroperoxide 0.33 parts Tertiarydodecyl mercaptan 0.8 parts The same as in Example 1 (Mixture 1) was charged into a reactor, and the inside of the reactor was replaced with nitrogen. , 200rpm at 75℃
Add the above (mixture 2) while stirring at a stirring speed of
It was added dropwise over 90 minutes. Thereafter, polymerization was carried out for 3 hours to complete the reaction, and a kraft copolymer latex was obtained. The polymerization conversion rate was 84%, the free polymer rate of the graft copolymer was 42%, and the acetone soluble content was η.
sp/C was 0.26 dl/g. Thereafter, a test piece was prepared in the same manner as in Example 1. Example 2 (Mixture 1) Polybutadiene latex (solid content) *
90 parts (45 parts) Ferrous sulfate 0.005 parts Dextrose 0.5 parts Sodium pyrophosphate 0.2 parts Disproportionated rosin acid soap 1.0 parts Caustic soda 0.02 parts Sodium methylene bisnaphthalene sulfonate
0.2 parts Deionized water 150 parts *Solid content 50% Swelling degree 24.0 Gel content 76.3% Weight average particle size 0.28μ Monomer composition Butadiene 100% (Mixture 2) Styrene 14.8 parts Acrylonitrile 5.2 parts Kyumene hydroperoxide 0.2 parts (Mixture 3) Styrene 11.1 parts Acrylonitrile 3.9 parts Kyumene hydroperoxide 0.3 parts Tertiary dodecyl mercaptan 0.3 parts (Mixture 1) was charged into a reactor, the inside of the reactor was purged with nitrogen, and the mixture was stirred at 60°C at a stirring speed of 150 rpm. 2) was added dropwise over 10 minutes. One hour after the completion of the dropwise addition, (mixture 3) was added dropwise over a period of 30 minutes. Thereafter, polymerization was carried out for 3 hours to complete the reaction, and a graft copolymer latex was obtained. The polymerization conversion rate was 88%, the free polymer rate of the graft copolymer was 36%, and the acetone soluble content was ηsp/C.
was 0.54 dl/g. The resulting graft copolymer latex (PH
10.8) was brought to room temperature and after adding 2 parts of tertiary dodecyl mercaptan under stirring at 350 rpm.
Add 8 parts of 10% sulfuric acid aqueous solution to form a high viscosity partial aggregate (PH3.0), then add 15.0 parts of styrene,
When a mixture of 5.0 parts of acrylonitrile and 0.3 parts of azobisisobutyronitrile is added, at the same time 10 parts of a 0.3% aqueous solution (number average molecular weight 20000) of a sulfonated polystyrene salt as a suspension stabilizer is added.
The dispersion changed from a high viscosity state to a low viscosity state (10 centipoise). This dispersion was polymerized by heating at 80°C for 5 hours. After filtering off the polymer, it was washed and dehydrated using a basket-type centrifugal dehydrator and dried. The polymerization conversion rate was 97%, and the obtained polymer was a beautiful bead body with a particle size distribution as shown below.

【表】 乾燥した粒子35部、アクリロニトリル−スチレ
ンコポリマー(ηsp/C(25℃DMF)=0.61)65
部、およびステアリン酸カルシウム0.4部を
3000rpmで10容ヘンシエルミキサーで混合した
後、ペレツト化し射出成形によりテストピースを
成形した。成形物は熱帯色もなく表面光沢の極め
て優れたものであつた。 比較例 2−1 ポリブタジエンラテツクスとして、固形分50
%、膨潤度24.8、ゲル含量86.3%、重量平均粒子
径0.07μ、モノマー組成ブタジエン100%のもの
を使用した以外は実施例2と同様に処理してテス
トピースを作成した。 比較例 2−2 実施例2と同様にして得られたグラフト共重合
体ラテツクスを使用し、単量体混合物、凝集剤、
懸濁安定剤の順で添加した。加熱昇温中に塊状化
したが、粉砕してテストピースを作成した。 実施例 3 (混合物1) ポリブタジエンラテツクス(固形分)*
120部(60部) デキストローズ 1.0部 不均化ロジン酸石ケン 2.5部 苛性ソーダ 0.06部 メチレンビスナフタレンスルフオン酸ソーダ
0.2部 脱イオン水 180部 * 実施例1で用いたと同じもの (混合物2) スチレン 18.5部 アクリロニトリル 6.5部 キユメンヒドロペルオキシド 0.3部 ターシヤリドデシルメルカプタン 0.1部 (混合物3) 硫酸第一鉄 0.005部 ピロリン酸ソーダ 0.2部 脱イオン水 20部 (混合物1)を反応器に仕込み、反応器内を窒
素置換した後、60℃で200rpmの撹拌速度で撹拌
しながら(混合物2)を60分間で滴下した。(混
合物2)の滴下を開始した後、30分後より(混合
物3)を5分間で滴下した。(混合物2)の滴下
終了後、3時間重合して反応を完結させ、グラフ
ト共重合体ラテツクスを得た。重合転化率は84%
であり、グラフト共重合体のフリーポリマー率は
21%でアセトン可溶分のηsp/Cは0.37dl/gで
あつた。 得られたグラフト共重合体ラテツクスに、スチ
レン11.1部、アクリロニトリル3.9部、ベンゾイ
ルペルオキシド0.1部及びターシヤリブチルメル
カプタン0.2部の混合物を用いる以外は実施例1
と同様にして懸濁重合し、ビーズ状の重合体粒子
を得た。乾燥した粒子25部、アクリロニトリル−
スチレンコポリマー(ηsp/C(25℃DMF)=
0.60)75部およびステアリン酸カルシウム0.4部
を3000rpmで10容ヘンシエルミキサーで混合し
た後、ペレツト化し、射出成形によりテストピー
スを成形した。成形物は熱帯色もなく表面光沢の
極めて優れたものであつた。 上記実施例、比較例の諸樹脂特性を表−1にま
とめて示す。
[Table] 35 parts of dried particles, acrylonitrile-styrene copolymer (ηsp/C (25°C DMF) = 0.61) 65
part, and 0.4 parts of calcium stearate.
After mixing in a 10 volume Henschel mixer at 3000 rpm, the mixture was pelletized and a test piece was formed by injection molding. The molded product had no tropical color and had extremely excellent surface gloss. Comparative example 2-1 As polybutadiene latex, solid content 50
%, swelling degree 24.8, gel content 86.3%, weight average particle diameter 0.07μ, and monomer composition 100% butadiene, except that a test piece was prepared in the same manner as in Example 2. Comparative Example 2-2 A graft copolymer latex obtained in the same manner as in Example 2 was used, and a monomer mixture, a flocculant,
Suspension stabilizers were added in this order. Although it formed a lump during heating, it was crushed to create a test piece. Example 3 (Mixture 1) Polybutadiene latex (solid content) *
120 parts (60 parts) Dextrose 1.0 parts Disproportionated rosin acid soap 2.5 parts Caustic soda 0.06 parts Sodium methylene bisnaphthalene sulfonate
0.2 parts Deionized water 180 parts* Same as used in Example 1 (Mixture 2) Styrene 18.5 parts Acrylonitrile 6.5 parts Yumene hydroperoxide 0.3 parts Tertiary dodecyl mercaptan 0.1 part (Mixture 3) Ferrous sulfate 0.005 parts Pyrophosphoric acid 0.2 parts of soda and 20 parts of deionized water (Mixture 1) were charged into a reactor, and after purging the inside of the reactor with nitrogen, (Mixture 2) was added dropwise over 60 minutes while stirring at 60°C and a stirring speed of 200 rpm. Thirty minutes after starting dropwise addition of (Mixture 2), (Mixture 3) was added dropwise over 5 minutes. After the addition of (Mixture 2) was completed, polymerization was carried out for 3 hours to complete the reaction and a graft copolymer latex was obtained. Polymerization conversion rate is 84%
and the free polymer ratio of the graft copolymer is
At 21%, the acetone soluble content ηsp/C was 0.37 dl/g. Example 1 except that a mixture of 11.1 parts of styrene, 3.9 parts of acrylonitrile, 0.1 part of benzoyl peroxide, and 0.2 parts of tertiary butyl mercaptan was used in the obtained graft copolymer latex.
Suspension polymerization was carried out in the same manner as above to obtain bead-shaped polymer particles. 25 parts dry particles, acrylonitrile
Styrene copolymer (ηsp/C (25℃DMF)=
0.60) and 0.4 parts of calcium stearate were mixed in a 10 volume Henschel mixer at 3000 rpm, pelletized, and a test piece was formed by injection molding. The molded product had no tropical color and had extremely excellent surface gloss. Various resin properties of the above Examples and Comparative Examples are summarized in Table 1.

【表】【table】

Claims (1)

【特許請求の範囲】 1 ゴム状重合体(A)ラテツクスに、エチレン性単
量体もしくは単量体混合物(B)を添加し乳化重合し
てグラフト共重合体(C)ラテツクスを製造し、次い
で該グラフト共重合体(C)ラテツクスに酸性物質も
しくは電解質物質を添加して部分凝集させた後、
まずエチレン性単量体もしくは単量体混合物(D)を
添加ししかる後に懸濁重合安定剤を添加するか又
はエチレン性単量体もしくは単量体混合物(D)と懸
濁重合安定剤とを同時に添加するかし、懸濁重合
してグラフト共重合体(E)をビーズ状で得ることよ
り成る方法において、 (1) ゴム状重合体(A)がジエン系単量体成分を少な
くとも60重量%含み、且つ膨潤度10〜35、ゲル
含量70%以上、重量平均粒径0.2〜0.4μで粒子
の大部分が0.03〜0.5μの範囲内にあること (2) (B)及び(D)のエチレン性単量体もしくは単量体
混合物がそれぞれ芳香族ビニル単量体50〜100
重量%とこれと共重合し得るビニル単量体50〜
0重量%とからなること (3) グラフト共重合体(C)がフリーポリマー率20%
以上、アセトン可溶分の還元粘度が0.30〜1.0
dl/gであること を特徴とする耐衝撃性樹脂の製造方法。
[Claims] 1. Adding an ethylenic monomer or a monomer mixture (B) to a rubbery polymer (A) latex and carrying out emulsion polymerization to produce a graft copolymer (C) latex, and then After adding an acidic substance or an electrolyte substance to the graft copolymer (C) latex and causing partial aggregation,
Either the ethylenic monomer or monomer mixture (D) is added first and then the suspension polymerization stabilizer is added, or the ethylenic monomer or monomer mixture (D) and the suspension polymerization stabilizer are added. In a method comprising simultaneously adding carbon dioxide and suspending polymerization to obtain the graft copolymer (E) in the form of beads, (1) the rubbery polymer (A) contains at least 60% by weight of the diene monomer component; (2) (B) and (D) The ethylenic monomer or monomer mixture contains 50 to 100 aromatic vinyl monomers, respectively.
Weight% and vinyl monomer copolymerizable with it: 50~
0% by weight (3) Graft copolymer (C) has a free polymer content of 20%
The reduced viscosity of the acetone soluble content is 0.30 to 1.0.
dl/g.
JP2015980A 1980-01-30 1980-02-20 Preparation of impact-resistant resin Granted JPS56116711A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015980A JPS56116711A (en) 1980-02-20 1980-02-20 Preparation of impact-resistant resin
AU66505/81A AU537995B2 (en) 1980-01-30 1981-01-21 Graft polymerisation process
CA000369106A CA1162679A (en) 1980-01-30 1981-01-22 Process for producing impact-resistant resins
IT19366/81A IT1193577B (en) 1980-01-30 1981-01-27 PROCESS TO PRODUCE IMPACT RESISTANT RESINS
DE19813103131 DE3103131A1 (en) 1980-01-30 1981-01-30 METHOD FOR PRODUCING AN IMPACT RESISTANT RESIN
GB8102965A GB2068392B (en) 1980-01-30 1981-01-30 Process for producing impact-resistant graft polymers
US06/473,369 US4513111A (en) 1980-01-30 1983-03-08 Process for producing impact-resistant resins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015980A JPS56116711A (en) 1980-02-20 1980-02-20 Preparation of impact-resistant resin

Publications (2)

Publication Number Publication Date
JPS56116711A JPS56116711A (en) 1981-09-12
JPS6245246B2 true JPS6245246B2 (en) 1987-09-25

Family

ID=12019377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015980A Granted JPS56116711A (en) 1980-01-30 1980-02-20 Preparation of impact-resistant resin

Country Status (1)

Country Link
JP (1) JPS56116711A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578212A (en) * 1980-06-19 1982-01-16 Japan Synthetic Rubber Co Ltd Production of thermoplastic resin

Also Published As

Publication number Publication date
JPS56116711A (en) 1981-09-12

Similar Documents

Publication Publication Date Title
KR100360987B1 (en) Process for preparing thermoplastic transparent resin
KR20030022874A (en) Method For Agglomerating Dispersed Rubber
KR100512367B1 (en) Graft Copolymer Latex and Method for Preparing a Dried Powder thereof
CN113166521B (en) Thermoplastic resin composition comprising (meth) acrylate graft copolymer and method for preparing thermoplastic resin composition
US4513111A (en) Process for producing impact-resistant resins
CN105008406A (en) Transparent ABS resin and transparent ABS resin composition
KR102653406B1 (en) Thermoplastic resin composition and method for preparing the same
KR100477944B1 (en) Acrylate-styrene-acrylonitrile graft copolymer composition and method for preparing thereof
US6080815A (en) Process for producing thermoplastic resins having high impact strength
JPS6327552A (en) Production of thermoplastic molding composition
TW202128800A (en) Alkyl acrylate compound-vinyl cyanide compound-aromatic vinyl compound graft copolymer, method of preparing the same, and thermoplastic resin composition including the same
KR101189328B1 (en) Method for preparing large paticle sized rubber latex with high polymerization productivity
KR101098683B1 (en) Method for the preparation of acrylonitrile-butadiene-styrene copolymer latex powder with a high conversion ratio of monomers to polymer
JPS6245246B2 (en)
KR100426122B1 (en) Method for preparing of acrylonitrile-butadiene-styrene latex graft latex havng superior stability
KR940004852B1 (en) Preparation of thermoplastic resin composition
KR100187551B1 (en) The preparation of thermoplastic resin composition having high impact strength
KR0172160B1 (en) Method of particle-hypertrophy of rubber
KR100452856B1 (en) Thermoplastic resin latex manufacturing method with excellent impact resistance, whiteness and retention gloss
JPS625443B2 (en)
JPS6320246B2 (en)
KR100523595B1 (en) Thermoplastic transparent resin composition and process for preparaing thereof
KR20200111466A (en) Method for preparing graft copolymer
KR102642821B1 (en) Thermoplastic resin composition and method for preparing the same
KR100188526B1 (en) The preparation process for impact thermoplastic resin composition